Sostituire ai parametri b ed a rispettivamente l'ultima e la penultima cifra del proprio numero di matricola (es.: numero 163752; a = 5, b = 2). Rispondere UNICAMENTE su questo foglio, riportando i CALCOLI PRINCIPALI E LE MOTIVAZIONI dei risultati ottenuti. Non consegnare alcun altro foglio.

1) Sia data la trasformazione lineare T_t da \mathbb{R}^4 a \mathbb{R}^3 di equazione matriciale $(y) = A_t(x)$ dove

$$A_t = \begin{pmatrix} 1 & -t & 1 & 1\\ (a+2) & (t^2 - (a+3)) & (a+2) & (a+2)\\ 0 & (1+b) & (t+1) & -(t+1) \end{pmatrix}.$$

- a) Calcolare le dimensioni di $Ker T_t$ e $Im T_t$ al variare del parametro reale t. (5 punti)
- b) Calcolare una base di $Im\ T_t$ nel caso t=1. (4 punti)
- 2) Si ponga $\alpha = a + 2$ e $\beta = b + 2$. Si consideri l'endomorfismo T_k da \mathbb{R}^3 a \mathbb{R}^3 di equazione matriciale $(y) = A_k(x)$ dove

$$A_k = \begin{pmatrix} k & 0 & 0 \\ 0 & \beta & \alpha k \\ 1 & \alpha k & \beta \end{pmatrix}.$$

- a) Si dica per quali valori del parametro reale k l'endomorfismo è diagonalizzabile. (4 punti)
- b) Siano r la retta di \mathbb{R}^3 di equazioni cartesiane y=0, x+(10-a)z-(10-a)=0 ed s la retta di \mathbb{R}^3 di equazioni parametriche $x=0, y=(10-b)t, z=1-t, t\in \mathbb{R}$. Dopo aver verificato la loro incidenza, determinare un'equazione cartesiana del piano che le contiene. (3 punti)
- c) Sia V uno spazio vettoriale di dimensione finita n > 0 su \mathbb{R} . Sia f un endomorfismo su V e si ponga $f^2 = f \circ f$. Se a è pari si dimostri che $Imf^2 \subseteq Imf(2 \ punti)$, se a è dispari si dimostri che $Kerf \subseteq Kerf^2(2 \ punti)$.

SOLUZIONI:

1a) Applicando ad A_t le operazioni colonna $[a_3 \leftarrow a_3 - a_1], [a_4 \leftarrow a_4 - a_1], [a_4 \leftarrow a_4 + a_3]$ si ottiene la matrice

$$B_t = \begin{pmatrix} 1 & -t & 0 & 0\\ (a+2) & (t^2 - (a+3)) & 0 & 0\\ 0 & (1+b) & (t+1) & 0 \end{pmatrix}$$

il cui rango, uguale a quello di A_t è 3 per $t \neq (-a-3), -1, 1$ e 2 altrimenti (osserviamo che il minore di ordine 2

$$M_t = \begin{pmatrix} 1 & -t \\ 0 & (b+1) \end{pmatrix}$$

ricavato dalle prime due colonne di A_t ha sempre determinante diverso da zero). Perciò, dato che $dim(ImT_t) = \rho(A_t)$, dall'equazione dimensionale si ricava che $dim(ImT_t) = 3$, $dim(kerT_t) = 1$ per $t \neq (-a-3), -1, 1$ e $dim(ImT_t) = 2$, $dim(kerT_t) = 2$ altrimenti.

1b) per t = 1 si ha $dim(ImT_1) = \rho(A_1) = 2$, con

$$A_1 = \begin{pmatrix} 1 & -1 & 1 & 1\\ (a+2) & (-a-2) & (a+2) & (a+2)\\ 0 & (1+b) & 2 & 0 \end{pmatrix}.$$

In particolare, il minore

$$M_1 = \begin{pmatrix} 1 & -1 \\ 0 & (b+1) \end{pmatrix}$$

ha determinante diverso da 0: questo vuole dire che le prime due colonne di A_1 sono linearmente indipendenti, e perciò costituiscono una possibile base per ImT_1 .

2a) Si ha

$$\lambda I_3 - A_k = \begin{pmatrix} \lambda - k & 0 & 0 \\ 0 & \lambda - \beta & -\alpha k \\ -1 & -\alpha k & \lambda - \beta \end{pmatrix}.$$

Il polinomio caratteristico è dunque $p(\lambda)=(\lambda-k)((\lambda-\beta)^2-(\alpha k)^2)$. Perciò avremo i tre autovalori $k,\ \beta-\alpha k,\ \beta+\alpha k$. Per $k\neq 0, \frac{\beta}{1+\alpha}, \frac{\beta}{1-\alpha}$ i tre autovalori sono distinti e quindi l'endomorfismo risulta diagonalizzabile. Procedendo con l'analisi dei casi particolari risulta che per k=0 l'endomorfismo è pure diagonalizzabile, mentre non lo è per $k=\frac{\beta}{1+\alpha}, \frac{\beta}{1-\alpha}$.

2b) Le due rette si intersecano nel punto (0,0,1). Un'equazione cartesiana per il piano cercato è

$$(10-b)x + (10-a)y + (10-a)(10-b)z - (10-a)(10-b) = 0$$
.

2c) caso a pari: vale che

$$Imf^2 \subseteq Imf \Leftrightarrow (z \in Imf^2 \Rightarrow z \in Imf)$$
.

Sia dunque $z \in Imf^2$; allora, esisterà $v \in V$ tale che $f^2(v) = f(f(v)) = z$; da quest'ultima, posto f(v) = w, segue che f(w) = z, cioè $z \in Imf$.

2c) caso a dispari: vale che

$$Kerf \subseteq Kerf^2 \Leftrightarrow (v \in Kerf \Rightarrow v \in Kerf^2)$$
.

Sia dunque $v \in Kerf$; allora f(v) = 0 e quindi, poichè f è una trasformazione lineare, anche f(f(v)) = f(0) = 0, cioè $f^2(v) = 0$.