Sostituire ai parametri b ed a rispettivamente l'ultima e la penultima cifra del proprio numero di matricola (es.: numero 263571; a = 7, b = 1). Rispondere UNICAMENTE su questo foglio, sintetizzando le motivazioni dei risultati ottenuti (es.: indicare i minori considerati nel calcolo di un rango). Non consegnare alcun altro foglio.

1) Si ponga $\alpha = 10 - a$ e $\beta = 10 - b$. Data la trasformazione lineare T_t da \mathbb{R}^4 a \mathbb{R}^4 di equazione matriciale $(y) = A_t(x)$ dove

$$A_t = \begin{pmatrix} \alpha & 2 & 1 & \beta \\ \alpha & 2(t+\alpha+1) & 1 & \beta \\ (t-\beta) & 0 & 0 & -1 \\ 2(t-\beta) & 0 & 0 & 2(t+\alpha-1) \end{pmatrix}$$

- a) Calcolare le dimensioni di $Ker T_t$ e $Im T_t$ al variare del parametro reale t. (6 punti)
- b) Calcolare una base di Ker T_t nel caso $t = \beta$. (3 punti)
- 2) Si ponga $\alpha = a + 1$ e $\beta = b + 1$. Dato l'endomorfismo T_k da \mathbb{R}^3 a \mathbb{R}^3 di equazione matriciale $(y) = A_k(x)$ dove

$$A_k = \begin{pmatrix} 0 & 0 & \beta^2 \\ k & \alpha & \beta \\ k^2 & 0 & 0 \end{pmatrix}$$

- a) Si determini per quali valori del parametro reale k l'endomorfismo T_k è diagonalizzabile per similitudine. (6 punti)
- b) Scrivere una equazione (cartesiana o parametrica) del piano di \mathbb{R}^3 ortogonale alla retta r di equazione cartesiana x+y-1=0, (10-a)x-(10-b)y+z=0 e passante per il punto P di coordinate ((a+1),-(b+1),0), rispetto al riferimento cartesiano naturale. (3 punti)

SOLUZIONI:

(1a)

 $\dim Im(T_t) = 2$, $\dim Ker(T_t) = 2$ per $t = -\alpha$

 $\dim Im(T_t) = 3$, $\dim Ker(T_t) = 1$ per $t = \beta$

 $\dim Im(T_t) = 4$, $\dim Ker(T_t) = 0$ altrimenti

(1b)

Base per Ker T_{β} : $B = \{(1, 0, -\alpha, 0)\};$

(2a)

Il polinomio caratteristico è $p(t) = (t - \alpha)(t^2 - (k\beta)^2)$. Gli autovalori sono $\alpha, k\beta, -k\beta$.

Se $k \neq -\frac{\alpha}{\beta}, 0, \frac{\alpha}{\beta}$ abbiamo tre autovalori distinti e quindi T_k è diagonalizzabile per similitudine.

Se $k = -\frac{\alpha}{\beta}$ abbiamo che $ma(-\alpha) = mg(-\alpha) = 1$ e $ma(\alpha) = mg(\alpha) = 2$ e dunque $A_{-\frac{\alpha}{\beta}}$ è diagonalizzabile per similitudine.

similitudine. Se k=0 abbiamo che $ma(\alpha)=mg(\alpha)=1$ e $ma(0)=2\neq 1=mg(0)$ e dunque A_0 non è diagonalizzabile per similitudine.

similitudine. Se $k = \frac{\alpha}{\beta}$ abbiamo che $ma(-\alpha) = mg(-\alpha) = 1$ e $ma(\alpha) = 2 \neq 1 = mg(\alpha)$ e dunque $A_{\frac{\alpha}{\beta}}$ non è diagonalizzabile per similitudine.

(2b)

Una possibile rappresentazione cartesiana del piano cercato è $\pi: x-y+(a+b-20)z-(a+b+2)=0$.