- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - C) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
- 2) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - B) la matrice $A^2 + B^2$ è regolare.
 - C) A^2 ha determinante positivo.
 - D) $A, B \in C$ sono invertibili.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme $\{(\pi, 0, 0, 0), (\pi, \pi, 0, 0), (\pi, \pi, \pi, 0), (\pi, \pi, \pi, \pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - D) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - B) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - C) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - D) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.

- A) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
- B) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
- C) può accadere che A abbia rango 3 e C abbia rango 4.
- D) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) ogni autovalore reale di T è inferiore al numero n.
 - B) T è sempre diagonalizzabile.
 - C) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - D) se A è una matrice reale simmetrica allora T è diagonalizzabile.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - B) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - C) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - D) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro non parallele.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro non ortogonali.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - C) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.

- 1) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
 - B) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - C) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - D) $A \in B$ hanno la stessa traccia.
- 2) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - B) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - C) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - D) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono una retta ed un piano fra loro paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - C) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) un vettore ha sempre le stesse componenti rispetto a qualunque base.
 - B) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - D) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
- 5) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
 - B) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - C) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - D) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.

- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni gruppo contiene infiniti elementi.
 - B) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - C) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 7) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) S ammette soluzione se e solo se A e C hanno lo stesso rango.
 - B) se m = n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - C) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - D) il rango di C è sempre uguale al rango di A.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - D) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - C) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - D) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.

- 1) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) $A, B \in C$ sono invertibili.
 - B) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - C) la matrice $A^2 + B^2$ è regolare.
 - D) A^2 ha determinante positivo.
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
 - B) può accadere che A abbia rango 3 e C abbia rango 4.
 - C) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - D) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
- 3) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se A è una matrice reale simmetrica allora T è diagonalizzabile.
 - B) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - C) T è sempre diagonalizzabile.
 - D) ogni autovalore reale di T è inferiore al numero n.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - B) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - C) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
 - D) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme $\{(\pi,0,0,0),(\pi,\pi,0,0),(\pi,\pi,\pi,0),(\pi,\pi,\pi,\pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.

6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):

- A) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
- B) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
- C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
- D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - B) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - D) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) l'insieme $I\!\!R$ dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - D) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.

- 1) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2, -1) e la retta di equazione 3x y = 1 è 2.
 - B) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - C) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
 - D) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) il rango di C è sempre uguale al rango di A.
 - B) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - C) se m = n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - D) ${f S}$ ammette soluzione se e solo se A e C hanno lo stesso rango.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - C) ogni gruppo contiene infiniti elementi.
 - D) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) $A \in B$ hanno la stessa traccia.
 - B) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - C) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - D) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro non parallele.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro non ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.

6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora

- A) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
- B) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
- C) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
- D) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - B) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
- 8) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - B) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - C) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
 - D) se $A^2 = B^2$ allora $A \in B$ hanno lo stesso determinante.
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - C) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - D) un vettore ha sempre le stesse componenti rispetto a qualunque base.

- 1) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - B) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
 - C) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - D) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - B) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non ortogonali.
 - C) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non parallele.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - C) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
 - D) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
- 5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - B) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
 - C) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
 - D) può accadere che A abbia rango 3 e C abbia rango 4.

6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora

- A) T è sempre diagonalizzabile.
- B) ogni autovalore reale di T è inferiore al numero n.
- C) se A è una matrice reale simmetrica allora T è diagonalizzabile.
- D) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - B) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
 - C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - D) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2, -1) e la retta di equazione 3x y = 1 è 2.
 - B) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
 - D) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) ogni gruppo contiene infiniti elementi.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - D) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - C) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - D) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - B) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
 - C) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - D) $A \in B$ hanno la stessa traccia.
- 3) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) la matrice $A^2 + B^2$ è regolare.
 - B) A^2 ha determinante positivo.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) $A, B \in C$ sono invertibili.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - B) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - C) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.

- 6) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - C) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
- 7) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - B) un vettore ha sempre le stesse componenti rispetto a qualunque base.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - D) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme $\{(\pi, 0, 0, 0), (\pi, \pi, 0, 0), (\pi, \pi, \pi, 0), (\pi, \pi, \pi, \pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - C) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 9) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m = n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - B) S ammette soluzione se e solo se $A \in C$ hanno lo stesso rango.
 - C) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - D) il rango di C è sempre uguale al rango di A.

- 1) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - B) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - C) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - D) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - C) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - D) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - B) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x,y,z) = (2xy,3xy) è una trasformazione lineare.
 - D) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
- 4) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - B) può accadere che A abbia rango 3 e C abbia rango 4.
 - C) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
 - D) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.

- 5) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - B) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - C) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - D) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - B) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - C) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) ogni gruppo contiene infiniti elementi.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) T è sempre diagonalizzabile.
 - B) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - C) ogni autovalore reale di T è inferiore al numero n.
 - D) se A è una matrice reale simmetrica allora T è diagonalizzabile.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - B) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
 - C) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - D) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - C) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.

- 1) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) S ammette soluzione se e solo se A e C hanno lo stesso rango.
 - B) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - C) il rango di C è sempre uguale al rango di A.
 - D) se m=n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non parallele.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro non paralleli.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non ortogonali.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - C) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - D) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1è 2.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - D) l'insieme $\{(\pi,0,0,0),(\pi,\pi,0,0),(\pi,\pi,\pi,0),(\pi,\pi,\pi,\pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo $I\!\!R$.
- 6) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - B) la matrice $A^2 + B^2$ è regolare.
 - C) $A, B \in C$ sono invertibili.
 - D) A^2 ha determinante positivo.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
 - B) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - C) $A \in B$ hanno la stessa traccia.
 - D) se T ammette n autovalori strettamente negativi allora T è invertibile.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) un vettore ha sempre le stesse componenti rispetto a qualunque base.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - C) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - D) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - B) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - D) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - C) l'insieme $\{(\pi, 0, 0, 0), (\pi, \pi, 0, 0), (\pi, \pi, \pi, 0), (\pi, \pi, \pi, \pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - D) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x+y=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro non parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non ortogonali.
- 3) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - B) nel piano euclideo standard il punto medio del segmento di estremi (1, 2), (4, 5) è (2, 4).
 - C) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
 - B) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - D) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.

- A) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
- B) può accadere che A abbia rango 3 e C abbia rango 4.
- C) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
- D) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se A è una matrice reale simmetrica allora T è diagonalizzabile.
 - B) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - C) ogni autovalore reale di T è inferiore al numero n.
 - D) T è sempre diagonalizzabile.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - B) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - C) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - D) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - B) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 9) Siano $A, B \in C$ tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) la matrice $A^2 + B^2$ è regolare.
 - B) $A, B \in C$ sono invertibili.
 - C) A^2 ha determinante positivo.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - C) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
 - D) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
- 3) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - B) se A + B + C è una matrice non regolare allora anche $A, B \in C$ sono matrici non regolari.
 - C) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - D) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - B) ogni gruppo contiene infiniti elementi.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - B) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.

6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora

- A) se T ammette n autovalori strettamente negativi allora T è invertibile.
- B) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
- C) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
- D) $A \in B$ hanno la stessa traccia.
- 7) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m=n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - B) S ammette soluzione se e solo se A e C hanno lo stesso rango.
 - C) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - D) il rango di C è sempre uguale al rango di A.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - B) un vettore ha sempre le stesse componenti rispetto a qualunque base.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - D) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - B) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - D) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - D) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se A è una matrice reale simmetrica allora T è diagonalizzabile.
 - B) ogni autovalore reale di T è inferiore al numero n.
 - C) T è sempre diagonalizzabile.
 - D) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - B) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - C) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - D) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
- 4) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
 - B) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
 - C) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - D) può accadere che A abbia rango 3 e C abbia rango 4.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.

- 6) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - B) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - C) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - C) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - D) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 8) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) A, B e C sono invertibili.
 - B) A^2 ha determinante positivo.
 - C) la matrice $A^2 + B^2$ è regolare.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme $\{(\pi, 0, 0, 0), (\pi, \pi, 0, 0), (\pi, \pi, \pi, 0), (\pi, \pi, \pi, \pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - C) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - B) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - C) se A + B + C è una matrice non regolare allora anche $A, B \in C$ sono matrici non regolari.
 - D) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - B) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
 - C) A e B hanno la stessa traccia.
 - D) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - B) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - C) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
 - D) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(I\!\! R)$, dotato delle usuali operazioni.
 - C) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - B) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - C) ogni gruppo contiene infiniti elementi.
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.

6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y - z = 3 rispetto al riferimento cartesiano naturale. Allora

- A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
- B) \mathcal{A} e \mathcal{B} sono piani fra loro non paralleli.
- C) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non ortogonali.
- D) \mathcal{A} e \mathcal{B} sono rette fra loro non parallele.
- 7) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m=n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - B) S ammette soluzione se e solo se A e C hanno lo stesso rango.
 - C) il rango di C è sempre uguale al rango di A.
 - D) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - B) un vettore ha sempre le stesse componenti rispetto a qualunque base.
 - C) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - D) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - B) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
 - C) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
 - D) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - B) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
 - C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x,y,z) = (2xy,3xy) è una trasformazione lineare.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) può accadere che A abbia rango 3 e C abbia rango 4.
 - B) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
 - C) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - D) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - B) se A è una matrice reale simmetrica allora T è diagonalizzabile.
 - C) T è sempre diagonalizzabile.
 - D) ogni autovalore reale di T è inferiore al numero n.
- 5) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
 - B) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - C) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - D) se $A^2 = B^2$ allora $A \in B$ hanno lo stesso determinante.

6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y - z = 3 rispetto al riferimento cartesiano naturale. Allora

- A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non parallele.
- B) \mathcal{A} e \mathcal{B} sono piani fra loro non ortogonali.
- C) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.
- D) \mathcal{A} e \mathcal{B} sono rette fra loro non ortogonali.
- 7) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - B) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - D) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni gruppo contiene infiniti elementi.
 - B) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - D) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - C) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
 - D) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
- 3) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) A^2 ha determinante positivo.
 - B) $A, B \in C$ sono invertibili.
 - C) la matrice $A^2 + B^2$ è regolare.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - B) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - D) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 5) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - C) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - D) un vettore ha sempre le stesse componenti rispetto a qualunque base.

- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(\pi,0,0,0),(\pi,\pi,0,0),(\pi,\pi,\pi,0),(\pi,\pi,\pi,\pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - B) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - C) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 7) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - B) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - D) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
- 8) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) il rango di C è sempre uguale al rango di A.
 - B) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - C) se m = n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - D) \mathbf{S} ammette soluzione se e solo se A e C hanno lo stesso rango.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) $A \in B$ hanno la stessa traccia.
 - B) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - C) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - D) se A non è simmetrica allora V non ammette una base spettrale relativa a T.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - B) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - C) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
 - D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - C) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
 - D) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - B) può accadere che A abbia rango 3 e C abbia rango 4.
 - C) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
 - D) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
- 5) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - D) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.

6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora

- A) T è sempre diagonalizzabile.
- B) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
- C) se A è una matrice reale simmetrica allora T è diagonalizzabile.
- D) ogni autovalore reale di T è inferiore al numero n.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) ogni gruppo contiene infiniti elementi.
 - C) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - D) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
- 8) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - B) se A + B + C è una matrice non regolare allora anche $A, B \in C$ sono matrici non regolari.
 - C) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - D) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - B) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - D) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme $I\!\!R$ dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - C) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) A e B hanno la stessa traccia.
 - B) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - C) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - D) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme $\{(\pi,0,0,0),(\pi,\pi,0,0),(\pi,\pi,\pi,0),(\pi,\pi,\pi,\pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo $I\!\!R$.
- 4) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) A, $B \in C$ sono invertibili.
 - B) la matrice $A^2 + B^2$ è regolare.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) A^2 ha determinante positivo.

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.

- A) il rango di C è sempre uguale al rango di A.
- B) se m = n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- C) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
- D) \mathbf{S} ammette soluzione se e solo se A e C hanno lo stesso rango.
- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - B) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - D) un vettore ha sempre le stesse componenti rispetto a qualunque base.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
 - B) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - C) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - D) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
 - B) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - C) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - D) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro non parallele.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro non ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro non parallele.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro non paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro non ortogonali.
- 2) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - B) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - C) l'insieme $\{(\pi,0,0,0),(\pi,\pi,0,0),(\pi,\pi,\pi,0),(\pi,\pi,\pi,\pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - D) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) ogni autovalore reale di T è inferiore al numero n.
 - B) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - C) T è sempre diagonalizzabile.
 - D) se A è una matrice reale simmetrica allora T è diagonalizzabile.

5) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora

- A) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
- B) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
- C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
- D) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - B) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 7) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) la matrice $A^2 + B^2$ è regolare.
 - B) $A, B \in C$ sono invertibili.
 - C) A^2 ha determinante positivo.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - B) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - D) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
- 9) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
 - B) può accadere che A abbia rango 3 e C abbia rango 4.
 - C) se S ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - D) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - B) un vettore ha sempre le stesse componenti rispetto a qualunque base.
 - C) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - D) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni gruppo contiene infiniti elementi.
 - B) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - D) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
- 3) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - B) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
 - C) A e B hanno la stessa traccia.
 - D) se T ammette n autovalori strettamente negativi allora T è invertibile.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - C) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - C) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - D) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
- 6) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
 - B) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - C) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - D) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - C) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - D) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
- 8) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - B) S ammette soluzione se e solo se A e C hanno lo stesso rango.
 - C) il rango di C è sempre uguale al rango di A.
 - D) se m=n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - C) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - D) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - B) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
 - C) può accadere che A abbia rango 3 e C abbia rango 4.
 - D) se l'insieme Sol(S) ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - B) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - D) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
- 5) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) T è sempre diagonalizzabile.
 - B) ogni autovalore reale di T è inferiore al numero n.
 - C) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - D) se A è una matrice reale simmetrica allora T è diagonalizzabile.

6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora

- A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
- B) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
- C) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
- D) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - C) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
- 8) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) $A, B \in C$ sono invertibili.
 - B) A^2 ha determinante positivo.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) la matrice $A^2 + B^2$ è regolare.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme $\{(\pi,0,0,0),(\pi,\pi,0,0),(\pi,\pi,\pi,0),(\pi,\pi,\pi,\pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - C) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - B) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - C) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - D) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - B) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - D) ogni gruppo contiene infiniti elementi.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - B) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - B) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - C) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - D) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.

- A) il rango di C è sempre uguale al rango di A.
- B) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
- C) se m = n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- D) \mathbf{S} ammette soluzione se e solo se A e C hanno lo stesso rango.
- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - C) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
 - D) un vettore ha sempre le stesse componenti rispetto a qualunque base.
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.
 - C) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non parallele.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro non ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - B) nel piano euclideo standard il punto medio del segmento di estremi (1, 2), (4, 5) è (2, 4).
 - C) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n>0 e siano A,B due matrici di T rispetto a due basi fissate di V. Allora
 - A) A e B hanno la stessa traccia.
 - B) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - C) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - D) se A non è simmetrica allora V non ammette una base spettrale relativa a T.

- 1) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - B) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
 - C) può accadere che A abbia rango 3 e C abbia rango 4.
 - D) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) T è sempre diagonalizzabile.
 - B) ogni autovalore reale di T è inferiore al numero n.
 - C) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - D) se A è una matrice reale simmetrica allora T è diagonalizzabile.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - B) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - C) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
 - D) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - B) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - C) ogni gruppo contiene infiniti elementi.
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non parallele.
 - C) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.

- 6) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
 - B) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - C) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
 - D) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
- 7) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - B) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
 - C) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
 - D) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - C) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - C) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - D) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .

- 1) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) la matrice $A^2 + B^2$ è regolare.
 - B) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - C) A^2 ha determinante positivo.
 - D) $A, B \in C$ sono invertibili.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme IR dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma
 - B) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
 - B) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
 - C) un vettore ha sempre le stesse componenti rispetto a qualunque base.
 - D) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(\pi, 0, 0, 0), (\pi, \pi, 0, 0), (\pi, \pi, \pi, 0), (\pi, \pi, \pi, \pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - D) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.

5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora

- A) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
- C) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
- D) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - C) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - D) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - B) $A \in B$ hanno la stessa traccia.
 - C) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
 - D) se T ammette n autovalori strettamente negativi allora T è invertibile.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
 - B) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - C) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
- 9) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - B) il rango di C è sempre uguale al rango di A.
 - C) S ammette soluzione se e solo se A e C hanno lo stesso rango.
 - D) se m=n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se (v_1, \ldots, v_n) è una base ortonormale di V allora $||v_1 + v_2 + \ldots + v_n|| = 1$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle -u, -u \rangle$.
 - C) se $u, v \in V$ e $\langle u, v \rangle = 0$ allora v è il vettore nullo.
 - D) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u|| + ||v||$.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) una trasformazione lineare T da \mathbb{R}^n in \mathbb{R}^n è invertibile se e solo se lo è T^2 .
 - B) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 in se stessa ha dimensione 0.
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (2xy, 3xy) è una trasformazione lineare.
 - D) la composizione di due endomorfismi di \mathbb{R}^3 è un endomorfismo di \mathbb{R}^3 .
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) può accadere che A abbia rango 3 e C abbia rango 4.
 - B) se **S** ammette infinite soluzioni allora $\rho(A) < \rho(C)$.
 - C) se m > n l'insieme $Sol(\mathbf{S})$ è vuoto.
 - D) se l'insieme $Sol(\mathbf{S})$ ammette come soluzione l'n-upla nulla allora $\rho(A) = n$.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 + 4xy y^2 2x = 0$ è una parabola.
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è ortogonale sia ad u che a v.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(0,1,1),(0,0,1),(0,0,0) è 1/6.
 - D) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (0, 0, 0) è il punto (1, 2, 3).
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni gruppo contiene infiniti elementi.
 - B) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale, \mathbf{K} e V sono campi rispetto alle operazioni + e \cdot .
 - C) l'insieme delle matrici reali $n \times n$ a determinante uguale a 1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme C dei numeri complessi è un campo rispetto alle usuali operazioni di somma e di prodotto.

- 6) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice non regolare allora anche A, B e C sono matrici non regolari.
 - B) se tutti gli elementi della diagonale principale di A sono uguali ad 1 allora A è regolare.
 - C) se $A \cdot C = B \cdot C$ e C è invertibile allora A = B.
 - D) se $A^2 = B^2$ allora A e B hanno lo stesso determinante.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} derivabili è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) ogni insieme di n vettori linearmente dipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - D) l'insieme delle matrici reali 3×3 con un solo elemento non nullo è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=s,z=0 e z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) la somma delle molteplicità geometriche degli autovalori reali di T non può superare n.
 - B) T è sempre diagonalizzabile.
 - C) ogni autovalore reale di T è inferiore al numero n.
 - D) se A è una matrice reale simmetrica allora T è diagonalizzabile.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle < 0$.
 - B) se $u, v \in V$ allora $\langle u, v \rangle = \langle v, u \rangle$.
 - C) ogni sottospazio vettoriale di V ha dimensione strettamente inferiore a quella del suo complemento ortogonale.
 - D) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
- 2) Siano A, B e C tre matrici reali $n \times n$ con determinante non nullo. Allora
 - A) A^2 ha determinante positivo.
 - B) la matrice $A^2 + B^2$ è regolare.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) $A, B \in C$ sono invertibili.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(\pi,0,0,0),(\pi,\pi,0,0),(\pi,\pi,\pi,0),(\pi,\pi,\pi,\pi)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo IR.
 - B) l'insieme delle matrici reali 4×4 con tutti gli elementi uguali a numeri interi è un sottospazio vettoriale di $M_4(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme dei polinomi reali di grado non superiore a 9 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle successioni reali il cui primo termine sia uguale a 0, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x + y = 0 e y z = 3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro non ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro non parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro non ortogonali.
- 5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se S è un sistema lineare non omogeneo non può ammettere alcuna soluzione.
 - B) se m = n e le righe di A sono tutte diverse fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - C) S ammette soluzione se e solo se A e C hanno lo stesso rango.
 - D) il rango di C è sempre uguale al rango di A.

6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):

- A) lo spazio vettoriale di tutti i polinomi a coefficienti reali che si annullano nel punto 0 ha dimensione infinita.
- B) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da F(A) = -3A è una trasformazione lineare.
- C) un vettore ha sempre le stesse componenti rispetto a qualunque base.
- D) il nucleo e l'immagine di un endomorfismo hanno sempre la stessa dimensione.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) il polinomio caratteristico di A è uguale al polinomio caratteristico di B.
 - B) se T ammette n autovalori strettamente negativi allora T è invertibile.
 - C) se A non è simmetrica allora V non ammette una base spettrale relativa a T.
 - D) $A \in B$ hanno la stessa traccia.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard il punto medio del segmento di estremi (1,2), (4,5) è (2,4).
 - B) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,-1), (1,-1,-1) è $\frac{\sqrt{3}}{2}$.
 - C) nel piano euclideo standard la conica di equazione $x^2 2xy + y^2 1 = 0$ è una iperbole.
 - D) nel piano euclideo standard la distanza fra il punto di coordinate (2,-1) e la retta di equazione 3x y = 1 è 2.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei polinomi reali è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - B) l'insieme \mathbb{R} dei numeri reali è un gruppo commutativo rispetto alla usuale operazione di somma.
 - C) l'insieme delle matrici reali 5×5 con traccia nulla è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme dei numeri interi multipli di 10 è un anello rispetto alle usuali operazioni di somma e prodotto.