- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- \mathbf{V} \mathbf{F} b) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- V F c) Ogni campo contiene almeno un divisore dello zero.
- **V F** d) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- V F b) Ogni matrice diagonale è anche una matrice triangolare.
- V F c) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- **V F** d) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** b) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- \mathbf{V} \mathbf{F} c) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- V F d) Esistono matrici invertibili che ammettono due inverse distinte.
 - 4) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di **V** è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- V F b) Tutte le basi di V hanno la stessa cardinalità.
- ${f V}$ ${f F}$ c) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- ${f V}$ ${f F}$ d) Esistono sistemi di generatori di ${f V}$ di cardinalità strettamente maggiore di dim ${f V}$.
 - 5) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } T \text{ è suriettiva, allora } \dim \mathbf{V} = \dim \mathbf{W}.$
- $\mathbf{V} \cdot \mathbf{F}$ b) Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
- \mathbf{V} \mathbf{F} c) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{V} = \mathbf{W}$ allora $T \circ T \circ T$ è una trasformazione lineare da \mathbf{V} in \mathbf{V} .

- 6) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) **S** è possibile se e solo se m = n.
- **V F** b) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Se $\mathbf{x}' \in \mathbf{x}''$ sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
- $\mathbf{V} \cdot \mathbf{F}$ d) Se m > n+1 allora le equazioni di \mathbf{S} sono linearmente dipendenti.
 - 7) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- **V F** a) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- \mathbf{V} \mathbf{F} b) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- ${f V}$ ${f F}$ c) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- \mathbf{V} \mathbf{F} d) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 8) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n, \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ se e solo se } \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2.$
- **V F** c) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim $\mathbf{U} = \dim \mathbf{U}$.
 - 9) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- $\mathbf{V} \quad \mathbf{F} \qquad \text{a)} \quad \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- **V F** b) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- **V F** c) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} d) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.

- 1) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}) \ A \in C \text{ hanno lo stesso rango.}$
- **V F** c) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- ${f V} {f F} {f G}$ d) Se ${f S}$ è omogeneo e ${f x}'$ e ${f x}''$ sono due soluzioni di ${f S}$, allora ${f x}' {f x}''$ è una soluzione di ${f S}$.
 - 2) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- ${f V}$ ${f F}$ a) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
- **V F** b) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- **V F** c) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
- $\mathbf{V} \quad \mathbf{F} \qquad d) \ (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
 - 3) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- ${f V}$ ${f F}$ a) Ogni sottospazio vettoriale di ${\Bbb R}^n$ ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- **V F** b) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- **V F** c) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
 - 4) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se \mathbf{U} e \mathbf{W} sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
- \mathbf{V} \mathbf{F} b) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- ${f V}$ ${f F}$ c) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}.$
- \mathbf{V} \mathbf{F} d) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- **V F** b) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- V F d) In una matrice ridotta per righe non ci possono essere righe nulle.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- \mathbf{V} \mathbf{F} b) Il gruppo $(\mathbb{Q}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- \mathbf{V} \mathbf{F} c) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
- V F d) Tutti gli anelli sono commutativi.
 - 7) Sia **V** uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
- **V F** b) La funzione S + T (definita dalla formula $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
- V F c) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** d) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F b) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** c) Se $n \ge 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- V F d) Esistono matrici ortogonali che non sono invertibili.
 - 9) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- ${f V}$ ${f F}$ b) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- V F c) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- \mathbf{V} \mathbf{F} d) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- \mathbf{V} \mathbf{F} b) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- V F c) Ogni matrice diagonale è anche una matrice triangolare.
- V F d) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
 - 2) Siano V, W due spazi vettoriali reali finitamente generati e sia $T : V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{V} = \mathbf{W} \text{ allora } T \circ T \circ T \text{ è una trasformazione lineare da } \mathbf{V} \text{ in } \mathbf{V}.$
- \mathbf{V} \mathbf{F} b) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se T è suriettiva, allora dim $\mathbf{V} = \dim \mathbf{W}$.
 - 3) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se m > n + 1 allora le equazioni di **S** sono linearmente dipendenti.
- $\mathbf{V} \cdot \mathbf{F}$ b) Se $\mathbf{x}' \in \mathbf{x}''$ sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
- ${f V}$ ${f F}$ c) Se ${f S}$ è omogeneo allora $Sol({f S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- **V F** d) **S** è possibile se e solo se m = n.
 - 4) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- V F b) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- **V F** c) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- **V F** d) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici invertibili che ammettono due inverse distinte.
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** c) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- \mathbf{V} \mathbf{F} d) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.

- 6) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
- ${f V}$ ${f F}$ b) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- V F c) Tutte le basi di V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} d) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
 - 7) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$
- **V F** b) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- **V F** c) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- **V F** d) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
 - 8) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- V F a) $(\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3$.
- **V F** b) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
- ${f V}$ ${f F}$ c) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
- **V F** d) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- \mathbf{V} \mathbf{F} b) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- \mathbf{V} \mathbf{F} c) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- V F d) Ogni campo contiene almeno un divisore dello zero.

- 1) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- **V F** b) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} c) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
- $\mathbf{V} \quad \mathbf{F} \qquad \mathrm{d}) \ \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
 - 2) Sia V uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- V F b) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** c) La funzione S + T (definita dalla formula $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
- **V F** d) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti gli anelli sono commutativi.
- \mathbf{V} \mathbf{F} b) Il gruppo (\mathbb{Q} , +) dei numeri reali razionali è un sottogruppo del gruppo (\mathbb{R} , +).
- \mathbf{V} \mathbf{F} c) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
 - 4) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
- **V F** b) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} c) $A \in C$ hanno lo stesso rango.
- **V F** d) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.

- 5) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n, \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ se e solo se } \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2.$
- **V F** b) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim $\mathbf{U} = \dim \mathbf{U}$.
- $\mathbf{V} \quad \mathbf{F} \qquad \mathrm{d}) \ \mathrm{Se} \ \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \ \mathrm{allora} \ \|\mathbf{u} \mathbf{v}\| \leq \|\mathbf{u}\| \|\mathbf{v}\|.$
 - 6) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} b) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- **V F** c) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} d) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici ortogonali che non sono invertibili.
- V F b) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- **V F** d) Se $n \ge 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) In una matrice ridotta per righe non ci possono essere righe nulle.
- \mathbf{V} \mathbf{F} b) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- \mathbf{V} \mathbf{F} c) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
 - 9) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- ${f V}$ ${f F}$ b) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}$.
- \mathbf{V} \mathbf{F} c) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- $\mathbf{V} \cdot \mathbf{F}$ d) Se $\mathbf{U} \in \mathbf{W}$ sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) In una matrice ridotta per righe non ci possono essere righe nulle.
- **V F** b) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- \mathbf{V} \mathbf{F} c) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici ortogonali che non sono invertibili.
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F c) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** d) Se $n \geq 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
 - 3) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, allora $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{U}$ è un sottospazio vettoriale di \mathbb{R}^n allora dim $^{\perp}\mathbf{U} = \dim \mathbf{U}$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- **V F** d) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
 - 4) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le basi di V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} b) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- V F c) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
- ${f V}$ ${f F}$ d) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
 - 5) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
- $\mathbf{V} \cdot \mathbf{F}$ b) Se T è suriettiva, allora dim $\mathbf{V} = \dim \mathbf{W}$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Se } \mathbf{V} = \mathbf{W} \text{ allora } T \circ T \circ T \text{ è una trasformazione lineare da } \mathbf{V} \text{ in } \mathbf{V}.$
- \mathbf{V} \mathbf{F} d) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.

- 6) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- **V F** b) **S** è possibile se e solo se m = n.
- \mathbf{V} \mathbf{F} c) Se m > n+1 allora le equazioni di \mathbf{S} sono linearmente dipendenti.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{x}' \in \mathbf{x}''$ sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
 - 7) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} b) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
- **V F** c) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- \mathbf{V} \mathbf{F} d) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
 - 8) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} b) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
- $\mathbf{V} \quad \mathbf{F} \qquad c) \ \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- **V F** d) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti gli anelli sono commutativi.
- \mathbf{V} \mathbf{F} b) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- **V F** c) Il gruppo $(\mathbb{Q}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.

- 1) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- **V F** b) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} c) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- **V F** d) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 2) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad A \in C \text{ hanno lo stesso rango.}$
- **V F** b) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- **V F** c) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} d) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni matrice diagonale è anche una matrice triangolare.
- ${f V}$ ${f F}$ b) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- **V F** c) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- **V F** d) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- V F b) Ogni campo contiene almeno un divisore dello zero.
- \mathbf{V} \mathbf{F} c) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- **V F** d) L'anello ($\mathbb{R}[x], +, \cdot$) dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
 - 5) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$
- **V F** c) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- \mathbf{V} \mathbf{F} d) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.

- 6) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Le rette di equazioni parametriche x = 3t, y = 2t, z = t e x = t, y = 0, z = -3t sono fra loro ortogonali.
- $\mathbf{V} \quad \mathbf{F} \qquad b) \ (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
- **V F** c) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- ${f V}$ ${f F}$ d) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
 - 7) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- $\mathbf{V} \cdot \mathbf{F}$ b) Se $\mathbf{U} \in \mathbf{W}$ sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
- ${f V}$ ${f F}$ c) Se due vettori ${f u},{f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}.$
- \mathbf{V} \mathbf{F} d) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- \mathbf{V} \mathbf{F} b) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- V F d) Esistono matrici invertibili che ammettono due inverse distinte.
 - 9) Sia **V** uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) La funzione S+T (definita dalla formula $(S+T)({f v})=S({f v})+T({f v})$) è una trasformazione lineare da ${f V}$ in ${f V}$.
- **V F** b) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
- ${f V}$ ${f F}$ c) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** d) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- V F c) In una matrice ridotta per righe non ci possono essere righe nulle.
- $\mathbf{V} \cdot \mathbf{F}$ d) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** b) Se $n \geq 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- V F c) Esistono matrici ortogonali che non sono invertibili.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
 - 3) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le basi di V hanno la stessa cardinalità.
- ${f V}$ ${f F}$ b) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- \mathbf{V} \mathbf{F} c) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- V F d) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
 - 4) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
- \mathbf{V} \mathbf{F} b) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Se T è suriettiva, allora dim $\mathbf{V} = \dim \mathbf{W}$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{V} = \mathbf{W}$ allora $T \circ T \circ T$ è una trasformazione lineare da \mathbf{V} in \mathbf{V} .

- 5) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- $\mathbf{V} \quad \mathbf{F} \quad a) \quad (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
- ${f V}$ ${f F}$ b) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
- **V F** c) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- **V F** d) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il gruppo $(\tilde{\mathbb{Q}}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- **V F** b) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
- V F c) Tutti gli anelli sono commutativi.
- \mathbf{V} \mathbf{F} d) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
 - 7) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- \mathbf{V} \mathbf{F} b) Se \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
- **V F** c) **S** è possibile se e solo se m = n.
- **V F** d) Se m > n + 1 allora le equazioni di **S** sono linearmente dipendenti.
 - 8) Sia $T:\mathbb{R}^n\to\mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- **V F** a) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} b) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- ${f V}$ ${f F}$ c) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- ${f V}$ ${f F}$ d) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
 - 9) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$
- **V F** b) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- **V F** c) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- **V F** d) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).

- 1) Sia V uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $S \in T$ sono isomorfismi allora $S \circ T$ è un isomorfismo.
- \mathbf{V} \mathbf{F} b) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** c) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- **V F** d) La funzione S+T (definita dalla formula $(S+T)(\mathbf{v})=S(\mathbf{v})+T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
 - 2) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n, \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ se e solo se } \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2.$
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{d}$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim $\mathbf{U} = \dim \mathbf{U}$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- \mathbf{V} \mathbf{F} b) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- **V F** c) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- V F d) Ogni campo contiene almeno un divisore dello zero.
 - 4) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- **V F** b) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \qquad c) \ \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- \mathbf{V} \mathbf{F} d) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** b) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- V F c) Esistono matrici invertibili che ammettono due inverse distinte.
- \mathbf{V} \mathbf{F} d) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- V F b) Ogni matrice diagonale è anche una matrice triangolare.
- **V F** c) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- **V F** d) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
 - 7) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- **V F** b) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} c) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
- $\mathbf{V} \quad \mathbf{F} \quad d) \quad A \in C \text{ hanno lo stesso rango.}$
 - 8) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se \mathbf{U} e \mathbf{W} sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
- ${f V}$ ${f F}$ b) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u} = {f v}$.
- \mathbf{V} \mathbf{F} c) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- \mathbf{V} \mathbf{F} d) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
 - 9) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- \mathbf{V} \mathbf{F} b) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- **V F** c) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- **V F** d) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- V F b) Esistono matrici invertibili che ammettono due inverse distinte.
- \mathbf{V} \mathbf{F} c) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
 - 2) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n, \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ se e solo se } \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2.$
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- **V F** c) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim $\mathbf{U} = \dim \mathbf{U}$.
 - 3) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \qquad \mathbf{b}) \quad \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- **V F** c) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} d) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
 - 4) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
- ${f V}$ ${f F}$ b) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- \mathbf{V} \mathbf{F} c) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- V F d) Tutte le basi di V hanno la stessa cardinalità.

- 5) Siano V, W due spazi vettoriali reali finitamente generati e sia $T : V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{V} = \mathbf{W} \text{ allora } T \circ T \circ T \text{ è una trasformazione lineare da } \mathbf{V} \text{ in } \mathbf{V}.$
- \mathbf{V} \mathbf{F} b) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad c) \text{ Se } T \text{ è suriettiva, allora } \dim \mathbf{V} = \dim \mathbf{W}.$
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
 - 6) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se m > n + 1 allora le equazioni di **S** sono linearmente dipendenti.
- ${f V} {f F} {f F}$ b) Se ${f x}'$ e ${f x}''$ sono due soluzioni di ${f S}$ allora ${f x}' + {f x}''$ è una soluzione di ${f S}$.
- **V F** c) **S** è possibile se e solo se m = n.
- **V F** d) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
 - 7) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- **V F** b) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti
- \mathbf{V} \mathbf{F} c) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- **V F** d) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- **V F** b) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- V F c) Ogni campo contiene almeno un divisore dello zero.
- \mathbf{V} \mathbf{F} d) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni matrice diagonale è anche una matrice triangolare.
- **V F** b) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- V F c) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- **V F** d) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.

- 1) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- **V F** b) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- **V F** c) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
 - 2) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- ${f V}$ ${f F}$ b) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} c) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} d) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- \mathbf{V} \mathbf{F} b) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- \mathbf{V} \mathbf{F} c) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- V F d) In una matrice ridotta per righe non ci possono essere righe nulle.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Il campo } (\mathbb{R}, +, \cdot) \text{ dei numeri reali ha caratteristica } 0.$
- \mathbf{V} \mathbf{F} b) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- \mathbf{V} \mathbf{F} c) Il gruppo $(\mathbb{Q}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- V F d) Tutti gli anelli sono commutativi.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $n \geq 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F c) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- V F d) Esistono matrici ortogonali che non sono invertibili.

- 6) Sia S un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad A \in C \text{ hanno lo stesso rango.}$
- **V F** b) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- **V F** c) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} d) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
 - 7) Sia V uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) La funzione S+T (definita dalla formula $(S+T)({f v})=S({f v})+T({f v})$) è una trasformazione lineare da ${f V}$ in ${f V}$.
- **V F** b) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
- V F c) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** d) Se $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \ldots, n\}$, allora le funzioni S e T coincidono.
 - 8) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- \mathbf{V} \mathbf{F} b) Se \mathbf{U} e \mathbf{W} sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
- ${f V}$ ${f F}$ c) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u} = {f v}$.
- \mathbf{V} \mathbf{F} d) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
 - 9) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
- **V F** b) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- ${f V}$ ${f F}$ c) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
- $\mathbf{V} \quad \mathbf{F} \qquad d) \ (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$

- 1) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false
- V F a) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
- \mathbf{V} \mathbf{F} b) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- V F c) Tutte le basi di V hanno la stessa cardinalità.
- ${f V}$ ${f F}$ d) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
 - 2) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Se m > n + 1 allora le equazioni di \mathbf{S} sono linearmente dipendenti.
- **V F** b) **S** è possibile se e solo se m = n.
- ${\bf V} {\bf F} {\bf c}$) Se ${\bf S}$ è omogeneo allora $Sol({\bf S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{x}' \in \mathbf{x}''$ sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
 - 3) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- **V F** a) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- V F b) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- \mathbf{V} \mathbf{F} c) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} d) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 4) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{V} = \mathbf{W} \text{ allora } T \circ T \circ T \text{ è una trasformazione lineare da } \mathbf{V} \text{ in } \mathbf{V}.$
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } T \text{ è suriettiva, allora dim } \mathbf{V} = \dim \mathbf{W}.$
- \mathbf{V} \mathbf{F} c) Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
- \mathbf{V} \mathbf{F} d) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
 - 5) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** b) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- **V F** c) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- **V F** d) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.

- 6) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- $\mathbf{V} \quad \mathbf{F} \quad a) \ (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
- **V F** b) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
- **V F** c) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- ${f V}$ ${f F}$ d) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- V F b) Ogni campo contiene almeno un divisore dello zero.
- \mathbf{V} \mathbf{F} c) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- \mathbf{V} \mathbf{F} d) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- V F b) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- V F c) Ogni matrice diagonale è anche una matrice triangolare.
- $\mathbf{V} \cdot \mathbf{F}$ d) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici invertibili che ammettono due inverse distinte.
- \mathbf{V} \mathbf{F} b) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- **V F** c) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- \mathbf{V} \mathbf{F} c) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- V F d) In una matrice ridotta per righe non ci possono essere righe nulle.
 - 2) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad A \in C \text{ hanno lo stesso rango.}$
- **V F** b) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- \mathbf{V} \mathbf{F} c) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
- **V F** d) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
 - 3) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- **V F** b) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- \mathbf{V} \mathbf{F} c) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} d) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** b) Se $n \geq 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F d) Esistono matrici ortogonali che non sono invertibili.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il gruppo $(\tilde{\mathbb{Q}}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- **V F** b) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
- \mathbf{V} \mathbf{F} c) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- V F d) Tutti gli anelli sono commutativi.

- 6) Siano $\langle\cdot,\cdot\rangle$ il prodotto scalare standard su \mathbb{R}^n e || \cdot || la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n, \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ se e solo se } \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2.$
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim $\mathbf{U} = \dim \mathbf{U}$.
- **V F** d) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
 - 7) Sia V uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La funzione S + T (definita dalla formula $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
- **V F** b) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
- **V F** c) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- \mathbf{V} \mathbf{F} d) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
 - 8) Sia **V** uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{U} \in \mathbf{W} \text{ sono sottospazi vettoriali di } \mathbf{V}, \text{ allora } \dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}.$
- \mathbf{V} \mathbf{F} c) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- ${f V}$ ${f F}$ d) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}.$
 - 9) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \qquad \mathbf{b}) \ \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- ${f V}$ ${f F}$ c) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione cartesiana.
- **V F** d) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F b) Esistono matrici ortogonali che non sono invertibili.
- V F c) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** d) Se $n \ge 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
 - 2) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- V F b) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
- V F c) Tutte le basi di V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} d) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
 - 3) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } T$ è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{V} = \mathbf{W} \text{ allora } T \circ T \circ T \text{ è una trasformazione lineare da } \mathbf{V} \text{ in } \mathbf{V}.$
- V F c) Il nucleo di T è un sottospazio vettoriale di W.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se T è suriettiva, allora dim $\mathbf{V} = \dim \mathbf{W}$.
 - 4) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
- **V F** b) Se m > n + 1 allora le equazioni di **S** sono linearmente dipendenti.
- **V F** c) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- **V F** d) **S** è possibile se e solo se m = n.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- V F b) In una matrice ridotta per righe non ci possono essere righe nulle.
- ${f V}$ ${f F}$ c) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.

- 6) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- **V F** b) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, allora $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim ${}^{\perp}\mathbf{U} = \dim \mathbf{U}$.
 - 7) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- **V F** b) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \qquad c) \ \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- \mathbf{V} \mathbf{F} d) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
 - 8) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- \mathbf{V} \mathbf{F} b) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- **V F** c) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- \mathbf{V} \mathbf{F} d) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- V F b) Tutti gli anelli sono commutativi.
- \mathbf{V} \mathbf{F} c) Il gruppo $(\tilde{\mathbb{Q}}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.

- 1) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$
- **V F** b) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- **V F** c) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- **V F** d) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
 - 2) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- ${f V}$ ${f F}$ b) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- **V F** c) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} d) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- **V F** b) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- V F c) Ogni matrice diagonale è anche una matrice triangolare.
- **V F** d) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni campo contiene almeno un divisore dello zero.
- **V F** b) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- \mathbf{V} \mathbf{F} c) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- \mathbf{V} \mathbf{F} d) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.

- 5) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- ${f V} {f F} {f F}$ b) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u} = {f v}$.
- \mathbf{V} \mathbf{F} c) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{U} \in \mathbf{W}$ sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- V F b) Esistono matrici invertibili che ammettono due inverse distinte.
- **V F** c) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
 - 7) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- $\mathbf{V} \quad \mathbf{F} \quad a) \ (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
- **V F** b) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- ${f V}$ ${f F}$ c) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
- **V F** d) Le rette di equazioni parametriche x = 3t, y = 2t, z = t e x = t, y = 0, z = -3t sono fra loro ortogonali.
 - 8) Sia **V** uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- \mathbf{V} \mathbf{F} b) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** c) La funzione S + T (definita dalla formula $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
- **V F** d) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
 - 9) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
- **V F** b) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} c) $A \in C$ hanno lo stesso rango.
- **V F** d) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.

- 1) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le basi di V hanno la stessa cardinalità.
- ${f V}$ ${f F}$ b) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- ${f V}$ ${f F}$ c) Esistono sistemi di generatori di ${f V}$ di cardinalità strettamente maggiore di dim ${f V}$.
- \mathbf{V} \mathbf{F} d) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
 - 2) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- \mathbf{V} \mathbf{F} b) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} c) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- ${f V}$ ${f F}$ d) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
 - 3) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il nucleo di T è un sottospazio vettoriale di W.
- \mathbf{V} \mathbf{F} b) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Se $\mathbf{V} = \mathbf{W}$ allora $T \circ T \circ T$ è una trasformazione lineare da \mathbf{V} in \mathbf{V} .
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se T è suriettiva, allora dim $\mathbf{V} = \dim \mathbf{W}$.
 - 4) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$
- **V F** c) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- **V F** d) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.

- 5) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Le rette di equazioni parametriche x = 3t, y = 2t, z = t e x = t, y = 0, z = -3t sono fra loro ortogonali.
- $\mathbf{V} \quad \mathbf{F} \qquad \text{b)} \quad (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
- V F c) Ogni sottospazio vettoriale euclideo di R³ ammette almeno una rappresentazione parametrica.
- **V F** d) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
 - 6) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- ${f V} {f F}$ b) Se ${f x}'$ e ${f x}''$ sono due soluzioni di ${f S}$ allora ${f x}' + {f x}''$ è una soluzione di ${f S}$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Se } m > n+1 \text{ allora le equazioni di } \mathbf{S} \text{ sono linearmente dipendenti.}$
- **V F** d) **S** è possibile se e solo se m = n.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti gli anelli sono commutativi.
- \mathbf{V} \mathbf{F} b) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
- \mathbf{V} \mathbf{F} d) Il gruppo $(\mathbb{Q}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) In una matrice ridotta per righe non ci possono essere righe nulle.
- \mathbf{V} \mathbf{F} b) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- **V F** d) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici ortogonali che non sono invertibili.
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- **V F** c) Se $n \ge 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- V F d) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- \mathbf{V} \mathbf{F} b) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- \mathbf{V} \mathbf{F} c) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- V F d) Ogni campo contiene almeno un divisore dello zero.
 - 2) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}) \ A \in C \text{ hanno lo stesso rango.}$
- **V F** c) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- **V F** d) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici invertibili che ammettono due inverse distinte.
- **V F** b) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_i^i .
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** d) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- V F b) Ogni matrice diagonale è anche una matrice triangolare.
- **V F** c) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- **V F** d) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.

- 5) Sia V uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- **V F** b) La funzione S + T (definita dalla formula $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
- $\mathbf{V} \cdot \mathbf{F} = \mathbf{c}$) Se $S \in T$ hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** d) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
 - 6) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- \mathbf{V} \mathbf{F} b) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- ${f V}$ ${f F}$ c) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}.$
- $\mathbf{V} \cdot \mathbf{F}$ d) Se $\mathbf{U} \in \mathbf{W}$ sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
 - 7) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} b) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- \mathbf{V} \mathbf{F} c) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} d) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
 - 8) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- \mathbf{V} \mathbf{F} a) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
- **V F** b) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- **V F** c) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \qquad \mathrm{d}) \quad \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
 - 9) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{U} \text{ è un sottospazio vettoriale di } \mathbb{R}^n \text{ allora dim } ^{\perp} \mathbf{U} = \dim \mathbf{U}.$
- **V F** b) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- **V F** c) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, allora $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ allora $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|$.

- 1) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n, \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ se e solo se } \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2.$
- **V F** b) Una trasformazione lineare $T : \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- $\mathbf{V} \cdot \mathbf{F}$ d) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim ${}^{\perp}\mathbf{U} = \dim \mathbf{U}$.
 - 2) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- **V F** b) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- $\mathbf{V} \quad \mathbf{F} \qquad \mathbf{c}) \quad \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- \mathbf{V} \mathbf{F} d) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_i^i .
- V F b) Esistono matrici invertibili che ammettono due inverse distinte.
- \mathbf{V} \mathbf{F} c) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
 - 4) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) **S** è possibile se e solo se m = n.
- \mathbf{V} \mathbf{F} b) Se \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
- ${f V}$ ${f F}$ c) Se ${f S}$ è omogeneo allora $Sol({f S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se m > n+1 allora le equazioni di \mathbf{S} sono linearmente dipendenti.
 - 5) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} b) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- **V F** c) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- **V F** b) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- V F c) Ogni campo contiene almeno un divisore dello zero.
- V F d) L'insieme ℝ dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni matrice diagonale è anche una matrice triangolare.
- **V F** b) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- V F c) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- \mathbf{V} \mathbf{F} d) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
 - 8) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- ${f V}$ ${f F}$ b) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- V F c) Tutte le basi di V hanno la stessa cardinalità.
- V F d) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
 - 9) Siano \mathbf{V} , \mathbf{W} due spazi vettoriali reali finitamente generati e sia $T: \mathbf{V} \to \mathbf{W}$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } T \text{ è suriettiva, allora dim } \mathbf{V} = \dim \mathbf{W}.$
- V F b) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad$ c) Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{V} = \mathbf{W}$ allora $T \circ T \circ T$ è una trasformazione lineare da \mathbf{V} in \mathbf{V} .

- 1) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}.$
- $\mathbf{V} \cdot \mathbf{F}$ b) Se $\mathbf{U} \in \mathbf{W}$ sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
- \mathbf{V} \mathbf{F} c) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- \mathbf{V} \mathbf{F} d) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- V F b) Tutti gli anelli sono commutativi.
- **V F** c) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
- \mathbf{V} \mathbf{F} d) Il gruppo $(\tilde{\mathbb{Q}}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
 - 3) Sia S un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- **V F** b) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- ${f V}$ ${f F}$ c) Se ${f S}$ è omogeneo e ${f x}'$ e ${f x}''$ sono due soluzioni di ${f S}$, allora ${f x}' {f x}''$ è una soluzione di ${f S}$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) $A \in C$ hanno lo stesso rango.
 - 4) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- **V F** b) $(\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3$.
- **V F** c) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
- ${f V}$ ${f F}$ d) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F b) Esistono matrici ortogonali che non sono invertibili.
- **V F** c) Se $n \ge 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- V F d) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- **V F** b) In una matrice ridotta per righe non ci possono essere righe nulle.
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- \mathbf{V} \mathbf{F} d) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
 - 7) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- ${f V}$ ${f F}$ a) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} b) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- ${f V}$ ${f F}$ c) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 8) Sia V uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** b) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
- **V F** c) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- **V F** d) La funzione S+T (definita dalla formula $(S+T)(\mathbf{v})=S(\mathbf{v})+T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
 - 9) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$
- **V F** c) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- **V F** d) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.

- 1) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le basi di V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} b) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- ${f V}$ ${f F}$ c) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- V F d) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
 - 2) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Il nucleo di } T \text{ è un sottospazio vettoriale di } \mathbf{W}.$
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } T \text{ è suriettiva, allora } \dim \mathbf{V} = \dim \mathbf{W}.$
- \mathbf{V} \mathbf{F} c) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{V} = \mathbf{W}$ allora $T \circ T \circ T$ è una trasformazione lineare da \mathbf{V} in \mathbf{V} .
 - 3) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|.$
- **V F** b) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- **V F** c) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
 - 4) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- $\mathbf{V} \quad \mathbf{F} \quad a) \quad (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
- **V F** b) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
- ${f V}$ ${f F}$ c) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
- **V F** d) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.

- 5) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- **V F** b) **S** è possibile se e solo se m = n.
- \mathbf{V} \mathbf{F} c) Se \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se m > n+1 allora le equazioni di \mathbf{S} sono linearmente dipendenti.
 - 6) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} b) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- \mathbf{V} \mathbf{F} c) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- ${f V}$ ${f F}$ d) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
- V F b) Ogni campo contiene almeno un divisore dello zero.
- \mathbf{V} \mathbf{F} c) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- \mathbf{V} \mathbf{F} d) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
- V F b) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- **V F** c) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- V F d) Ogni matrice diagonale è anche una matrice triangolare.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici invertibili che ammettono due inverse distinte.
- \mathbf{V} \mathbf{F} b) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** d) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- V F b) In una matrice ridotta per righe non ci possono essere righe nulle.
- \mathbf{V} \mathbf{F} c) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- \mathbf{V} \mathbf{F} d) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Il campo } (\mathbb{R}, +, \cdot) \text{ dei numeri reali ha caratteristica } 0.$
- V F b) Tutti gli anelli sono commutativi.
- \mathbf{V} \mathbf{F} c) Il gruppo $(\tilde{\mathbb{Q}}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- \mathbf{V} \mathbf{F} d) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $n \geq 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- V F b) Esistono matrici ortogonali che non sono invertibili.
- V F c) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
 - 4) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- **V F** b) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- \mathbf{V} \mathbf{F} c) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- \mathbf{V} \mathbf{F} d) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 5) Sia **V** uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- \mathbf{V} \mathbf{F} b) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** c) La funzione S+T (definita dalla formula $(S+T)(\mathbf{v})=S(\mathbf{v})+T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
- **V F** d) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.

- 6) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- ${f V} {f F} {f F}$ b) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u} = {f v}$.
- \mathbf{V} \mathbf{F} c) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- $\mathbf{V} \cdot \mathbf{F}$ d) Se $\mathbf{U} \in \mathbf{W}$ sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
 - 7) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- \mathbf{V} \mathbf{F} a) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, allora $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- **V F** c) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim $\mathbf{U} = \dim \mathbf{U}$.
 - 8) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \qquad \mathbf{b}) \ \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- **V F** c) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} d) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
 - 9) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
- **V F** b) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} c) $A \in C$ hanno lo stesso rango.
- **V F** d) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.

- 1) Siano \mathbf{V}, \mathbf{W} due spazi vettoriali reali finitamente generati e sia $T : \mathbf{V} \to \mathbf{W}$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Il nucleo di } T$ è un sottospazio vettoriale di \mathbf{W} .
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}$) Se T è suriettiva, allora dim $\mathbf{V} = \dim \mathbf{W}$.
- \mathbf{V} \mathbf{F} c) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{V} = \mathbf{W}$ allora $T \circ T \circ T$ è una trasformazione lineare da \mathbf{V} in \mathbf{V} .
 - 2) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- **V F** b) **S** è possibile se e solo se m = n.
- \mathbf{V} \mathbf{F} c) Se \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} allora $\mathbf{x}' + \mathbf{x}''$ è una soluzione di \mathbf{S} .
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se m > n+1 allora le equazioni di \mathbf{S} sono linearmente dipendenti.
 - 3) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- \mathbf{V} \mathbf{F} a) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
- ${f V}$ ${f F}$ b) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- \mathbf{V} \mathbf{F} c) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} d) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il gruppo $(\tilde{\mathbb{Q}}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- **V F** b) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
- \mathbf{V} \mathbf{F} c) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- V F d) Tutti gli anelli sono commutativi.
 - 5) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- \mathbf{V} \mathbf{F} a) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, allora $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** b) Una trasformazione lineare $T : \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim $^{\perp}\mathbf{U} = \dim \mathbf{U}$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ allora $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|$.

- 6) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
- **V F** b) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} c) Ogni sottospazio vettoriale euclideo di \mathbb{R}^3 ammette almeno una rappresentazione cartesiana.
- $\mathbf{V} \quad \mathbf{F} \qquad \mathrm{d}) \ \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
- \mathbf{V} \mathbf{F} c) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- V F d) In una matrice ridotta per righe non ci possono essere righe nulle.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- **V F** b) Se $n \geq 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F d) Esistono matrici ortogonali che non sono invertibili.
 - 9) Sia **V** uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le basi di V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} b) Una n-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- ${f V}$ ${f F}$ c) Se $({f v}_1,{f v}_2,{f v}_3,{f v}_4)$ è una base ordinata di ${f V}$ allora anche $({f v}_1,-{f v}_2,{f v}_3,-{f v}_4)$ è una base ordinata di ${f V}$.
- V F d) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni matrice diagonale è anche una matrice triangolare.
- $\mathbf{V} \cdot \mathbf{F}$ b) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- V F c) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- **V F** d) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- V F b) L'insieme ℝ dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- V F c) Ogni campo contiene almeno un divisore dello zero.
- **V F** d) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.
 - 3) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}$.
- \mathbf{V} \mathbf{F} b) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- \mathbf{V} \mathbf{F} c) Se \mathbf{U} e \mathbf{W} sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
- \mathbf{V} \mathbf{F} d) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
- **V F** b) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- \mathbf{V} \mathbf{F} c) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- V F d) Esistono matrici invertibili che ammettono due inverse distinte.

- 5) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
- **V F** b) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- **V** F c) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** d) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
 - 6) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- V F a) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
- ${f V}$ ${f F}$ b) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- \mathbf{V} \mathbf{F} c) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- $\mathbf{V} \cdot \mathbf{F}$ d) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
 - 7) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} b) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
- **V F** c) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- $\mathbf{V} \quad \mathbf{F} \quad d) \ A \in C \text{ hanno lo stesso rango.}$
 - 8) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.
- **V F** b) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- $\mathbf{V} \quad \mathbf{F} \qquad c) \quad (\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3.$
- ${f V}$ ${f F}$ d) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
 - 9) Sia **V** uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** b) Se $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \dots, n\}$, allora le funzioni S e T coincidono.
- **V F** c) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
- **V F** d) La funzione S + T (definita dalla formula $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.

- 1) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- ${f V}$ ${f F}$ a) Se 0 è un autovalore di T e la sua molteplicità geometrica è n allora A è diagonalizzabile per similitudine.
- **V F** b) Se T ha n autovalori distinti allora \mathbb{R}^n ammette una base spettrale relativa a T.
- **V F** c) Se A è invertibile allora \mathbb{R}^n ammette una base spettrale relativa a T.
- V F d) Può accadere che T abbia un numero infinito di polinomi caratteristici distinti.
 - 2) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, -\mathbf{v}_2, \mathbf{v}_3, -\mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
- V F b) Tutte le basi di V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} c) Una *n*-upla $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ di vettori di \mathbf{V} è linearmente indipendente se e solo se $n = \dim \mathbf{V}$.
- V F d) Esistono sistemi di generatori di V di cardinalità strettamente maggiore di dim V.
 - 3) Siano V, W due spazi vettoriali reali finitamente generati e sia $T: V \to W$ una trasformazione lineare. Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se T è invertibile allora il nucleo di T contiene solo il vettore nullo.
- $\mathbf{V} \cdot \mathbf{F}$ b) Il nucleo di T è un sottospazio vettoriale di \mathbf{W} .
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Se T è suriettiva, allora dim $\mathbf{V} = \dim \mathbf{W}$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $\mathbf{V} = \mathbf{W}$ allora $T \circ T \circ T$ è una trasformazione lineare da \mathbf{V} in \mathbf{V} .
 - 4) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- **V F** a) Il punto (0,0,0) e la coppia di vettori $\left(\left(\frac{2}{3},\frac{1}{3},-\frac{2}{3}\right),\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right)$ costituiscono un sistema di riferimento per il piano x-4y-z=0.
- **V F** b) $(\tilde{\mathbf{e}}_1 + \tilde{\mathbf{e}}_2) \wedge (\tilde{\mathbf{e}}_1 \tilde{\mathbf{e}}_2) = -2\tilde{\mathbf{e}}_3$.
- ${f V}$ ${f F}$ c) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione parametrica.
- **V F** d) Le rette di equazioni parametriche x=3t, y=2t, z=t e x=t, y=0, z=-3t sono fra loro ortogonali.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'insieme delle matrici reali 2×2 è un gruppo rispetto alla usuale operazione di somma.
- \mathbf{V} \mathbf{F} b) Il gruppo $(\tilde{\mathbb{Q}}, +)$ dei numeri reali razionali è un sottogruppo del gruppo $(\mathbb{R}, +)$.
- V F c) Tutti gli anelli sono commutativi.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il campo $(\mathbb{R}, +, \cdot)$ dei numeri reali ha caratteristica 0.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) La somma di due matrici triangolari alte $n \times n$ è una matrice triangolare alta.
- **V F** b) Se in una matrice A si moltiplica una riga per -1 si ottiene una matrice che ha lo stesso rango di A.
- V F c) In una matrice ridotta per righe non ci possono essere righe nulle.
- **V F** d) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora anche 2A è invertibile.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora la sua traccia non può essere nulla.
- V F b) Il determinante di una qualunque matrice quadrata reale che abbia tutti gli elementi della diagonale principale nulli è nullo.
- V F c) Esistono matrici ortogonali che non sono invertibili.
- **V F** d) Se $n \ge 2$ e $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\sum_{i=1}^n (-1)^{i+2} \cdot a_1^i \cdot \det M_2^i = 0$, dove M_j^i rappresenta il minore complementare dell'elemento a_j^i .
 - 8) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- **V F** a) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ e $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ allora $\langle 2\mathbf{u}, 3\mathbf{v} \rangle = 0$.
- **V F** b) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** c) Ogni sottospazio vettoriale di \mathbb{R}^n ammette almeno una base ortonormale rispetto a $\langle \cdot, \cdot \rangle$.
- **V F** d) Date tre basi ordinate di \mathbb{R}^n , almeno due di esse sono concordi (cioè determinano la stessa orientazione di \mathbb{R}^n).
 - 9) Sia **S** un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$. Dire se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{x}' \in \mathbf{x}'' \text{ sono due soluzioni di } \mathbf{S} \text{ allora } \mathbf{x}' + \mathbf{x}'' \text{ è una soluzione di } \mathbf{S}.$
- **V F** b) Se **S** è omogeneo allora $Sol(\mathbf{S})$ è uno spazio vettoriale reale di dimensione uguale a $\rho(A)$.
- **V F** c) **S** è possibile se e solo se m = n.
- **V F** d) Se m > n + 1 allora le equazioni di **S** sono linearmente dipendenti.

- 1) Sia $T: \mathbb{R}^n \to \mathbb{R}^n$ una trasformazione lineare e sia A la matrice canonicamente associata a T.
- **V F** a) Se \mathbb{R}^n ammette una base spettrale relativa a T allora tutti gli autovalori di T sono fra loro distinti.
- **V F** b) Se A è simmetrica allora \mathbb{R}^n ammette una base spettrale relativa a T.
- \mathbf{V} \mathbf{F} c) Può accadere che il polinomio caratteristico di T abbia grado strettamente inferiore a n.
- \mathbf{V} \mathbf{F} d) Se A è diagonalizzabile per similitudine allora anche A^2 è diagonalizzabile per similitudine.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se in una matrice A si scambiano fra loro di posto due righe si ottiene una matrice che ha lo stesso rango di A.
- V F b) Ogni matrice diagonale è anche una matrice triangolare.
- $\mathbf{V} \cdot \mathbf{F}$ c) La somma di due matrici ortogonali $n \times n$ è una matrice ortogonale.
- **V F** d) La trasposta di una matrice invertibile $A \in \mathcal{M}_n(\mathbb{R})$ è una matrice invertibile.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante di una matrice ortogonale è sempre uguale a 1 o a -1.
- **V F** b) Se $A = (a_j^i) \in \mathcal{M}_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+1} \cdot a_1^i \cdot \det M_1^i$, dove M_j^i rappresenta il minore complementare dell'elemento a_i^i .
- **V F** c) Se $A \in \mathcal{M}_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- V F d) Esistono matrici invertibili che ammettono due inverse distinte.
 - 4) Siano $\langle \cdot, \cdot \rangle$ il prodotto scalare standard su \mathbb{R}^n e $\| \cdot \|$ la norma da esso indotta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \mathbf{u}, \mathbf{v} \in \mathbb{R}^n \text{ allora } \|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| \|\mathbf{v}\|.$
- $\mathbf{V} \cdot \mathbf{F}$ b) Se \mathbf{U} è un sottospazio vettoriale di \mathbb{R}^n allora dim ${}^{\perp}\mathbf{U} = \dim \mathbf{U}$.
- **V F** c) Una trasformazione lineare $T: \mathbb{R}^n \to \mathbb{R}^n$ è una trasformazione ortogonale rispetto a $\langle \cdot, \cdot \rangle$ se e solo se la matrice A canonicamente associata a T è ortogonale.
- **V F** d) Se $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, allora $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
 - 5) Sia V uno spazio vettoriale reale finitamente generato e siano $S, T : \mathbf{V} \to \mathbf{V}$ due trasformazioni lineari. Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se S e T hanno lo stesso nucleo e la stessa immagine allora coincidono.
- **V F** b) La funzione S + T (definita dalla formula $(S + T)(\mathbf{v}) = S(\mathbf{v}) + T(\mathbf{v})$) è una trasformazione lineare da **V** in **V**.
- **V F** c) Se S e T sono isomorfismi allora $S \circ T$ è un isomorfismo.
- **V F** d) Se $(\mathbf{v}_1, \ldots, \mathbf{v}_n)$ è una base ordinata di **V** e $S(\mathbf{v}_i) = T(\mathbf{v}_i)$ per ogni indice $i \in \{1, \ldots, n\}$, allora le funzioni S e T coincidono.

- 6) Sia V uno spazio vettoriale reale finitamente generato. Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due vettori ${f u}, {f v}$ di ${f V}$ hanno le stesse componenti rispetto a una fissata base di ${f V}$, allora ${f u}={f v}.$
- \mathbf{V} \mathbf{F} b) Sia $X = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ un sottoinsieme di \mathbf{V} di cardinalità $n = \dim \mathbf{V}$. Allora X è una base per \mathbf{V} se e solo se X è linearmente indipendente.
- $\mathbf{V} \cdot \mathbf{F} = \mathbf{c}$) Se $\mathbf{U} \in \mathbf{W}$ sono sottospazi vettoriali di \mathbf{V} , allora $\dim(\mathbf{U} + \mathbf{W}) \leq \dim \mathbf{U} + \dim \mathbf{W}$.
- \mathbf{V} \mathbf{F} d) Se $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} allora anche $(\mathbf{v}_1, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_4)$ è una base ordinata di \mathbf{V} .
 - 7) Sia S un sistema lineare reale di m equazioni in n incognite, scritto nella forma $A \cdot (x) = (b)$, e sia C la matrice completa del sistema. Dire se le seguenti affermazioni sono vere o false.
- **V F** a) Se **S** non è omogeneo e $Sol(\mathbf{S}) \neq \emptyset$, allora $Sol(\mathbf{S})$ non è un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} b) $A \in C$ hanno lo stesso rango.
- **V F** c) Se $Sol(\mathbf{S}) \neq \emptyset$ allora $\rho(A) = \rho(C)$.
- \mathbf{V} \mathbf{F} d) Se \mathbf{S} è omogeneo e \mathbf{x}' e \mathbf{x}'' sono due soluzioni di \mathbf{S} , allora $\mathbf{x}' \mathbf{x}''$ è una soluzione di \mathbf{S} .
 - 8) Dire se le seguenti affermazioni sono vere o false nello spazio vettoriale euclideo standard \mathbb{R}^3 dotato della base canonica $(\tilde{\mathbf{e}}_1, \tilde{\mathbf{e}}_2, \tilde{\mathbf{e}}_3)$.
- $\mathbf{V} \quad \mathbf{F} \quad a) \quad \tilde{\mathbf{e}}_1 \wedge \tilde{\mathbf{e}}_1 = \tilde{\mathbf{e}}_2.$
- ${f V}$ ${f F}$ b) Ogni sottospazio vettoriale euclideo di ${\Bbb R}^3$ ammette almeno una rappresentazione cartesiana.
- **V F** c) I piani di equazione x + y + z = 1 e -x y z = 0 sono fra loro ortogonali.
- **V F** d) Il punto (0,0,0) e la coppia di vettori ((1,1,2),(3,1,0)) costituiscono un sistema di riferimento per \mathbb{R}^3 .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni campo contiene almeno un divisore dello zero.
- \mathbf{V} \mathbf{F} b) L'anello $(\mathbb{Z}_7, +, \cdot)$ delle classi di resto modulo 7 è privo di divisori dello zero.
- \mathbf{V} \mathbf{F} c) L'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di prodotto.
- **V F** d) L'anello $(\mathbb{R}[x], +, \cdot)$ dei polinomi a coefficienti reali nella indeterminata x è privo di unità moltiplicativa.