- 1) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad (\mathbb{N}, +) \stackrel{.}{\mathbf{e}} \text{ un gruppo commutativo.}$
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Ogni campo è un anello commutativo con unità.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il sottoinsieme di \mathbb{R}^3 di equazione x-y=0, x+y+z=0 è un sottospazio vettoriale di \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** c) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- ${f V}$ ${f F}$ d) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le matrici triangolari sono invertibili.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- **V F** d) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F b) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F c) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F d) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** b) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** c) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** d) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- **V F** b) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F b) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- ${f V}$ ${f F}$ d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad c)$ Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- ${f V} {f F} {f G}$ d) Per tre punti distinti e non allineati di ${\Bbb R}^3$ passa sempre uno e un solo piano.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- **V F** d) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Sia } \mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \cdot \mathbf{F}$ b) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- \mathbf{V} \mathbf{F} c) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** d) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- **V F** b) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- V F c) Ogni base ortonormale è anche una base ortogonale.
- **V F** d) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F b) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- V F c) Non esistono matrici quadrate reali di rango 0.
- V F d) Ogni sistema lineare omogeneo ammette almeno una soluzione.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} c) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W) = \dim U + \dim W$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- ${f V}$ ${f F}$ b) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F c) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- \mathbf{V} \mathbf{F} d) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
- **V F** c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se A e B sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- V F c) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- **V F** d) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- \mathbf{V} \mathbf{F} c) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- **V F** d) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- **V F** b) Il sottoinsieme di \mathbb{R}^3 di equazione x y = 0, x + y + z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** d) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** d) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** b) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** c) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- $\mathbf{V} \cdot \mathbf{F}$ b) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- V F d) Due matrici simili hanno sempre lo stesso polinomio caratteristico.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- V F b) Tutte le matrici triangolari sono invertibili.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- **V F** d) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
- V F b) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F d) Ogni sistema lineare ammette sempre almeno una soluzione.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- V F b) Ogni base ortonormale è anche una base ortogonale.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- **V F** d) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x=t,y=t,z=1 e il piano di equazione cartesiana x+y=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- \mathbf{V} \mathbf{F} b) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** c) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \cdot \mathbf{F}$ d) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni campo è un anello commutativo con unità.
- $\mathbf{V} \quad \mathbf{F} \quad b) \ (\mathbb{N}, +) \ e$ un gruppo commutativo.
- **V F** c) Tutte le funzioni da N in N iniettive sono anche suriettive.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad b)$ Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} c) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
- **V F** b) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
- **V F** d) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- V F b) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F c) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- V F d) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** d) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- \mathbf{V} \mathbf{F} c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- $\mathbf{V} \cdot \mathbf{F} = \mathbf{c}$) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- V F d) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W)=\dim U+\dim W$.
- **V F** b) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- **V F** c) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- V F b) Non esistono matrici quadrate reali di rango 0.
- V F c) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W)=\dim U+\dim W$.
- **V F** b) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- $\mathbf{V} \cdot \mathbf{F}$ d) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- V F d) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F b) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F d) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F b) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F c) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
- V F d) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** b) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** c) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** c) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** d) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
- **V F** c) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- V F d) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- $\mathbf{V} \cdot \mathbf{F}$ b) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- V F b) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- ${f V}$ ${f F}$ c) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F d) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- **V F** b) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- V F c) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** b) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- **V F** d) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** b) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x y = 0, x + y + z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
- ${f V}$ ${f F}$ d) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad c) \quad (\mathbb{N}, +) \ e$ un gruppo commutativo.
- V F d) Ogni campo è un anello commutativo con unità.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni base ortonormale è anche una base ortogonale.
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** b) La retta di equazione parametrica x=t,y=t,z=1 e il piano di equazione cartesiana x+y=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \quad \mathbf{F} \quad c$) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F}$ b) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F c) Non esistono matrici quadrate reali di rango 0.
- V F d) Ogni sistema lineare omogeneo ammette almeno una soluzione.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- V F c) Tutte le matrici triangolari sono invertibili.
- **V F** d) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
- **V F** c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} b) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- **V F** c) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W) = \dim U + \dim W$.
- **V F** d) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- V F b) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- **V F** c) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- \mathbf{V} \mathbf{F} d) Se A e B sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F b) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F d) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** c) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- **V F** b) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- $\mathbf{V} \quad \mathbf{F} \quad d$) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F b) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- \mathbf{V} \mathbf{F} c) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- V F d) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** b) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** d) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- V F b) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- V F c) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- \mathbf{V} \mathbf{F} d) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- V F b) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- **V F** c) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- V F d) Ogni base ortonormale è anche una base ortogonale.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
- **V F** b) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- V F b) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- ${f V}$ ${f F}$ d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad (\mathbb{N}, +) \text{ è un gruppo commutativo.}$
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- V F c) Ogni campo è un anello commutativo con unità.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
- $\mathbf{V} \cdot \mathbf{F}$ d) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le matrici triangolari sono invertibili.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- **V F** c) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- **V F** d) Una matrice quadrata reale A è invertibile se e solo se det A = 0.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il sottoinsieme di \mathbb{R}^3 di equazione x-y=0, x+y+z=0 è un sottospazio vettoriale di \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- V F c) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- **V F** d) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- **V F** c) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F b) Non esistono matrici quadrate reali di rango 0.
- V F c) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- V F d) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** b) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- \mathbf{V} \mathbf{F} c) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- **V F** b) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- V F d) Tutte le matrici triangolari sono invertibili.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- V F d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)) l'equazione cartesiana x-y=0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} d) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
- V F b) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F d) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** c) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** b) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** d) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- **V F** b) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Tutte le funzioni da } \mathbb{N} \text{ in } \mathbb{N} \text{ iniettive sono anche suriettive.}$
- V F b) Ogni campo è un anello commutativo con unità.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad d$) $(\mathbb{N}, +)$ è un gruppo commutativo.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- ${f V}$ ${f F}$ b) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- **V F** c) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x y = 0, x + y + z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni base ortonormale è anche una base ortogonale.
- **V F** b) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- **V F** c) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- **V F** d) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- \mathbf{V} \mathbf{F} d) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- **V F** b) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** c) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W) = \dim U + \dim W$.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- V F b) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- V F c) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- \mathbf{V} \mathbf{F} d) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- **V F** d) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** b) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- **V F** d) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Sia } f: \mathbb{R}^n \to \mathbb{R}^m \text{ un'applicazione lineare biunivoca. Allora } m=n.$
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = \left(M_{\mathcal{B}_2\mathcal{B}_1}(id_V)\right)^{-1}$.
- **V F** c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- $\mathbf{V} \cdot \mathbf{F}$ b) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F c) Non esistono matrici quadrate reali di rango 0.
- V F d) Ogni sistema lineare omogeneo ammette almeno una soluzione.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- **V F** c) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- **V F** d) La retta di equazione parametrica x=t,y=t,z=1 e il piano di equazione cartesiana x+y=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
- V F b) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F c) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne
- V F d) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** c) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** d) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- \mathbf{V} \mathbf{F} b) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- V F c) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
- **V F** b) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- V F b) Ogni base ortonormale è anche una base ortogonale.
- **V F** c) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- $\mathbf{V} \quad \mathbf{F} \quad$ b) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni campo è un anello commutativo con unità.
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad$ c) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- $\mathbf{V} \quad \mathbf{F} \quad d$) $(\mathbb{N}, +)$ è un gruppo commutativo.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- **V F** b) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x-y=0, x+y+z=0 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- **V F** c) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- V F d) Tutte le matrici triangolari sono invertibili.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} b) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W)=\dim U+\dim W$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** b) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- **V F** b) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- ${f V}$ ${f F}$ c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
- V F d) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- V F b) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- $\mathbf{V} \cdot \mathbf{F}$ c) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- **V F** d) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F b) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- V F c) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- \mathbf{V} \mathbf{F} d) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
- V F d) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Sia } f: \mathbb{R}^n \to \mathbb{R}^m \text{ un'applicazione lineare biunivoca. Allora } m=n.$
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
- **V F** d) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F c) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- V F d) Non esistono matrici quadrate reali di rango 0.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane x=0 e y=0 sono fra loro paralleli.
- \mathbf{V} \mathbf{F} c) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- **V F** b) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- V F d) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F b) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
- V F c) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne
- V F d) Ogni sistema lineare ammette sempre almeno una soluzione.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** b) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** d) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** b) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** c) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W) = \dim U + \dim W$.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} d) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- V F b) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x=0 e y=0 sono fra loro paralleli.
- $\mathbf{V} \cdot \mathbf{F}$ d) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** b) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- **V F** c) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- \mathbf{V} \mathbf{F} b) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- ${f V}$ ${f F}$ c) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F d) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** b) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- V F c) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- V F d) Ogni base ortonormale è anche una base ortogonale.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- \mathbf{V} \mathbf{F} d) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- V F b) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x y = 0, x + y + z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Ogni campo è un anello commutativo con unità.
- ${f V} {f F} {f C}$) Tutte le funzioni da ${\Bbb N}$ in ${\Bbb N}$ iniettive sono anche suriettive.
- $\mathbf{V} \quad \mathbf{F} \quad d) \quad (\mathbb{N}, +) \ e$ un gruppo commutativo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- V F b) Non esistono matrici quadrate reali di rango 0.
- V F c) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- $\mathbf{V} \cdot \mathbf{F}$ d) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- **V F** b) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- V F d) Tutte le matrici triangolari sono invertibili.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- $\mathbf{V} \cdot \mathbf{F}$ b) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Sia } \mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
- **V F** b) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
- **V F** d) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- **V F** b) Sia $A=(a_j^i)$ una matrice reale $n\times n$ con $n\geq 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A=a_n^1A_n^1+a_n^2A_n^2+\ldots+a_n^nA_n^n$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** d) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F b) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
- V F d) Ogni sistema lineare ammette sempre almeno una soluzione.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- **V F** b) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- V F d) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** c) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
- **V F** d) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni base ortonormale è anche una base ortogonale.
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- **V F** d) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** b) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- **V F** c) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** b) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** c) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- V F b) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- V F c) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- ${f V}$ ${f F}$ d) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W)=\dim U+\dim W$.
- **V F** b) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** c) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- \mathbf{V} \mathbf{F} d) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- **V F** b) Se A e B sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- V F c) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni campo è un anello commutativo con unità.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- $\mathbf{V} \quad \mathbf{F} \quad c) \quad (\mathbb{N}, +) \ e$ un gruppo commutativo.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- ${f V}$ ${f F}$ b) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- **V F** d) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- V F c) Tutte le matrici triangolari sono invertibili.
- $\mathbf{V} \cdot \mathbf{F}$ d) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x-y=0, x+y+z=0 è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** d) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Sia } f: \mathbb{R}^n \to \mathbb{R}^m \text{ un'applicazione lineare biunivoca. Allora } m=n.$
- **V F** c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** d) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = \left(M_{\mathcal{B}_2\mathcal{B}_1}(id_V)\right)^{-1}$.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- V F b) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- V F c) Non esistono matrici quadrate reali di rango 0.
- $\mathbf{V} \cdot \mathbf{F}$ d) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** c) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- \mathbf{V} \mathbf{F} d) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
- **V F** b) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- **V F** c) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- V F c) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad b$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
- $\mathbf{V} \cdot \mathbf{F}$ d) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- **V F** b) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- V F d) Tutte le matrici triangolari sono invertibili.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** b) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** c) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** d) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** c) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- V F b) Ogni campo è un anello commutativo con unità.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad d$) $(\mathbb{N}, +)$ è un gruppo commutativo.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- V F b) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- **V F** c) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x y = 0, x + y + z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F b) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F d) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Non esistono matrici quadrate reali di rango 0.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b)}$ Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F c) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- V F d) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- \mathbf{V} \mathbf{F} b) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- V F c) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- ${f V}$ ${f F}$ d) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- **V F** b) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- **V F** b) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- ${f V} {f F} {f C}$ c) ${\Bbb R}^7$ ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- $\mathbf{V} \quad \mathbf{F} \qquad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A e B sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- **V F** b) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- V F c) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W)=\dim U+\dim W$.
- \mathbf{V} \mathbf{F} c) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- \mathbf{V} \mathbf{F} d) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** b) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- \mathbf{V} \mathbf{F} c) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- **V F** d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- V F c) Ogni base ortonormale è anche una base ortogonale.
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F b) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F c) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F d) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** b) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- V F b) Ogni base ortonormale è anche una base ortogonale.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- **V F** d) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- $\mathbf{V} \cdot \mathbf{F}$ b) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** c) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** c) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** d) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- \mathbf{V} \mathbf{F} b) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- V F d) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni campo è un anello commutativo con unità.
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad c) \quad (\mathbb{N}, +) \ e$ un gruppo commutativo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
- **V F** b) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x-y=0, x+y+z=0 è un sottospazio vettoriale di \mathbb{R}^3 .
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- V F c) Tutte le matrici triangolari sono invertibili.
- ${f V}$ ${f F}$ d) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W) = \dim U + \dim W$.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- $\mathbf{V} \cdot \mathbf{F}$ b) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- \mathbf{V} \mathbf{F} c) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F d) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- **V F** b) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- **V F** d) Se A e B sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- **V F** b) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = n r(A)$.
- **V F** b) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
- **V F** d) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- V F b) Non esistono matrici quadrate reali di rango 0.
- V F c) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- V F d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane x=0 e y=0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** d) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** b) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** d) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- ${f V}$ ${f F}$ c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F b) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- V F c) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- \mathbf{V} \mathbf{F} d) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- **V F** c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** b) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} c) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- **V F** b) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
- **V F** c) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W)=\dim U+\dim W$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- V F b) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
- **V F** c) Se A e B sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- **V F** d) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F b) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F c) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F d) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** b) Il sottoinsieme di \mathbb{R}^3 di equazione x-y=0, x+y+z=0 è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** c) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- ${f V}$ ${f F}$ d) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- $\mathbf{V} \cdot \mathbf{F}$ b) $(\mathbb{N}, +)$ è un gruppo commutativo.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Ogni campo è un anello commutativo con unità.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Non esistono matrici quadrate reali di rango 0.
- V F b) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F d) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- V F b) Tutte le matrici triangolari sono invertibili.
- \mathbf{V} \mathbf{F} c) Una matrice quadrata reale A è invertibile se e solo se det A=0.
- **V F** d) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni base ortonormale è anche una base ortogonale.
- **V F** b) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- **V F** c) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** c) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- **V F** d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- **V F** b) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
- **V F** c) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- $\mathbf{V} \cdot \mathbf{F}$ b) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- **V F** c) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- $\mathbf{V} \quad \mathbf{F} \qquad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Siano A,B due matrici reali $n\times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
- **V F** c) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
- ${f V} {f F} {f G}$ d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m=n.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** b) Sia f un endomorfismo di \mathbb{R}^n non iniettivo. Allora il nucleo di f coincide con l'autospazio di f associato all'autovalore 0.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è ortogonale allora f ammette almeno una base spettrale.
- \mathbf{V} \mathbf{F} d) Se due matrici reali $n \times n$ hanno lo stesso polinomio caratteristico allora sono simili.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni combinazione lineare di due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F b) Il rango di una matrice è uguale al numero di pivot di una sua qualunque forma ridotta per colonne.
- V F c) Ogni sistema lineare ammette sempre almeno una soluzione.
- V F d) Il numero di soluzioni di un sistema lineare è sempre inferiore al numero delle sue incognite.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. L'immagine di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di W.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare biunivoca e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di $V, \{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è una base di W.
- **V F** c) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (x,y) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^7 \to \mathbb{R}^8$ tali che sia il nucleo che l'immagine di f contengano un solo vettore.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se due rette di \mathbb{R}^3 non hanno punti in comune, allora sono parallele.
- **V F** b) La retta di equazione parametrica x = t, y = t, z = 1 e il piano di equazione cartesiana x + y = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- **V F** c) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $(\mathbf{u} \wedge \mathbf{u}) \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) \mathbb{R}^7 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se due gruppi hanno la stessa cardinalità allora sono necessariamente isomorfi.
- ${f V}$ ${f F}$ b) L'insieme dei polinomi reali nella variabile x è un campo rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- \mathbf{V} \mathbf{F} c) L'anello \mathbb{Z}_p delle classi di resto modulo p è un campo se e solo se p è un numero primo.
- V F d) L'insieme delle permutazioni su 3 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 1 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^n ammette un sottoinsieme che è una base di \mathbb{R}^n .
- **V F** c) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W hanno in comune solo il vettore nullo, allora $\dim(U+W)=\dim U+\dim W$.
- \mathbf{V} \mathbf{F} d) Se W è un sottospazio vettoriale di uno spazio vettoriale V, allora dim $W \leq \dim V$.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, AB è una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale diagonale, allora A^2 è una matrice reale diagonale.
- **V F** c) Se A e B sono due matrici reali $n \times n$ e I è la matrice identità $n \times n$, allora (A+I)(B-I) = AB A + B I.
- V F d) La trasposta di una matrice quadrata reale non invertibile è sempre una matrice quadrata reale non invertibile.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A è una matrice simmetrica $n \times n$ la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^n$ nel vettore colonna $A\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^n .
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} + 3\mathbf{v}\| \le 2\|\mathbf{u}\| + 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Ogni sottoinsieme finito linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n è costituito da vettori a due a due ortogonali.
- V F d) Ogni base ortonormale è anche una base ortogonale.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali $n \times n$, allora $\det(A + B) = \det A + \det B$.
- **V F** b) Il determinante è una funzione multilineare rispetto alle colonne della matrice $n \times n$ considerata.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $a_1^1 = a_1^2 = \ldots = a_1^n = 0$ allora det A = 0.
- **V F** d) Ogni minore $(n-1) \times (n-1)$ di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni endomorfismo f di \mathbb{R}^n ammette almeno una base spettrale.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori non è nulla.
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre diverse fra loro.
- **V F** d) Se λ è un autovalore di un endomorfismo invertibile f di \mathbb{R}^n , allora $-\lambda$ è un autovalore dell'endomorfismo f^{-1} .
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme di tutti i monomi x^n con $n \in \mathbb{N}$ dispari è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^8 costituito da 8 vettori di \mathbb{R}^8 è una base di \mathbb{R}^8 .
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x-y=0, x+y+z=0 è un sottospazio vettoriale di \mathbb{R}^3 .
- ${f V}$ ${f F}$ d) Lo spazio vettoriale di tutti i polinomi reali nella variabile x non ammette sottospazi vettoriali finitamente generati.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una matrice quadrata reale A è invertibile se e solo se det A = 0.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^2 è una matrice reale simmetrica.
- V F c) Tutte le matrici triangolari sono invertibili.
- **V F** d) Se A, B sono due matrici quadrate reali invertibili con $A^{-1} = B^{-1}$, allora A = B.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, 2\mathbf{v} \rangle = \langle 2\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F b) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 3 dello spazio vettoriale euclideo standard \mathbb{R}^5 ha dimensione 3.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente una base ortonormale.
- V F d) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora A^{-1} è simile a B^{-1} .
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare biunivoca. Allora m = n.
- **V F** c) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = (M_{\mathcal{B}_2\mathcal{B}_1}(id_V))^{-1}$.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim ker f = n r(A).
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Non esistono matrici quadrate reali di rango 0.
- V F b) Tutti i sistemi lineari di 3 equazioni in 5 incognite ammettono almeno una soluzione.
- \mathbf{V} \mathbf{F} c) Esiste uno e un solo isomorfismo da \mathbb{R}^2 a \mathbb{R}^2 .
- V F d) Ogni sistema lineare omogeneo ammette almeno una soluzione.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_n^1 A_n^1 + a_n^2 A_n^2 + \ldots + a_n^n A_n^n$.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale allora A e 2A hanno lo stesso rango.
- **V F** c) L'unica matrice $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** d) L'inversa di una permutazione pari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione pari sull'insieme $\{1, \ldots, n\}$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) I piani di \mathbb{R}^3 di equazioni cartesiane x = 0 e y = 0 sono fra loro paralleli.
- $\mathbf{V} \cdot \mathbf{F}$ b) Per tre punti distinti e non allineati di \mathbb{R}^3 passa sempre uno e un solo piano.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora i vettori $\mathbf{u} \wedge \mathbf{v} \in \mathbf{v} \wedge \mathbf{u}$ sono fra loro ortogonali.
- **V F** d) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le funzioni da \mathbb{N} in \mathbb{N} iniettive sono anche suriettive.
- $\mathbf{V} \quad \mathbf{F} \quad c) \quad (\mathbb{N}, +) \ e$ un gruppo commutativo.
- V F d) Ogni campo è un anello commutativo con unità.