- 1) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- V F c) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** c) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** d) Lo spazio vettoriale reale standard \mathbb{R}^3 ammette esattamente 3 sottospazi vettoriali di dimensione 1.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se $A + {}^t\!A$ è invertibile.
- **V F** d) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F b) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F c) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F d) Esistono sistemi lineari reali con esattamente tre soluzioni.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- **V F** b) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** c) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- V F d) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- **V F** b) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F b) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- \mathbf{V} \mathbf{F} d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad c) \text{ Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- $\mathbf{V} \cdot \mathbf{F}$ d) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- $\mathbf{V} \cdot \mathbf{F}$ b) Se A è una matrice reale allora A e ^tA hanno lo stesso rango.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** d) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
- \mathbf{V} \mathbf{F} b) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- \mathbf{V} \mathbf{F} c) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** d) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- **V F** b) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} c) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** d) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- V F b) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- \mathbf{V} \mathbf{F} c) Esistono matrici reali 3×4 di rango 4.
- V F d) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- \mathbf{V} \mathbf{F} b) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- V F c) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- \mathbf{V} \mathbf{F} d) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
- \mathbf{V} \mathbf{F} c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim Im f = r(A).
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- V F c) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- V F b) Due matrici simili hanno sempre lo stesso rango.
- ${f V}$ ${f F}$ c) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- **V F** d) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Lo spazio vettoriale reale standard \mathbb{R}^3 ammette esattamente 3 sottospazi vettoriali di dimensione 1.
- **V F** b) Il sottoinsieme di \mathbb{R}^3 di equazione x+2y=0, 3x+y-4z=0 è un sottospazio vettoriale di \mathbb{R}^3
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- \mathbf{V} \mathbf{F} d) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** d) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
- **V F** b) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- \mathbf{V} \mathbf{F} c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- ${f V}$ ${f F}$ b) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- V F d) Due matrici simili hanno sempre lo stesso rango.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- V F b) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- **V F** d) Una matrice quadrata reale A è invertibile se e solo se $A + {}^{t}A$ è invertibile.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono sistemi lineari reali con esattamente tre soluzioni.
- V F b) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F d) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- $\mathbf{V} \cdot \mathbf{F}$ b) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** c) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- **V F** d) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x = 1, y = t, z = t e il piano di equazione cartesiana y + z = 0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)).
- $\mathbf{V} \quad \mathbf{F} \quad$ b) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Sia } \mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
- \mathbf{V} \mathbf{F} d) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- V F d) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- $\mathbf{V} \quad \mathbf{F} \quad c$) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.
- \mathbf{V} \mathbf{F} b) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
- **V F** d) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- **V F** c) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- V F d) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale allora A e $^t\!A$ hanno lo stesso rango.
- **V F** d) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- **V F** c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- ${f V}$ ${f F}$ c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- **V F** c) Se A e B sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- V F d) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- \mathbf{V} \mathbf{F} b) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** c) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- ${f V}$ ${f F}$ d) Siano V,W due spazi vettoriali di dimensione finita. Se dim $W>\dim V$, allora W non può essere un sottospazio vettoriale di V.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}$) Esistono matrici reali 3×4 di rango 4.
- V F c) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- **V F** d) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x=0.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- **V F** b) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- ${f V}$ ${f F}$ d) Siano V,W due spazi vettoriali di dimensione finita. Se dim $W>\dim V$, allora W non può essere un sottospazio vettoriale di V.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- V F d) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** b) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F d) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F b) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F c) Esistono sistemi lineari reali con esattamente tre soluzioni.
- V F d) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** b) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** c) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- V F c) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
- **V F** d) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- V F d) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F}$ b) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \qquad d$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- **V F** b) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- V F d) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- **V F** b) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- V F c) Due matrici simili hanno sempre lo stesso rango.
- V F d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale allora A e $^t\!A$ hanno lo stesso rango.
- **V F** b) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** d) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** b) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
- ${f V}$ ${f F}$ d) Lo spazio vettoriale reale standard ${\Bbb R}^3$ ammette esattamente 3 sottospazi vettoriali di dimensione 1.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- V F b) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
- V F d) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- **V F** d) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** b) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- \mathbf{V} \mathbf{F} c) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- **V F** b) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- \mathbf{V} \mathbf{F} c) Esistono matrici reali 3×4 di rango 4.
- V F d) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se $A + {}^{t}A$ è invertibile.
- V F c) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- **V F** d) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora m > n.
- **V F** b) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- \mathbf{V} \mathbf{F} c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- **V F** c) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- **V F** d) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- V F b) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- **V F** c) Se A e B sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F b) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F d) Esistono sistemi lineari reali con esattamente tre soluzioni.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** c) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \quad \mathbf{F} \qquad \text{b) Sia } \mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
- \mathbf{V} \mathbf{F} c) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- $\mathbf{V} \quad \mathbf{F} \quad d$) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- V F b) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- \mathbf{V} \mathbf{F} c) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- $\mathbf{V} \cdot \mathbf{F}$ d) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- V F d) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- **V F** b) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- V F c) Due matrici simili hanno sempre lo stesso rango.
- ${f V}$ ${f F}$ d) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** b) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- **V F** c) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- $\mathbf{V} \cdot \mathbf{F}$ d) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- **V F** b) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im \ f = r(A)$.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- V F b) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- ${f V}$ ${f F}$ d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard ${\Bbb R}^7$ ha dimensione 4.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- V F c) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- V F d) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- **V F** c) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- \mathbf{V} \mathbf{F} d) Una matrice quadrata reale A è invertibile se e solo se $A+^tA$ è invertibile.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il sottoinsieme di \mathbb{R}^3 di equazione x+2y=0, 3x+y-4z=0 è un sottospazio vettoriale di \mathbb{R}^3
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** c) Lo spazio vettoriale reale standard \mathbb{R}^3 ammette esattamente 3 sottospazi vettoriali di dimensione 1.
- \mathbf{V} \mathbf{F} d) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** c) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale allora A e $^t\!A$ hanno lo stesso rango.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Esistono matrici reali 3×4 di rango 4.
- V F c) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- V F d) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- **V F** b) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- **V F** b) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se $A + {}^t\!A$ è invertibile.
- V F d) Tutte le matrici quadrate a traccia non nulla sono invertibili.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- ${f V}$ ${f F}$ d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad c) \text{ Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- $\mathbf{V} \cdot \mathbf{F}$ d) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono sistemi lineari reali con esattamente tre soluzioni.
- **V F** b) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F d) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** c) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
- **V F** b) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- \mathbf{V} \mathbf{F} d) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}$) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Tutte le funzioni da } \mathbb{Z} \text{ in } \mathbb{Z} \text{ iniettive sono anche biunivoche.}$
- V F b) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- V F c) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** b) Lo spazio vettoriale reale standard \mathbb{R}^3 ammette esattamente 3 sottospazi vettoriali di dimensione 1.
- **V F** c) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** b) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- **V F** c) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- **V F** d) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- V F b) Due matrici simili hanno sempre lo stesso rango.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- \mathbf{V} \mathbf{F} d) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- **V F** b) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** c) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- **V F** b) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- \mathbf{V} \mathbf{F} d) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- ${f V}$ ${f F}$ c) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- **V F** d) Se A e B sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Se A è una matrice reale allora A e ^tA hanno lo stesso rango.
- **V F** b) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** d) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Sia } f: \mathbb{R}^n \to \mathbb{R}^m \text{ un'applicatione lineare iniettiva. Allora } m \geq n.$
- **V F** b) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- \mathbf{V} \mathbf{F} c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim Im f = r(A).
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- **V F** b) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- \mathbf{V} \mathbf{F} c) Esistono matrici reali 3×4 di rango 4.
- V F d) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- \mathbf{V} \mathbf{F} b) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Sia } \mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
- **V F** d) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono sistemi lineari reali con esattamente tre soluzioni.
- V F b) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F c) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F d) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- \mathbf{V} \mathbf{F} c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** d) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- ${f V}$ ${f F}$ b) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- V F c) Due matrici simili hanno sempre lo stesso rango.
- **V F** d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
- ${f V}$ ${f F}$ b) L'applicazione $f:\mathbb{R}^2\to\mathbb{R}^2$ definita ponendo f(x,y)=(y,0) per ogni $(x,y)\in\mathbb{R}^2$ è lineare.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- \mathbf{V} \mathbf{F} b) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** c) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- **V F** d) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- \mathbf{V} \mathbf{F} b) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- \mathbf{V} \mathbf{F} c) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- V F b) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Lo spazio vettoriale reale standard \mathbb{R}^3 ammette esattamente 3 sottospazi vettoriali di dimensione 1.
- **V F** b) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se $A + {}^{t}\!A$ è invertibile.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- V F d) Tutte le matrici quadrate a traccia non nulla sono invertibili.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- **V F** c) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale allora A e ${}^{t}\!A$ hanno lo stesso rango.
- **V F** b) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- ${f V}$ ${f F}$ c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
- V F d) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- V F b) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- **V F** c) Se A e B sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- V F b) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- **V F** c) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- ${f V}$ ${f F}$ d) L'anello ${\Bbb Z}_8$ delle classi di resto modulo 8 possiede divisori dello zero.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
- V F d) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
- **V F** b) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.
- \mathbf{V} \mathbf{F} d) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- **V F** b) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- V F c) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esistono matrici reali 3×4 di rango 4.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c)}$ Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- V F d) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F b) Esistono sistemi lineari reali con esattamente tre soluzioni.
- V F c) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F d) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** b) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** d) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- V F b) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
- \mathbf{V} \mathbf{F} c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- V F b) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \cdot \mathbf{F}$ d) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- **V F** b) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- \mathbf{V} \mathbf{F} c) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- \mathbf{V} \mathbf{F} b) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- V F d) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** b) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- **V F** c) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- $\mathbf{V} \cdot \mathbf{F}$ d) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- V F b) Due matrici simili hanno sempre lo stesso rango.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- **V F** d) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- ${f V}$ ${f F}$ b) Lo spazio vettoriale reale standard ${\Bbb R}^3$ ammette esattamente 3 sottospazi vettoriali di dimensione 1
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- \mathbf{V} \mathbf{F} b) Esistono matrici reali 3×4 di rango 4.
- V F c) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- **V F** d) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Una matrice quadrata reale A è invertibile se e solo se $A+^tA$ è invertibile.
- **V F** b) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- V F d) Tutte le matrici quadrate a traccia non nulla sono invertibili.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- \mathbf{V} \mathbf{F} b) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- $\mathbf{V} \quad \mathbf{F} \quad c) \text{ Sia } \mathbf{u} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{u} \text{ è il vettore nullo.}$
- $\mathbf{V} \quad \mathbf{F} \quad d$) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.
- **V F** b) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
- **V F** d) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale allora A e ^tA hanno lo stesso rango.
- **V F** d) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F b) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Esistono sistemi lineari reali con esattamente tre soluzioni.
- V F d) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- **V F** b) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- V F d) Due matrici simili hanno sempre lo stesso rango.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** c) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1
- **V F** d) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- **V F** d) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** b) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Sia } \mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
- \mathbf{V} \mathbf{F} d) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- V F c) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- **V F** b) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- V F c) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- **V F** b) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- **V F** b) Se A e B sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- V F c) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
- V F d) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale allora A e ${}^{t}\!A$ hanno lo stesso rango.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_i^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** d) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- V F c) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- **V F** d) Una matrice quadrata reale A è invertibile se e solo se $A + {}^{t}A$ è invertibile.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Lo spazio vettoriale reale standard \mathbb{R}^3 ammette esattamente 3 sottospazi vettoriali di dimensione 1.
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** d) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
- \mathbf{V} \mathbf{F} c) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** d) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- V F b) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Esistono matrici reali 3×4 di rango 4.
- **V F** d) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- **V F** c) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- **V F** c) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- V F c) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- **V F** b) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se $A + {}^{t}A$ è invertibile.
- V F d) Tutte le matrici quadrate a traccia non nulla sono invertibili.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- **V F** b) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- \mathbf{V} \mathbf{F} c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- V F d) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- **V F** d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- V F b) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- V F c) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- ${f V}$ ${f F}$ b) Lo spazio vettoriale reale standard ${\Bbb R}^3$ ammette esattamente 3 sottospazi vettoriali di dimensione 1.
- ${f V}$ ${f F}$ c) L'insieme di tutti i polinomi x^n+1 con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F b) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F c) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F d) Esistono sistemi lineari reali con esattamente tre soluzioni.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 3×4 di rango 4.
- **V F** b) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- V F c) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- V F d) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Tutti i gruppi infiniti sono isomorfi al gruppo } (\mathbb{Z}, +).$
- \mathbf{V} \mathbf{F} b) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- V F c) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** b) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale allora A e $^t\!A$ hanno lo stesso rango.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- **V F** b) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c} \in \mathbb{R}^2$ ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- V F c) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due matrici simili hanno sempre lo stesso rango.
- \mathbf{V} \mathbf{F} b) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- ${f V}$ ${f F}$ c) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- **V F** d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** b) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim Im f = r(A).
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** d) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F b) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F c) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F d) Esistono sistemi lineari reali con esattamente tre soluzioni.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** b) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- \mathbf{V} \mathbf{F} b) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** c) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- **V F** d) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \cdot \mathbf{F}$ b) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- **V F** c) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
- \mathbf{V} \mathbf{F} d) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- **V F** c) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- V F d) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- **V F** b) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- V F d) Due matrici simili hanno sempre lo stesso rango.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
- V F b) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale reale standard ${\Bbb R}^3$ ammette esattamente 3 sottospazi vettoriali di dimensione 1.
- **V F** b) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x+2y=0, 3x+y-4z=0 è un sottospazio vettoriale di \mathbb{R}^3
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se $A + {}^t\!A$ è invertibile.
- V F c) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- \mathbf{V} \mathbf{F} b) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- $\mathbf{V} \cdot \mathbf{F}$ d) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- **V F** b) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- **V F** d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.
- ${f V}$ ${f F}$ b) Siano A,B due matrici reali $n\times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
- **V F** d) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Esistono matrici reali 3×4 di rango 4.
- V F c) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- **V F** d) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- \mathbf{V} \mathbf{F} d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- $\mathbf{V} \cdot \mathbf{F}$ d) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale allora A e $^t\!A$ hanno lo stesso rango.
- **V F** d) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** b) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** c) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_i^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- **V F** c) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- V F d) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
- V F b) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- ${f V}$ ${f F}$ c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- V F b) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
- **V F** c) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- \mathbf{V} \mathbf{F} d) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.
- V F b) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- **V F** c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- $\mathbf{V} \quad \mathbf{F} \quad$ c) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
- **V F** c) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- V F b) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
- **V F** c) Se A e B sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F b) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F c) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare
- V F d) Esistono sistemi lineari reali con esattamente tre soluzioni.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** b) Il sottoinsieme di \mathbb{R}^3 di equazione x + 2y = 0, 3x + y 4z = 0 è un sottospazio vettoriale di \mathbb{R}^3 .
- ${f V}$ ${f F}$ c) L'insieme di tutti i polinomi x^n+1 con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- ${f V}$ ${f F}$ d) Lo spazio vettoriale reale standard ${\Bbb R}^3$ ammette esattamente 3 sottospazi vettoriali di dimensione 1.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Tutte le funzioni da } \mathbb{Z} \text{ in } \mathbb{Z} \text{ iniettive sono anche biunivoche.}$
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per colonne.
- V F c) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 3×4 di rango 4.
- V F b) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
- **V F** c) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- V F d) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- V F b) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se $A + {}^t\!A$ è invertibile.
- **V F** d) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
- **V F** b) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- **V F** c) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** d) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
- V F b) Due matrici simili hanno sempre lo stesso rango.
- \mathbf{V} \mathbf{F} c) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- **V F** d) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A=(a_j^i)$ una matrice reale $n\times n$ con n>2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A=a_2^1A_2^1+a_2^2A_2^2+\ldots+a_2^nA_2^n$.
- **V F** b) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
- **V F** c) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- $\mathbf{V} \cdot \mathbf{F}$ d) Se A è una matrice reale allora A e ^tA hanno lo stesso rango.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.
- \mathbf{V} \mathbf{F} b) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- **V F** c) La retta di equazione parametrica x=1, y=t, z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $\mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.
- **V F** c) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due matrici simili hanno sempre lo stesso rango.
- **V F** b) Sia f un endomorfismo di \mathbb{R}^n iniettivo. Allora 0 non è autovalore di f.
- **V F** c) Se la matrice associata a un endomorfismo f di \mathbb{R}^n rispetto alla base canonica è triangolare allora f ammette almeno una base spettrale.
- ${f V}$ ${f F}$ d) Se due matrici reali $n \times n$ sono una l'inversa dell'altra allora hanno lo stesso polinomio caratteristico.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La differenza fra due soluzioni di un sistema lineare è una soluzione del medesimo sistema lineare.
- V F b) Il rango di ogni matrice coincide con la dimensione dello spazio generato dalle sue righe.
- V F c) Ogni sistema lineare omogeneo ammette sempre esattamente una soluzione.
- V F d) Esistono sistemi lineari reali con esattamente tre soluzioni.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano V, W due spazi vettoriali di dimensione finita. Il nucleo di una qualunque trasformazione lineare $f: V \to W$ è un sottospazio vettoriale di V.
- **V F** b) Siano V, W due spazi vettoriali di dimensione finita. Se $f: V \to W$ è una applicazione lineare iniettiva e $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ è una base di V, l'insieme $\{f(\mathbf{v}_1), \dots, f(\mathbf{v}_n)\}$ è linearmente indipendente.
- **V F** c) L'applicazione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo f(x,y) = (y,0) per ogni $(x,y) \in \mathbb{R}^2$ è lineare.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^4 \to \mathbb{R}^2$ tali che sia il nucleo che l'immagine di f abbiano dimensione 1.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se due rette di \mathbb{R}^3 sono parallele a uno stesso piano, allora sono fra loro parallele.
- **V F** b) La retta di equazione parametrica x=1,y=t,z=t e il piano di equazione cartesiana y+z=0 sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Sia } \mathbf{u} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge \mathbf{u}$ è il vettore nullo.
- $\mathbf{V} \quad \mathbf{F} \quad d$) \mathbb{R}^2 ammette infiniti sistemi di riferimento cartesiano ortogonale distinti.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Tutti i gruppi infiniti sono isomorfi al gruppo $(\mathbb{Z}, +)$.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- \mathbf{V} \mathbf{F} c) L'anello \mathbb{Z}_8 delle classi di resto modulo 8 possiede divisori dello zero.
- V F d) L'insieme delle permutazioni su 10 oggetti è un gruppo non commutativo rispetto all'usuale composizione.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ a traccia uguale a 10 è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- \mathbf{V} \mathbf{F} b) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- **V F** c) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se U e W non hanno in comune solo il vettore nullo, allora $\dim(U+W) < \dim U + \dim W$.
- **V F** d) Siano V, W due spazi vettoriali di dimensione finita. Se dim $W > \dim V$, allora W non può essere un sottospazio vettoriale di V.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, A^5B^7 è una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale diagonale, allora tA è una matrice reale diagonale.
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$ e AB = BA, allora $(A + B)(A B) = A^2 B^2$.
- V F d) La trasposta di una matrice quadrata reale invertibile è sempre una matrice quadrata reale invertibile.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se M è una matrice simmetrica 3×3 la funzione che porta ogni vettore colonna $\mathbf{x} \in \mathbb{R}^3$ nel vettore colonna $M\mathbf{x}$ è una isometria dello spazio vettoriale euclideo standard \mathbb{R}^3 .
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Non esiste alcun vettore dello spazio vettoriale euclideo standard \mathbb{R}^n che sia ortogonale a tutti gli altri vettori di \mathbb{R}^n .
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esistono sottoinsiemi ortogonali di \mathbb{R}^n che non sono basi di \mathbb{R}^n .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A una matrice reale quadrata, allora det(3A) = 3 det A.
- **V F** b) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Se si ha $A_1^1 = A_1^2 = \ldots = A_1^n = 0$ allora det A = 0.
- V F d) Esistono matrici quadrate reali non nulle che hanno determinante e traccia entrambi nulli.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni endomorfismo f di \mathbb{R}^n ammette n autovalori distinti.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità geometriche dei suoi autovalori è uguale alla somma delle loro molteplicità algebriche.
- V F c) La molteplicità geometrica e la molteplicità algebrica di un autovalore reale sono sempre uguali fra loro.
- **V F** d) Se λ, μ sono autovalori di un endomorfismo f di \mathbb{R}^n , allora $\lambda + \mu$ è un autovalore dell'endomorfismo f.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme di tutti i polinomi $x^n + 1$ con n intero positivo è un sottoinsieme linearmente indipendente dello spazio vettoriale reale dei polinomi reali nella variabile x.
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^9 costituito da 9 vettori di \mathbb{R}^9 è una base di \mathbb{R}^9 .
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x+2y=0, 3x+y-4z=0 è un sottospazio vettoriale di \mathbb{R}^3
- ${f V}$ ${f F}$ d) Lo spazio vettoriale reale standard ${\Bbb R}^3$ ammette esattamente 3 sottospazi vettoriali di dimensione 1.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una matrice quadrata reale A è invertibile se e solo se $A + {}^t\!A$ è invertibile.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora 5A è una matrice reale simmetrica.
- V F c) Tutte le matrici quadrate a traccia non nulla sono invertibili.
- **V F** d) Se A, B sono due matrici diagonali reali $n \times n$, allora AB = BA.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$. Si ha che $\langle \mathbf{u}, -\mathbf{v} \rangle = \langle -\mathbf{u}, \mathbf{v} \rangle$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** b) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^7 ha dimensione 4.
- V F c) Ogni spazio vettoriale euclideo ammette esattamente due basi ortonormali.
- V F d) 1 è autovalore di ogni matrice ortogonale di ordine dispari e determinante positivo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Siano A, B due matrici reali $n \times n$ invertibili. Se A è simile a B, allora 2A è simile a 2B.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare iniettiva. Allora $m \geq n$.
- **V F** c) Sia \mathcal{B} una base di uno spazio vettoriale reale V di dimensione n. Allora $M_{\mathcal{BB}}(id_V)$ è la matrice identica $n \times n$.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $Im\ f = r(A)$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Esistono matrici reali 3×4 di rango 4.
- V F b) Tutti i sistemi lineari di 4 equazioni in 8 incognite ammettono infinite soluzioni.
- **V F** c) Esiste una e una sola trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^2 che abbia come nucleo la retta di equazione x = 0.
- V F d) Ogni sistema lineare omogeneo di 5 equazioni in 3 incognite ammette almeno una soluzione.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con n > 2 e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- $\mathbf{V} \cdot \mathbf{F}$ b) Se A è una matrice reale allora A e $^t\!A$ hanno lo stesso rango.
- **V F** c) L'unica matrice ortogonale che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** d) L'inversa di una permutazione dispari sull'insieme $\{1, \ldots, n\}$ è sempre una permutazione dispari sull'insieme $\{1, \ldots, n\}$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) I piani di \mathbb{R}^3 di equazioni cartesiane x + y = 0 e x y = 0 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F}$ b) Per due punti di \mathbb{R}^3 passano sempre infiniti piani.
- $\mathbf{V} \quad \mathbf{F} \qquad \text{c) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge \mathbf{v} = \mathbf{v} \wedge \mathbf{u}.$
- **V F** d) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x + y + z = 0 rappresenta una retta.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme dei numeri pari è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le funzioni da \mathbb{Z} in \mathbb{Z} iniettive sono anche biunivoche.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 è un gruppo commutativo rispetto al prodotto righe per
- V F d) Ogni elemento non nullo di un campo è invertibile rispetto al prodotto.