- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F b) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F c) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- V F d) Un campo non può mai contenere divisori dello zero.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- ${f V}$ ${f F}$ d) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni potenza di una matrice diagonale è una matrice diagonale.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- V F d) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F b) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F c) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F d) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** c) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m
- **V F** d) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- \mathbf{V} \mathbf{F} b) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** c) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- **V F** d) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- **V F** b) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- V F c) La molteplicità geometrica di un autovalore reale può essere nulla.
- **V F** d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\| \cdot \|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- V F b) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** c) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- \mathbf{V} \mathbf{F} d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** c) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
- **V F** d) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- \mathbf{V} \mathbf{F} b) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** d) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad (1,0,0) \wedge (0,0,1) \text{ è il vettore nullo.}$
- **V F** b) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- V F c) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** d) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- **V F** b) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** c) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** d) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad a$) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- ${f V}$ ${f F}$ b) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- V F d) Ogni sistema lineare omogeneo ammette infinite soluzioni.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- V F b) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** c) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- ${f V}$ ${f F}$ b) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F c) Esistono campi con un numero finito di elementi.
- V F d) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** c) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** d) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- V F c) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- **V F** d) Se A e B sono due matrici reali diagonali $n \times n$, allora AB = BA.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** c) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- **V F** d) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
- **V F** b) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
- **V F** b) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
- \mathbf{V} \mathbf{F} c) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim $Im \ f = n$.
- **V F** d) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** b) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- ${f V}$ ${f F}$ c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** d) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** b) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- **V F** c) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- V F d) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- V F b) Ogni potenza di una matrice diagonale è una matrice diagonale.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- **V F** d) Una matrice quadrata reale A è invertibile se e solo se det A > 0.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
- V F b) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F c) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F d) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- V F b) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** c) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- **V F** d) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- V F b) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- $\mathbf{V} \quad \mathbf{F} \quad c) \ (1,0,0) \wedge (0,0,1) \ e$ il vettore nullo.
- **V F** d) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Un campo non può mai contenere divisori dello zero.
- V F b) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F c) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F d) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v}) \text{ è il vettore nullo.}$
- **V F** c) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** b) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** d) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
- ${f V}$ ${f F}$ b) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- **V F** c) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- V F d) Esistono campi con un numero finito di elementi.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- ${f V}$ ${f F}$ c) Siano A,B matrici reali $n\times n$. Se AB è non invertibile allora anche BA è non invertibile.
- **V F** d) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** b) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- \mathbf{V} \mathbf{F} c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\|\cdot\|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- V F b) La molteplicità geometrica di un autovalore reale può essere nulla.
- ${f V}$ ${f F}$ c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
- $\mathbf{V} \cdot \mathbf{F}$ d) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali diagonali $n \times n$, allora AB = BA.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- \mathbf{V} \mathbf{F} c) Se A e B sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** d) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- V F b) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- ${f V}$ ${f F}$ c) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \cdot \mathbf{F} = \mathbf{d}$) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- V F b) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- V F c) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** d) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali diagonali $n \times n$, allora AB = BA.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** c) Se A e B sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- V F d) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- \mathbf{V} \mathbf{F} b) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\|\cdot\|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** d) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F b) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F c) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
- V F d) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim $Im \ f = n$.
- **V F** b) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** c) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
- **V F** d) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- **V F** c) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** d) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
- \mathbf{V} \mathbf{F} c) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- V F d) La molteplicità geometrica di un autovalore reale può essere nulla.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** b) Le rette di \mathbb{R}^3 di equazioni $\{x=0,z=2 \text{ e } \{x=1,y=1 \text{ sono fra loro sghembe.}\}$
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
- **V F** b) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- ${f V}$ ${f F}$ c) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F d) Esistono campi con un numero finito di elementi.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- V F c) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** d) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- **V F** b) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** d) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- \mathbf{V} \mathbf{F} b) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- ${f V}$ ${f F}$ d) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F b) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- V F c) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F d) Un campo non può mai contenere divisori dello zero.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- V F b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** d) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** b) La retta di equazione parametrica $\{x = t, y = 2, z = -t \text{ e il piano di equazione cartesiana } x z = 0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard } \mathbb{R}^3$ (espresso nelle coordinate (x, y, z)).
- **V F** c) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- $\mathbf{V} \quad \mathbf{F} \quad d) \quad (1,0,0) \wedge (0,0,1) \text{ è il vettore nullo.}$
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \cdot \mathbf{F}$ b) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- V F d) Ogni sistema lineare omogeneo ammette infinite soluzioni.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- V F c) Ogni potenza di una matrice diagonale è una matrice diagonale.
- V F d) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** c) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** d) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** b) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- **V F** c) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A e B sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- V F b) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- **V F** c) Se $A \in B$ sono due matrici reali diagonali $n \times n$, allora AB = BA.
- \mathbf{V} \mathbf{F} d) Se A e B sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F b) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F c) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F d) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** b) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
- **V F** c) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** d) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard } \mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- **V F** b) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.
- **V F** c) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- V F d) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F b) Esistono campi con un numero finito di elementi.
- V F c) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
- **V F** d) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- **V F** c) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- **V F** d) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** b) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- V F c) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** d) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** b) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- **V F** c) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** d) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** b) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** c) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora m < n.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- V F b) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\|\cdot\|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- ${f V}$ ${f F}$ d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard ${\Bbb R}^9$ ha dimensione 5.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F b) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F c) Un campo non può mai contenere divisori dello zero.
- V F d) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** d) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni potenza di una matrice diagonale è una matrice diagonale.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F c) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- **V F** d) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- \mathbf{V} \mathbf{F} c) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- ${f V}$ ${f F}$ c) L'insieme delle permutazioni sull'insieme $\{1,\ldots,n\}$ ha cardinalità n^n .
- \mathbf{V} \mathbf{F} d) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- V F c) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- ${f V} {f F} {f G}$ d) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La molteplicità geometrica di un autovalore reale può essere nulla.
- **V F** b) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- \mathbf{V} \mathbf{F} c) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F b) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- \mathbf{V} \mathbf{F} c) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- V F d) Ogni potenza di una matrice diagonale è una matrice diagonale.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\| \cdot \|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** c) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- \mathbf{V} \mathbf{F} d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** c) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
- **V F** d) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
- V F b) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F c) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F d) La permutazione delle colonne di una matrice non cambia il rango della matrice.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
- **V F** b) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
- **V F** c) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** b) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- **V F** c) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- \mathbf{V} \mathbf{F} d) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n
- \mathbf{V} \mathbf{F} b) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- V F c) La molteplicità geometrica di un autovalore reale può essere nulla.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F b) Un campo non può mai contenere divisori dello zero.
- V F c) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- V F d) Se due gruppi sono omomorfi hanno la stessa cardinalità.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- ${f V}$ ${f F}$ b) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- \mathbf{V} \mathbf{F} d) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** b) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** c) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- **V F** d) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** c) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- **V F** d) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- **V F** b) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- V F c) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono campi con un numero finito di elementi.
- ${f V}$ ${f F}$ b) Il gruppo delle permutazioni su due elementi e il gruppo ${\Bbb Z}_2$ delle classi di resto modulo 2 sono fra loro isomorfi.
- ${f V}$ ${f F}$ c) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F d) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- **V F** b) Se A e B sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- \mathbf{V} \mathbf{F} c) Se A e B sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- **V F** d) Se A e B sono due matrici reali diagonali $n \times n$, allora AB = BA.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- **V F** b) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** d) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** c) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** d) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \cdot \mathbf{F}$ b) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- **V F** c) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- V F d) Ogni sistema lineare omogeneo ammette infinite soluzioni.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** b) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- **V F** c) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.
- **V F** d) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
- V F b) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F c) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F d) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** b) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- \mathbf{V} \mathbf{F} c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** d) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** b) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- V F c) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** d) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
- **V F** b) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** d) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- V F b) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** c) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** d) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- V F b) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** c) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- **V F** d) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Un campo non può mai contenere divisori dello zero.
- V F b) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- V F c) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F d) Se due gruppi sono omomorfi hanno la stessa cardinalità.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
- \mathbf{V} \mathbf{F} b) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- **V F** b) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F d) Ogni potenza di una matrice diagonale è una matrice diagonale.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** b) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- **V F** c) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- **V F** b) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** c) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
- **V F** d) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- \mathbf{V} \mathbf{F} b) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- **V F** c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
- V F d) La molteplicità geometrica di un autovalore reale può essere nulla.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- V F b) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- ${f V}$ ${f F}$ c) Se A e B sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** d) Se A e B sono due matrici reali diagonali $n \times n$, allora AB = BA.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F b) Esistono campi con un numero finito di elementi.
- **V F** c) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- V F d) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\| \cdot \|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- \mathbf{V} \mathbf{F} c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
- **V F** d) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** c) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** d) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \cdot \mathbf{F}$ b) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- V F c) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** c) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
- **V F** d) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A e B sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** b) Se $A \in B$ sono due matrici reali diagonali $n \times n$, allora AB = BA.
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- V F d) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F b) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
- V F c) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F d) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
- **V F** b) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** d) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- **V F** b) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** d) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- V F c) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** d) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- V F b) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\|\cdot\|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
- **V F** b) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** d) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La molteplicità geometrica di un autovalore reale può essere nulla.
- **V F** b) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n
- \mathbf{V} \mathbf{F} c) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- **V F** d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- V F b) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione
- ${f V}$ ${f F}$ c) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F d) Esistono campi con un numero finito di elementi.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** b) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** c) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- V F d) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** c) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- **V F** d) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
 - $V = \mathbf{F}$ a) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- ${f V}$ ${f F}$ b) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- **V F** d) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- V F b) Un campo non può mai contenere divisori dello zero.
- V F c) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F d) Se due gruppi sono omomorfi hanno la stessa cardinalità.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- $\mathbf{V} \cdot \mathbf{F}$ b) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- ${f V}$ ${f F}$ c) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- V F b) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- \mathbf{V} \mathbf{F} c) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F d) Ogni potenza di una matrice diagonale è una matrice diagonale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- **V F** b) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- **V F** c) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.
- V F d) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** b) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** d) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** c) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- ${f V}$ ${f F}$ d) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F b) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F c) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
- V F d) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** c) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- V F d) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** b) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m
- **V F** c) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
- **V F** d) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- **V F** d) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** b) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- **V F** c) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.
- **V F** d) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- **V F** c) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
- **V F** d) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
- **V F** b) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- V F c) Esistono campi con un numero finito di elementi.
- ${f V}$ ${f F}$ d) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** c) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- V F d) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali diagonali $n \times n$, allora AB = BA.
- \mathbf{V} \mathbf{F} b) Se A e B sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- V F c) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- \mathbf{V} \mathbf{F} d) Se A e B sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Un campo non può mai contenere divisori dello zero.
- V F b) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F c) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F d) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
- \mathbf{V} \mathbf{F} b) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- **V F** c) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- \mathbf{V} \mathbf{F} d) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F c) Ogni potenza di una matrice diagonale è una matrice diagonale.
- **V F** d) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x = 1 ha dimensione infinita.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} d) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora m < n.
- **V F** c) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- ${f V}$ ${f F}$ d) Siano ${\cal B}_1$ e ${\cal B}_2$ basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{{\cal B}_1{\cal B}_2}(id_V)=M_{{\cal B}_2{\cal B}_1}(id_V)$.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- V F b) Sia \mathcal{S} un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di \mathcal{S} hanno lo stesso rango.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
- V F b) La molteplicità geometrica di un autovalore reale può essere nulla.
- **V F** c) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- \mathbf{V} \mathbf{F} d) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
- **V F** c) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
- **V F** b) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- V F c) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\| \cdot \|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** b) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- **V F** c) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\|\cdot\|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- ${f V} \quad {f F} \qquad {f b})$ Siano ${f u}, {f v} \in \mathbb{R}^3$. Allora ${f u} \wedge ({f u} \wedge {f v})$ è il vettore nullo.
- **V F** c) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** d) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F b) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- $\mathbf{V} \cdot \mathbf{F}$ c) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- V F d) Ogni potenza di una matrice diagonale è una matrice diagonale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- **V F** b) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- \mathbf{V} \mathbf{F} c) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- ${f V} {f F} {f G}$ d) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- V F b) La molteplicità geometrica di un autovalore reale può essere nulla.
- \mathbf{V} \mathbf{F} c) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F b) Un campo non può mai contenere divisori dello zero.
- V F c) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- V F d) Se due gruppi sono omomorfi hanno la stessa cardinalità.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Ogni sistema di generatori di } \mathbb{R}^n$ è linearmente indipendente.
- ${f V}$ ${f F}$ b) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- \mathbf{V} \mathbf{F} d) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F b) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F c) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F d) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** b) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** d) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \cdot \mathbf{F}$ a) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- $\mathbf{V} \cdot \mathbf{F}$ b) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- V F c) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- ${f V}$ ${f F}$ d) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- V F b) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
- V F c) Esistono campi con un numero finito di elementi.
- \mathbf{V} \mathbf{F} d) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** b) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- \mathbf{V} \mathbf{F} c) L'insieme delle permutazioni sull'insieme $\{1,\ldots,n\}$ ha cardinalità n^n .
- \mathbf{V} \mathbf{F} d) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- **V F** b) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- V F c) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** d) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** b) Se A e B sono due matrici reali diagonali $n \times n$, allora AB = BA.
- V F c) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- \mathbf{V} \mathbf{F} d) Se A e B sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- **V F** c) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- V F d) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** c) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- **V F** d) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** b) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** c) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** d) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F b) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F c) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F d) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim $Im \ f = n$.
- **V F** b) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** c) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
- **V F** d) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** b) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** c) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- **V F** d) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard } \mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- V F b) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** c) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.
- **V F** d) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A = 0.
- **V F** c) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- **V F** d) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** b) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- **V F** c) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- V F d) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Un campo non può mai contenere divisori dello zero.
- **V F** b) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- V F c) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F d) Il gruppo delle permutazioni su 4 elementi è commutativo.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
- ${f V} {f F} {f F}$ b) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- **V F** c) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
- ${f V} {f F} {f F}$ b) Una matrice quadrata reale A è invertibile se e solo se det A>0.
- V F c) Ogni potenza di una matrice diagonale è una matrice diagonale.
- \mathbf{V} \mathbf{F} d) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- **V F** b) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- V F c) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono campi con un numero finito di elementi.
- V F b) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
- \mathbf{V} \mathbf{F} c) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- **V F** d) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- **V F** b) Se A e B sono due matrici reali diagonali $n \times n$, allora AB = BA.
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n
- **V F** b) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- V F c) La molteplicità geometrica di un autovalore reale può essere nulla.
- ${f V} {f F} {f G}$ d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** b) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** c) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** d) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- $\mathbf{V} \quad \mathbf{F} \quad b$) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- ${f V}$ ${f F}$ c) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** b) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\| \cdot \|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** c) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- \mathbf{V} \mathbf{F} d) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- **V F** b) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** c) Siano $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
- **V F** d) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
- **V F** b) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- \mathbf{V} \mathbf{F} c) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- **V F** d) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** b) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** c) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m .
- **V F** d) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** b) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- **V F** c) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- **V F** d) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
- V F b) La molteplicità geometrica di un autovalore reale può essere nulla.
- **V F** c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
- \mathbf{V} \mathbf{F} d) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F b) Esistono campi con un numero finito di elementi.
- **V F** c) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- V F d) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- V F a) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.
- **V F** b) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- \mathbf{V} \mathbf{F} c) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
- **V F** d) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\| \cdot \|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3$. Allora $\mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v})$ è il vettore nullo.
- **V F** c) Le rette di \mathbb{R}^3 di equazioni $\{x=0, z=2 \text{ e } \{x=1, y=1 \text{ sono fra loro sghembe.}\}$
- **V F** d) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** b) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- **V F** d) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- V F b) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** d) Se A e B sono due matrici reali diagonali $n \times n$, allora AB = BA.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F b) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F c) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F d) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- **V F** b) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} c) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- \mathbf{V} \mathbf{F} d) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F b) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F c) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- ${f V}$ ${f F}$ d) Un campo non può mai contenere divisori dello zero.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Tutte le matrici $n \times n$ reali invertibili hanno rango n.
- V F b) Ogni sistema lineare omogeneo ammette infinite soluzioni.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- ${f V} {f F} {f G}$ d) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F b) Ogni potenza di una matrice diagonale è una matrice diagonale.
- **V F** c) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- V F d) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
 - 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
- **V F** b) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** c) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** d) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.

- 6) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
- V F b) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** c) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** d) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- **V F** b) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
- **V F** c) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- \mathbf{V} \mathbf{F} d) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.
- **V F** b) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- **V F** c) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0 \text{ sono fra loro ortogonali nello spazio vettoriale euclideo standard <math>\mathbb{R}^3$ (espresso nelle coordinate (x,y,z)).
- **V F** d) $(1,0,0) \wedge (0,0,1)$ è il vettore nullo.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** b) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
- **V F** c) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** d) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due matrici simili hanno sempre lo stesso polinomio caratteristico.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è un endomorfismo diagonalizzabile tale che f^{2017} sia l'identità, allora f è l'identità.
- **V F** c) Un endomorfismo f di \mathbb{R}^n è diagonalizzabile se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è diagonale.
- **V F** d) Ogni matrice triangolare $A = (a_i^i)$ con $a_1^1 = 0$ ammette 0 come autovalore.
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Due sistemi lineari coincidono se e solo se hanno lo stesso insieme di soluzioni.
- V F b) La permutazione delle colonne di una matrice non cambia il rango della matrice.
- V F c) Ogni sistema lineare di 3 equazioni in 4 incognite ammette sempre almeno una soluzione.
- V F d) L'insieme delle soluzioni di un sistema lineare omogeneo è sempre uno spazio vettoriale.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il nucleo di una qualunque trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^m$ è un sottospazio vettoriale di \mathbb{R}^m
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un'applicazione lineare. Allora f è invertibile se e solo se dim Im f = n.
- **V F** c) L'applicazione $f: M_{m,n}(\mathbb{R}) \to M_{n,m}(\mathbb{R})$ che porta ogni matrice nella sua trasposta è lineare.
- **V F** d) Esistono trasformazioni lineari $f: V \to V$ tali che la funzione $f \circ f$ non è lineare.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano r, s due rette incidenti di \mathbb{R}^3 e siano $(a, b, c), (\alpha, \beta, \gamma)$ numeri direttori di r e s, rispettivamente. Allora r e s formano un angolo di $\pi/4$ se e solo se $a\alpha + b\beta + c\gamma = \sqrt{2}/2$.
- **V F** b) La retta di equazione parametrica $\{x=t,y=2,z=-t \text{ e il piano di equazione cartesiana } x-z=0$ sono fra loro ortogonali nello spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x,y,z)).
- $\mathbf{V} \quad \mathbf{F} \qquad c) \quad (1,0,0) \wedge (0,0,1) \text{ è il vettore nullo.}$
- V F d) Esistono spazi vettoriali euclidei privi di sistemi di riferimento cartesiano ortogonale.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Il gruppo delle permutazioni su due elementi e il gruppo \mathbb{Z}_2 delle classi di resto modulo 2 sono fra loro isomorfi.
- ${f V}$ ${f F}$ b) L'insieme dei polinomi reali nella variabile x è un anello rispetto alle usuali operazioni di somma e prodotto fra polinomi.
- V F c) L'insieme delle traslazioni del piano è un gruppo commutativo rispetto all'usuale composizione.
- V F d) Esistono campi con un numero finito di elementi.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali $n \times n$ invertibili è uno spazio vettoriale reale rispetto alla somma e al prodotto per uno scalare usuali.
- V F b) Ogni spazio vettoriale finitamente generato ammette almeno un sistema di generatori finito.
- **V F** c) Siano U, W due sottospazi vettoriali di uno spazio vettoriale V finitamente generato. Se $\dim(U+W) = \dim U + \dim W$ allora U e W hanno in comune solo il vettore nullo.
- **V F** d) Se W è un sottospazio vettoriale di \mathbb{R}^n , allora dim $W \leq n$.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ diagonali, AB è una matrice $n \times n$ diagonale.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ con traccia 1, A + B è una matrice con traccia 1.
- **V F** c) Se $A \in B$ sono due matrici reali diagonali $n \times n$, allora AB = BA.
- **V F** d) La trasposta di una matrice quadrata reale simmetrica è sempre una matrice quadrata reale simmetrica.
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Due vettori \mathbf{u}, \mathbf{v} dello spazio vettoriale euclideo standard \mathbb{R}^n sono fra loro ortogonali se e solo se $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- **V F** b) Sia $\|\cdot\|$ la norma in uno spazio vettoriale euclideo V. Si ha che $\|2\mathbf{u} 3\mathbf{v}\| \le 2\|\mathbf{u}\| 3\|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in V$.
- **V F** c) Ogni sottoinsieme finito di vettori non nulli a due a due ortogonali di \mathbb{R}^n è linearmente indipendente.
- **V F** d) Ogni sottoinsieme linearmente indipendente dello spazio vettoriale euclideo standard \mathbb{R}^n può essere esteso a una base ortonormale di \mathbb{R}^n .
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Se A è una matrice reale invertibile, allora $\det(A^{-1}) = -\det A$.
- \mathbf{V} \mathbf{F} b) Il determinante è una funzione multilineare rispetto alle righe della matrice $n \times n$ considerata.
- **V F** c) Sia A una matrice reale $n \times n$ con $n \ge 2$. Se tutti i minori di A di ordine n-1 hanno determinante nullo allora det A=0.
- **V F** d) Ogni minore di una matrice reale $n \times n$ con $n \ge 2$ ammette uno e un solo minore orlato.

- 1) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Se n è dispari ogni endomorfismo di \mathbb{R}^n ammette almeno una base spettrale.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile se e solo se la somma delle molteplicità algebriche dei suoi autovalori è uguale a n.
- V F c) La molteplicità geometrica di un autovalore reale può essere nulla.
- **V F** d) Se λ è un autovalore di un endomorfismo f di \mathbb{R}^n , allora λ^n è un autovalore dell'endomorfismo f^n .
 - 2) Si dica se le seguenti affermazioni sono vere o false.
- \mathbf{V} \mathbf{F} a) Ogni sottoinsieme di uno spazio vettoriale V è un sottospazio vettoriale di V.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni sistema di generatori di \mathbb{R}^n è linearmente indipendente.
- \mathbf{V} \mathbf{F} c) Il sottoinsieme di \mathbb{R}^3 di equazione x=1 è un sottospazio vettoriale di \mathbb{R}^3 .
- \mathbf{V} \mathbf{F} d) Lo spazio vettoriale dei polinomi reali nella variabile x che si annullano per x=1 ha dimensione infinita.
 - 3) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Una matrice quadrata reale A è invertibile se e solo se det A > 0.
- \mathbf{V} \mathbf{F} b) Se A è una matrice reale simmetrica, allora A^n è una matrice reale simmetrica.
- V F c) Ogni potenza di una matrice diagonale è una matrice diagonale.
- V F d) La trasposta di una matrice quadrata invertibile è sempre una matrice invertibile.
 - 4) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia V uno spazio vettoriale euclideo dotato del prodotto scalare $\langle \cdot, \cdot \rangle$ e della norma indotta $\| \cdot \|$. Si ha che $|\langle \mathbf{u}, \mathbf{v} \rangle| \le \|\mathbf{u}\| \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v}, \in V$.
- **V F** b) Il complemento ortogonale di un qualunque sottospazio vettoriale euclideo di dimensione 4 dello spazio vettoriale euclideo standard \mathbb{R}^9 ha dimensione 5.
- **V F** c) Una trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$ è una isometria se e solo se la matrice associata a f rispetto alla base canonica di \mathbb{R}^n è ortogonale.
- ${f V}$ ${f F}$ d) 0 è autovalore di ogni matrice ortogonale di ordine dispari che abbia determinante positivo.

- 5) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Siano A, B due matrici reali $n \times n$. Se A è simile a B, allora tA è simile a tB .
- **V F** b) Sia $f: \mathbb{R}^n \to \mathbb{R}^m$ un omomorfismo suriettivo. Allora $m \leq n$.
- **V F** c) Siano \mathcal{B}_1 e \mathcal{B}_2 basi di uno spazio vettoriale reale finitamente generato V. Allora $M_{\mathcal{B}_1\mathcal{B}_2}(id_V) = M_{\mathcal{B}_2\mathcal{B}_1}(id_V)$.
- **V F** d) Sia $f: V \to W$ un'applicazione lineare e sia A una matrice associata a f. Allora dim $\ker f = \dim W r(A)$.
 - 6) Si dica se le seguenti affermazioni sono vere o false.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Tutte le matrici } n \times n \text{ reali invertibili hanno rango } n.$
- ${f V}$ ${f F}$ b) Sia ${\cal S}$ un sistema lineare risolubile. Allora la matrice completa e la matrice incompleta di ${\cal S}$ hanno lo stesso rango.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Esiste uno e un solo isomorfismo da \mathbb{R} a \mathbb{R} .
- V F d) Ogni sistema lineare omogeneo ammette infinite soluzioni.
 - 7) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) Sia $A = (a_j^i)$ una matrice reale $n \times n$ con $n \ge 2$ e sia A_j^i il complemento algebrico dell'elemento a_j^i . Allora det $A = a_2^1 A_2^1 + a_2^2 A_2^2 + \ldots + a_2^n A_2^n$.
- \mathbf{V} \mathbf{F} b) Siano A, B matrici reali $n \times n$. Se AB è non invertibile allora anche BA è non invertibile.
- \mathbf{V} \mathbf{F} c) L'unica matrice diagonale $n \times n$ che ha determinante uguale a 1 è la matrice identità $n \times n$.
- **V F** d) L'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$ ha cardinalità n^n .
 - 8) Si dica se le seguenti affermazioni sono vere o false.
- **V F** a) I piani di \mathbb{R}^3 di equazioni cartesiane y=2 e z=3 sono fra loro ortogonali.
- **V F** b) Le rette di \mathbb{R}^3 di equazioni $\{x=0,z=2 \text{ e } \{x=1,y=1 \text{ sono fra loro sghembe.}\}$
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Siano } \mathbf{u}, \mathbf{v} \in \mathbb{R}^3. \text{ Allora } \mathbf{u} \wedge (\mathbf{u} \wedge \mathbf{v}) \text{ è il vettore nullo.}$
- **V F** d) Rispetto allo spazio vettoriale euclideo standard \mathbb{R}^3 (espresso nelle coordinate (x, y, z)) l'equazione cartesiana x y = 0 rappresenta una retta.
 - 9) Si dica se le seguenti affermazioni sono vere o false.
- V F a) Non esiste alcuna corrispondenza biunivoca fra l'insieme dei numeri reali e l'insieme dei numeri naturali.
- ${f V}$ ${f F}$ b) Il gruppo delle permutazioni su 4 elementi è commutativo.
- V F c) Se due gruppi sono omomorfi hanno la stessa cardinalità.
- V F d) Un campo non può mai contenere divisori dello zero.