- 1) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - b) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - c) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - d) esistono gruppi con esattamente 5 elementi.
- 2) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - b) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - c) le matrici A e ^tA non possono essere entrambe non invertibili.
 - d) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - b) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - c) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - d) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
 - b) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A {}^t A$ ha dimensione 3.
 - c) gli spazi vettoriali $M_{3\times 4}(I\!\!R)$ e $I\!\!R^{12}$ sono isomorfi.
 - d) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.

- 5) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - b) ${f S}$ può ammettere esattamente 7 soluzioni distinte.
 - c) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - d) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - b) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - c) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - d) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - b) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - c) se n = 8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - d) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 9) Quali delle seguenti affermazioni sono vere?
 - a) se due segmenti hanno lo stesso punto medio coincidono.
 - b) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ earrow{e} 4$.
 - c) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.

- 1) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - b) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - c) $A \in B$ hanno la stessa traccia.
 - d) $A \in B$ hanno lo stesso polinomio caratteristico.
- 2) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - b) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - c) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
 - d) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - b) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora $\dim(Im\ T) = 4 \dim(Ker\ T)$.
 - c) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - d) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .

- 5) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) A è una matrice regolare se e solo se -A è una matrice regolare.
 - b) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - c) se la matrice $A + {}^tA$ ha traccia nulla allora anche A ha traccia nulla.
 - d) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - b) se $(I\!\!K,V,+,\cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+,\cdot)$.
 - c) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - d) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
- 7) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - b) se il rango di A è uguale a 5 allora ${\bf S}$ ammette una ed una sola soluzione.
 - c) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - d) $A \in C$ sono matrici 9×5 .
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - b) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - c) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - d) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - b) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - c) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - d) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.

- 1) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - b) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - c) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - d) le matrici A e ^tA non possono essere entrambe non invertibili.
- 2) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
 - b) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - c) S può ammettere esattamente 7 soluzioni distinte.
 - d) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
- 3) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - b) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - c) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - d) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - b) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - c) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - d) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - b) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - c) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - d) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .

- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
 - b) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - c) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - d) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - c) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - a) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - b) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A=B.
 - c) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - d) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - a) esistono gruppi con esattamente 5 elementi.
 - b) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - c) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - d) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.

- 1) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ eal 4$.
 - b) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - c) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
 - d) se due segmenti hanno lo stesso punto medio coincidono.
- 2) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $A \in C$ sono matrici 9×5 .
 - b) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - c) se il rango di A è uguale a 5 allora \mathbf{S} ammette una ed una sola soluzione.
 - d) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - b) se $(I\!\!K,V,+,\cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+,\cdot)$.
 - c) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - d) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) $A \in B$ hanno lo stesso polinomio caratteristico.
 - b) $A \in B$ hanno la stessa traccia.
 - c) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - d) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.

- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - b) se n = 8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - c) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
 - d) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - a) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - b) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - c) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - d) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
- 8) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - a) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
 - b) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - c) A è una matrice regolare se e solo se -A è una matrice regolare.
 - d) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - b) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - c) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora dim $(Im\ T) = 4 \dim(Ker\ T)$.
 - d) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.

- 1) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - a) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
 - b) A è una matrice regolare se e solo se -A è una matrice regolare.
 - c) se per ogni intero positivo k si ha che $det(A^k) = det(B^k)$ allora A = B.
 - d) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - a) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - b) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - c) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - d) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - b) la funzione esponenziale e^x è una trasformazione lineare da $I\!\!R$ in $I\!\!R$.
 - c) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
 - d) gli spazi vettoriali $M_{3\times 4}(I\!\!R)$ e $I\!\!R^{12}$ sono isomorfi.
- 5) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) S può ammettere esattamente 7 soluzioni distinte.
 - b) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - c) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
 - d) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.

- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - b) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - c) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - d) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - b) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
 - c) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - d) se n = 8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
- 8) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ eal 2$.
 - b) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
 - c) se due segmenti hanno lo stesso punto medio coincidono.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - b) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - c) se $(IK, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
 - d) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - b) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - c) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - d) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - b) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - c) A e B hanno la stessa traccia.
 - d) $A \in B$ hanno lo stesso polinomio caratteristico.
- 3) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - b) le matrici A e ^tA non possono essere entrambe non invertibili.
 - c) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - d) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - b) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - c) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - d) esistono gruppi con esattamente 5 elementi.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - c) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - d) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.

- 6) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
 - b) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - c) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - d) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
- 7) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora $\dim(Im\ T) = 4 \dim(Ker\ T)$.
 - b) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - c) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - d) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - b) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - c) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - d) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 9) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se il rango di A è uguale a 5 allora S ammette una ed una sola soluzione.
 - b) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - c) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - d) $A \in C$ sono matrici 9×5 .

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - b) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
 - c) non è possibile che risulti $det(k \cdot I A) = 0$ per ogni numero intero k.
 - d) A è una matrice regolare se e solo se -A è una matrice regolare.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - b) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - c) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - d) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - b) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - c) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
 - d) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
- 4) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) S può ammettere esattamente 7 soluzioni distinte.
 - b) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - c) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - d) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.

- 5) Quali delle seguenti affermazioni sono vere?
 - a) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - b) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - c) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - d) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - a) se $(IK, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
 - b) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - c) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - d) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - b) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - c) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - d) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - b) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - c) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - d) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - b) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - c) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.

- 1) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - b) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - c) $A \in C$ sono matrici 9×5 .
 - d) se il rango di A è uguale a 5 allora S ammette una ed una sola soluzione.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - b) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - c) esistono gruppi con esattamente 5 elementi.
 - d) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
- 4) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - b) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione 2x 6y = 4 è 4.
 - c) se due segmenti hanno lo stesso punto medio coincidono.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - b) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - c) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - d) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
- 6) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - b) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - c) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - d) le matrici A e ^tA non possono essere entrambe non invertibili.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - b) $A \in B$ hanno la stessa traccia.
 - c) A e B hanno lo stesso polinomio caratteristico.
 - d) se l'equazione $det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - b) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - c) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - d) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora dim $(Im\ T) = 4 \dim(Ker\ T)$.
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se n = 8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - b) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - c) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - d) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - b) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - c) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - d) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 3) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione 2x 6y = 4 è 4.
 - b) se due segmenti hanno lo stesso punto medio coincidono.
 - c) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
 - b) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - c) la funzione esponenziale e^x è una trasformazione lineare da $I\!\!R$ in $I\!\!R$.
 - d) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.

- 5) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
 - b) se le equazioni di ${\bf S}$ sono linearmente indipendenti ${\bf S}$ ammette necessariamente soluzioni.
 - c) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - d) S può ammettere esattamente 7 soluzioni distinte.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - b) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - c) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - d) se $A = {}^{t}A$ allora T è diagonalizzabile.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - b) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - c) se n=8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - d) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - b) esistono gruppi con esattamente 5 elementi.
 - c) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - d) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 9) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - b) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - c) le matrici A e tA non possono essere entrambe non invertibili.
 - d) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - b) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - c) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - d) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
- 3) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
 - b) A è una matrice regolare se e solo se -A è una matrice regolare.
 - c) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - d) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - b) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - c) se $(IK, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
 - d) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - a) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - b) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - c) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - d) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.

- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - b) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - c) $A \in B$ hanno la stessa traccia.
 - d) $A \in B$ hanno lo stesso polinomio caratteristico.
- 7) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se il rango di A è uguale a 5 allora S ammette una ed una sola soluzione.
 - b) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - c) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - d) $A \in C$ sono matrici 9×5 .
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora dim $(Im\ T) = 4 \dim(Ker\ T)$.
 - b) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - c) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - d) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
- 9) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
 - b) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - c) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - d) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
 - b) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
 - c) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - d) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - b) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - c) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - d) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - b) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - c) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - d) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subset ^{\perp}W$.
- 4) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
 - b) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - c) S può ammettere esattamente 7 soluzioni distinte.
 - d) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - b) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - c) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - d) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.

- 6) Quali delle seguenti affermazioni sono vere?
 - a) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - b) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A=B.
 - c) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - d) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - a) esistono gruppi con esattamente 5 elementi.
 - b) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - c) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - d) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 8) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - b) le matrici A e ^tA non possono essere entrambe non invertibili.
 - c) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - d) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - b) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - c) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - d) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - b) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
 - c) A è una matrice regolare se e solo se -A è una matrice regolare.
 - d) non è possibile che risulti $det(k \cdot I A) = 0$ per ogni numero intero k.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - b) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - c) A e B hanno lo stesso polinomio caratteristico.
 - d) $A \in B$ hanno la stessa traccia.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - b) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - c) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
 - d) se n = 8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - b) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - c) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - d) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - a) se $(\mathbb{K}, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
 - b) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - c) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - d) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.

- 6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 7) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se il rango di A è uguale a 5 allora \mathbf{S} ammette una ed una sola soluzione.
 - b) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - c) $A \in C$ sono matrici 9×5 .
 - d) $Sol(\mathbf{S})$ è necessariamente vuoto.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora dim $(Im\ T) = 4 \dim(Ker\ T)$.
 - b) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - c) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - d) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
- 9) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ eal 4$.
 - b) se due segmenti hanno lo stesso punto medio coincidono.
 - c) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - b) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - c) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - d) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - b) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
 - c) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - d) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
- 3) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - b) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
 - c) S può ammettere esattamente 7 soluzioni distinte.
 - d) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - b) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - c) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - d) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.

- 5) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) A è una matrice regolare se e solo se -A è una matrice regolare.
 - b) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
 - c) se per ogni intero positivo k si ha che $det(A^k) = det(B^k)$ allora A = B.
 - d) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
- 6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 7) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - b) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ earrow{e} 4$.
 - c) se due segmenti hanno lo stesso punto medio coincidono.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se n=8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - b) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - c) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - d) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - b) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - c) se $(IK, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
 - d) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - b) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - c) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - d) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
- 3) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) le matrici A e ^tA non possono essere entrambe non invertibili.
 - b) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - c) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - d) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - b) esistono gruppi con esattamente 5 elementi.
 - c) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - d) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 5) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - b) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - c) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora $\dim(Im\ T) = 4 \dim(Ker\ T)$.
 - d) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.

- 6) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - b) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - c) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - d) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 7) Quali delle seguenti affermazioni sono vere?
 - a) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - b) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - c) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - d) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A=B.
- 8) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $A \in C$ sono matrici 9×5 .
 - b) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - c) se il rango di A è uguale a 5 allora S ammette una ed una sola soluzione.
 - d) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) A e B hanno lo stesso polinomio caratteristico.
 - b) $A \in B$ hanno la stessa traccia.
 - c) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - d) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A {}^t A$ ha dimensione 3.
 - b) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - c) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
 - d) la funzione esponenziale e^x è una trasformazione lineare da $I\!\!R$ in $I\!\!R$.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - b) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - c) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - d) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
- 3) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) S può ammettere esattamente 7 soluzioni distinte.
 - b) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - c) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
 - d) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - c) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 5) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
 - b) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - c) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - d) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.

- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - b) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - c) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - d) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - b) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - c) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - d) se $(I\!\!K,V,+,\cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+,\cdot)$.
- 8) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
 - b) A è una matrice regolare se e solo se -A è una matrice regolare.
 - c) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
 - d) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - a) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - b) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - c) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - d) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - a) esistono gruppi con esattamente 5 elementi.
 - b) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - c) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - d) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) $A \in B$ hanno lo stesso polinomio caratteristico.
 - b) se l'equazione $det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - c) $A \in B$ hanno la stessa traccia.
 - d) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - b) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - c) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - d) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
- 4) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - b) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - c) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - d) le matrici A e ^tA non possono essere entrambe non invertibili.
- 5) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $A \in C$ sono matrici 9×5 .
 - b) se il rango di A è uguale a 5 allora S ammette una ed una sola soluzione.
 - c) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - d) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .

- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - b) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora $\dim(Im\ T) = 4 \dim(Ker\ T)$.
 - c) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - d) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
 - b) se n=8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - c) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - d) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
- 8) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{2}$.
 - b) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - c) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ each 4$.
 - d) se due segmenti hanno lo stesso punto medio coincidono.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - c) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - c) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 2) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ each 2$.
 - b) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - c) se due segmenti hanno lo stesso punto medio coincidono.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - b) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - c) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - d) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - b) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - c) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - d) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.

- 5) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - b) se n=8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - c) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - d) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - b) esistono gruppi con esattamente 5 elementi.
 - c) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - d) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 7) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - b) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - c) le matrici A e ^tA non possono essere entrambe non invertibili.
 - d) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
 - b) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - c) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - d) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
- 9) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - b) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - c) S può ammettere esattamente 7 soluzioni distinte.
 - d) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - b) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - c) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - d) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora dim $(Im\ T) = 4 \dim(Ker\ T)$.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - b) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - c) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - d) se $(IK, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
- 3) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) A e B hanno la stessa traccia.
 - b) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - c) A e B hanno lo stesso polinomio caratteristico.
 - d) se l'equazione $det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
- 4) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - b) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - c) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
 - d) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - b) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - c) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - d) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
- 6) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - a) A è una matrice regolare se e solo se -A è una matrice regolare.
 - b) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
 - c) se la matrice $A + {}^tA$ ha traccia nulla allora anche A ha traccia nulla.
 - d) se per ogni intero positivo k si ha che $det(A^k) = det(B^k)$ allora A = B.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - b) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - c) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - d) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
- 8) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - b) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - c) $A \in C$ sono matrici 9×5 .
 - d) se il rango di A è uguale a 5 allora \mathbf{S} ammette una ed una sola soluzione.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - d) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - b) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
 - c) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - d) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
- 2) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) S può ammettere esattamente 7 soluzioni distinte.
 - b) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - c) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - d) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - c) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 4) Quali delle seguenti affermazioni sono vere?
 - a) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - b) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A=B.
 - c) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - d) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.

- 5) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - b) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - c) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - d) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - b) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - c) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - d) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - a) esistono gruppi con esattamente 5 elementi.
 - b) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - c) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - d) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
- 8) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
 - b) le matrici A e ^tA non possono essere entrambe non invertibili.
 - c) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - d) se almeno 92 celle di B contengono il numero 1, allora det B=0.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - b) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - c) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - d) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
 - b) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
 - c) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - d) A è una matrice regolare se e solo se -A è una matrice regolare.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - b) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - c) se $(IK, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
 - d) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - a) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - b) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - c) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - d) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - b) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - c) se n = 8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - d) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
- 5) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $A \in C$ sono matrici 9×5 .
 - b) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - c) se il rango di A è uguale a 5 allora $\mathbf S$ ammette una ed una sola soluzione.
 - d) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .

- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - b) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - c) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora $\dim(Im\ T) = 4 \dim(Ker\ T)$.
 - d) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ each a$.
 - b) se due segmenti hanno lo stesso punto medio coincidono.
 - c) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - d) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) A e B hanno lo stesso polinomio caratteristico.
 - b) $A \in B$ hanno la stessa traccia.
 - c) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - d) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.

- 1) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) S può ammettere esattamente 7 soluzioni distinte.
 - b) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - c) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - d) se $\rho(A) = \rho(C)$ allora dim $(Sol(S)) = n \rho(A)$.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - b) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - c) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - d) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
 - b) se n=8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - c) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
 - d) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - a) se $(\mathbb{K}, V, +, \cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+, \cdot)$.
 - b) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.
 - c) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - d) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.

- 6) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione $2x 6y = 4 \ eal 2$.
 - b) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - c) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
 - d) se due segmenti hanno lo stesso punto medio coincidono.
- 7) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - b) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
 - c) A è una matrice regolare se e solo se -A è una matrice regolare.
 - d) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - b) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
 - c) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - d) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - b) la funzione esponenziale e^x è una trasformazione lineare da \mathbb{R} in \mathbb{R} .
 - c) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - d) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.

- 1) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - b) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - c) le matrici A e ^tA non possono essere entrambe non invertibili.
 - d) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - b) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - c) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - d) esistono gruppi con esattamente 5 elementi.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - b) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
 - c) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - d) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora $\dim(Im\ T) = 4 \dim(Ker\ T)$.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - b) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - c) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - d) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.

- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
 - b) per ogni $v \in V$ risulta $\langle v, v \rangle \ge 0$.
 - c) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - d) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) $A \in B$ hanno la stessa traccia.
 - b) $A \in B$ hanno lo stesso polinomio caratteristico.
 - c) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - d) se l'equazione $\det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
- 8) Quali delle seguenti affermazioni sono vere?
 - a) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
 - b) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - c) se u,v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u,v)}$.
 - d) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
- 9) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - b) $A \in C$ sono matrici 9×5 .
 - c) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - d) se il rango di A è uguale a 5 allora S ammette una ed una sola soluzione.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n. Allora
 - a) per ogni $v \in V$ risulta $\langle v, v \rangle \geq 0$.
 - b) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle v, u \rangle$.
 - c) se U, W sono due sottospazi vettoriali di V e $U \subseteq W$ allora $^{\perp}U \subseteq ^{\perp}W$.
 - d) se $u, v \in V$ e per ogni $w \in V$ risulta $\langle u v, w \rangle = 0$ allora risulta anche u = v.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) gli spazi vettoriali $M_{3\times 4}(\mathbb{R})$ e \mathbb{R}^{12} sono isomorfi.
 - b) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice A in $A-^tA$ ha dimensione 3.
 - c) la funzione esponenziale e^x è una trasformazione lineare da $I\!\!R$ in $I\!\!R$.
 - d) se due trasformazioni lineari da \mathbb{R}^5 in \mathbb{R}^7 assumono gli stessi valori sui vettori di una stessa base di \mathbb{R}^5 allora coincidono ovunque.
- 3) Sia S un sistema lineare a coefficienti reali di 5 equazioni in 7 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) se le equazioni di S sono linearmente indipendenti S ammette necessariamente soluzioni.
 - b) S può ammettere esattamente 7 soluzioni distinte.
 - c) se $x, y \in Sol(\mathbf{S})$ allora y x è soluzione del sistema lineare omogeneo associato ad \mathbf{S} .
 - d) se $\rho(A) = \rho(C)$ allora dim $(Sol(\mathbf{S})) = n \rho(A)$.
- 4) Quali delle seguenti affermazioni sono vere?
 - a) nel piano euclideo standard la distanza fra i punti (-10, -5) e (-30, -20) è uguale a 25.
 - b) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $||u \wedge v|| = ||u|| \cdot ||v|| \cdot \sqrt{1 \cos^2(u, v)}$.
 - c) nello spazio euclideo standard 3-dimensionale la distanza fra il punto (-3, -3, -3) e il piano di equazione x + y + z = -3 è uguale a 3.
 - d) nello spazio euclideo standard se il punto D è simmetrico sia di un punto A che di un punto B (rispetto ad un dato punto C), allora A = B.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri interi è un anello rispetto alle usuali operazioni di somma e prodotto.
 - b) se $(I\!\!K,V,+,\cdot)$ è uno spazio vettoriale, V è un anello rispetto alle operazioni $(+,\cdot)$.
 - c) l'insieme delle matrici reali 4×4 triangolari alte è un gruppo rispetto all'usuale somma.
 - d) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ limitate è un campo rispetto alle usuali operazioni di somma e prodotto.

- 6) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - a) A è una matrice regolare se e solo se -A è una matrice regolare.
 - b) se per ogni intero positivo k si ha che $\det(A^k) = \det(B^k)$ allora A = B.
 - c) non è possibile che risulti $\det(k \cdot I A) = 0$ per ogni numero intero k.
 - d) se la matrice $A + {}^{t}A$ ha traccia nulla allora anche A ha traccia nulla.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei polinomi di grado pari è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - b) l'insieme $\{(x, y, z, t) \in \mathbb{R}^4 : x = y = z = t\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^4 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - c) il rango del prodotto di due matrici reali $n \times n$ è il prodotto dei loro ranghi.
 - d) la somma di due sottospazi vettoriali di uno spazio vettoriale V è un sottospazio vettoriale di V.
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=2t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - a) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - b) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - c) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro paralleli.
 - d) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - a) se B è la matrice di T rispetto ad una base di V allora B è uguale ad A.
 - b) se $A = {}^{t}A$ allora T è diagonalizzabile.
 - c) se v_1, \ldots, v_k sono autovettori non nulli di T relativi ad autovalori distinti allora l'insieme $\{v_1, \ldots, v_k\}$ è linearmente indipendente.
 - d) se A è diagonalizzabile per similitudine allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - a) per ogni $u, v \in V$ risulta $\langle u, v \rangle = \langle -u, -v \rangle$.
 - b) se $u, v \in V$ allora $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
 - c) se n=8 e U è un sottospazio vettoriale di V di dimensione uguale a 4 il complemento ortogonale di U ha dimensione uguale a 4.
 - d) se $v \in V$ allora $||v|| = \langle v, v \rangle$.
- 2) Siano A una matrice reale 7×7 e B una matrice reale 10×10 . Allora
 - a) le matrici A e tA non possono essere entrambe non invertibili.
 - b) se almeno 92 celle di B contengono il numero 1, allora det B=0.
 - c) se esiste un minore 6×6 di A con determinante nullo anche A ha determinante nullo.
 - d) se il prodotto di A per qualunque altra matrice 7×7 dà come risultato la matrice nulla allora A stessa è la matrice nulla.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme di tutti i polinomi nella indeterminata t a coefficienti interi è un sistema di generatori per lo spazio vettoriale $\mathbb{R}[t]$ dei polinomi in t a coefficienti in \mathbb{R} .
 - b) l'insieme delle matrici reali 5×5 simmetriche è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - c) l'insieme delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che f(1) = 0 è uno spazio vettoriale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - d) l'insieme delle successioni reali a coefficienti tutti diversi da zero, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=0 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - a) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - b) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - c) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - d) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 5) Sia S un sistema lineare a coefficienti reali di 9 equazioni in 5 incognite. Siano A e C la matrice incompleta e completa associate ad S, rispettivamente.
 - a) $Sol(\mathbf{S})$ è necessariamente vuoto.
 - b) se il rango di A è uguale a 5 allora $\bf S$ ammette una ed una sola soluzione.
 - c) $Sol(\mathbf{S})$ costituisce un sottospazio vettoriale dello spazio vettoriale standard \mathbb{R}^5 .
 - d) $A \in C$ sono matrici 9×5 .

- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - a) se due spazi vettoriali reali finitamente generati non sono isomorfi non possono avere la stessa dimensione.
 - b) se $T: \mathbb{R}^4 \to \mathbb{R}^8$ è una trasformazione lineare allora dim $(Im\ T) = 4 \dim(Ker\ T)$.
 - c) ogni vettore di $M_5(\mathbb{R})$ ha sempre le stesse componenti rispetto a qualunque base di $M_5(\mathbb{R})$.
 - d) esistono trasformazioni lineari T da \mathbb{R}^3 in \mathbb{R}^3 tali che $T \circ T$ non è una trasformazione lineare da \mathbb{R}^3 in \mathbb{R}^3 .
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - a) $A \in B$ hanno la stessa traccia.
 - b) se l'equazione $det(t \cdot I A) = 0$ (nella variabile reale t) ha soluzioni, T è diagonalizzabile.
 - c) se A è diagonalizzabile allora V ammette almeno una base spettrale relativa a T.
 - d) $A \in B$ hanno lo stesso polinomio caratteristico.
- 8) Quali delle seguenti affermazioni sono vere?
 - a) se due segmenti hanno lo stesso punto medio coincidono.
 - b) nello spazio vettoriale euclideo standard 3-dimensionale il coseno dell'angolo compreso fra i vettori (1,1,1), (1,-1,1) è $\frac{1}{3}$.
 - c) nello spazio vettoriale euclideo standard 3-dimensionale ((0,0,0),(1,0,0),(0,1,0)) è una base ortogonale.
 - d) nel piano euclideo standard la distanza fra il punto di coordinate (2, -4) e la retta di equazione 2x 6y = 4 è 4.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - a) l'insieme dei numeri complessi è un campo rispetto all'usuale somma e prodotto.
 - b) l'insieme dei numeri interi dispari è un gruppo abeliano rispetto all'usuale prodotto.
 - c) l'insieme delle matrici reali 4×4 con traccia positiva è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - d) esistono gruppi con esattamente 5 elementi.