- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- V F b) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- **V F** c) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F d) Non esistono campi con esattamente 7 elementi.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- V F b) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} c) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** b) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** c) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- \mathbf{V} \mathbf{F} b) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- ${f V}$ ${f F}$ c) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- ${f V}$ ${f F}$ d) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di ${\Bbb R}^n.$

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono trasformazioni lineari prive di nucleo.
- ${f V}$ ${f F}$ b) Il nucleo e l'immagine di un endomorfismo di ${\Bbb R}^4$ non possono mai coincidere.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- ${f V} {f F} {f G}$ d) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- V F b) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ c) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- V F d) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- ${f V}$ ${f F}$ b) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- \mathbf{V} \mathbf{F} c) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- **V F** d) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** b) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** c) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** d) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- V F b) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- **V F** c) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- **V F** b) Se $n \ge 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- $\mathbf{V} \cdot \mathbf{F} = \mathbf{c}$) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il determinante di una matrice reale 3×4 non è definito.
 - 2) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- V F b) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- **V F** c) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- **V F** c) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- ${f V}$ ${f F}$ d) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Le operazioni colonna conservano il rango delle matrici reali.
- **V F** b) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- \mathbf{V} \mathbf{F} c) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- \mathbf{V} \mathbf{F} d) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- **V F** b) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- V F c) Non esistono spazi vettoriali di dimensione infinita.
- **V F** d) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- V F b) Non esistono gruppi con esattamente 42 elementi.
- V F c) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** b) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** c) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** d) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** b) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** c) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- **V F** d) Se A e B sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F b) Esistono matrici quadrate reali prive di autovalori reali.
- V F c) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- V F d) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** b) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- V F c) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} d) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La composizione di due endomorfismi di \mathbb{R}^8 iniettivi è sempre un endomorfismo di \mathbb{R}^8 iniettivo.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- \mathbf{V} \mathbf{F} c) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- V F d) Esistono trasformazioni lineari prive di nucleo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
- ${f V}$ ${f F}$ b) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- V F c) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ d) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- V F b) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- ${\bf V} {\bf F}$ c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F d) Esistono matrici quadrate reali prive di autovalori reali.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A e B sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- \mathbf{V} \mathbf{F} b) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** c) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** d) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} b) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- \mathbf{V} \mathbf{F} c) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- V F d) Ogni sistema lineare omogeneo ammette almeno una soluzione.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- **V F** b) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- V F c) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- **V F** b) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- V F c) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- V F d) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono campi con esattamente 7 elementi.
- V F b) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- V F c) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- **V F** d) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.

- 1) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Esiste una e una sola retta che ammette (1, 1, 1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- V F c) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** d) $(1,2,3) \land (2,4,6) = (0,0,0)$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** b) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** c) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare
- **V F** d) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Non esistono gruppi con esattamente 42 elementi.
- **V F** c) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- V F d) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Il determinante di una matrice reale 3×4 non è definito.
- \mathbf{V} \mathbf{F} b) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- **V F** c) Se $n \ge 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- ${f V}$ ${f F}$ d) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** b) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- \mathbf{V} \mathbf{F} c) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
- **V F** d) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- ${f V}$ ${f F}$ b) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- V F c) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
- ${f V}$ ${f F}$ d) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- **V F** b) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- \mathbf{V} \mathbf{F} c) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** d) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- ${f V}$ ${f F}$ b) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- V F d) Non esistono spazi vettoriali di dimensione infinita.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- **V F** b) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- **V F** c) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- V F d) Le operazioni colonna conservano il rango delle matrici reali.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- ${f V}$ ${f F}$ c) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- V F d) Non esistono spazi vettoriali di dimensione infinita.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- \mathbf{V} \mathbf{F} b) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** c) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** d) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** b) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** d) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- V F b) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- **V F** c) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
- $\mathbf{V} \cdot \mathbf{F}$ d) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- V F b) Esistono trasformazioni lineari prive di nucleo.
- ${f V} {f F} {f C}$) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ b) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- V F c) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
- ${f V}$ ${f F}$ d) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${\bf V}$ ${\bf F}$ a) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- V F b) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
- **V F** c) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- \mathbf{V} \mathbf{F} d) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- \mathbf{V} \mathbf{F} a) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- ${f V}$ ${f F}$ b) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** c) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- **V F** d) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- \mathbf{V} \mathbf{F} b) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- V F c) Non esistono gruppi con esattamente 42 elementi.
- V F d) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- V F b) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- V F c) Esistono matrici quadrate reali prive di autovalori reali.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \geq 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** b) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- \mathbf{V} \mathbf{F} c) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il determinante di una matrice reale 3×4 non è definito.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- \mathbf{V} \mathbf{F} b) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- **V F** c) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- **V F** b) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F c) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- V F d) Non esistono campi con esattamente 7 elementi.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- ${f V}$ ${f F}$ b) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- V F d) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- **V F** b) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- V F c) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- V F d) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- V F b) Le operazioni colonna conservano il rango delle matrici reali.
- \mathbf{V} \mathbf{F} c) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- \mathbf{V} \mathbf{F} d) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** b) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- ${f V}$ ${f F}$ c) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** b) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** c) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** d) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- V F b) Non esistono spazi vettoriali di dimensione infinita.
- **V F** c) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- \mathbf{V} \mathbf{F} d) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** b) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- **V F** c) Se A e B sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- \mathbf{V} \mathbf{F} d) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- \mathbf{V} \mathbf{F} b) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- V F c) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- **V F** d) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
 - 4) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- V F c) Esistono trasformazioni lineari prive di nucleo.
- ${f V} {f F} {f G}$ d) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo.
 - 5) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- $\mathbf{V} \cdot \mathbf{F}$ a) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- V F b) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- V F c) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- **V F** d) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.

- 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono gruppi con esattamente 42 elementi.
- V F b) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ c) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- \mathbf{V} \mathbf{F} d) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo ($\mathbb{Z}_6, +$).
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ b) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- ${f V}$ ${f F}$ c) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- V F d) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- \mathbf{V} \mathbf{F} b) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F c) Esistono matrici quadrate reali prive di autovalori reali.
- V F d) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- V F b) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** b) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** c) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** d) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** b) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- ${f V} {f F} {f G}$ d) Ogni insieme di vettori non nulli di ${\Bbb R}^n$ a due a due ortogonali è sempre linearmente indipendente.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- V F b) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F c) Non esistono campi con esattamente 7 elementi.
- **V F** d) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} b) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- **V F** c) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** b) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** c) Se A e B sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- **V F** d) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- \mathbf{V} \mathbf{F} b) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- V F c) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} d) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- \mathbf{V} \mathbf{F} b) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- \mathbf{V} \mathbf{F} c) Il determinante di una matrice reale 3×4 non è definito.
- **V F** d) Se $n \geq 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Le operazioni colonna conservano il rango delle matrici reali.
- **V F** b) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- \mathbf{V} \mathbf{F} c) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- **V F** d) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- V F b) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- ${f V}$ ${f F}$ c) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- V F d) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- **V F** c) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** c) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** d) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
 - 3) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- **V F** b) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- **V F** c) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} b) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- V F c) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni matrice reale completamente ridotta con k pivot ha rango k.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- V F c) Esistono trasformazioni lineari prive di nucleo.
- \mathbf{V} \mathbf{F} d) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
- ${f V}$ ${f F}$ b) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- ${f V}$ ${f F}$ c) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- V F d) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${\bf V} {\bf F}$ a) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- **V F** b) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- \mathbf{V} \mathbf{F} c) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- V F d) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F b) Non esistono campi con esattamente 7 elementi.
- **V F** c) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F d) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- ${f V}$ ${f F}$ b) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} c) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- ${f V}$ ${f F}$ d) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di ${\Bbb R}[x]$, rispetto alle operazioni indotte.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- V F c) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- ${f V}$ ${f F}$ d) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- V F b) Esistono matrici quadrate reali prive di autovalori reali.
- \mathbf{V} \mathbf{F} c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F d) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono spazi vettoriali di dimensione infinita.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- **V F** c) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- **V F** d) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- **V F** b) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- V F c) Non esistono gruppi con esattamente 42 elementi.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- \mathbf{V} \mathbf{F} b) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** c) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** d) Se A e B sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \ge 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** b) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- \mathbf{V} \mathbf{F} c) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il determinante di una matrice reale 3×4 non è definito.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** b) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** c) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** d) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- V F b) Le operazioni colonna conservano il rango delle matrici reali.
- **V F** c) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- \mathbf{V} \mathbf{F} d) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- V F b) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- V F c) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- **V F** d) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
- V F b) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- $\mathbf{V} \cdot \mathbf{F}$ c) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- \mathbf{V} \mathbf{F} d) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
- ${f V}$ ${f F}$ b) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- V F c) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ d) Il determinante di una matrice reale 5 × 5 coincide sempre col determinante della sua trasposta.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- V F b) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- V F c) Esistono matrici quadrate reali prive di autovalori reali.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo
- V F b) Esistono trasformazioni lineari prive di nucleo.
- \mathbf{V} \mathbf{F} c) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- **V F** b) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- V F d) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- **V F** b) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- V F c) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- V F d) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono campi con esattamente 7 elementi.
- **V F** b) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F c) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F d) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} b) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- \mathbf{V} \mathbf{F} c) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- **V F** d) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- **V F** b) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- **V F** c) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** d) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- V F b) Non esistono spazi vettoriali di dimensione infinita.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- **V F** d) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \geq 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** b) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- \mathbf{V} \mathbf{F} c) Il determinante di una matrice reale 3×4 non è definito.
- \mathbf{V} \mathbf{F} d) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- **V F** b) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- V F c) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
- **V F** d) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** b) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- ${f V}$ ${f F}$ c) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** d) Se A e B sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono gruppi con esattamente 42 elementi.
- V F b) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- **V F** c) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** c) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
- **V F** d) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** b) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** c) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** d) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- V F b) Le operazioni colonna conservano il rango delle matrici reali.
- \mathbf{V} \mathbf{F} c) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- \mathbf{V} \mathbf{F} d) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Esiste una e una sola retta che ammette (1, 1, 1) come terna di parametri direttori.
- **V F** b) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- V F c) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** d) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- **V F** c) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** d) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- **V F** b) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} c) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- V F d) Ogni sistema lineare omogeneo ammette almeno una soluzione.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- ${f V}$ ${f F}$ b) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo
- \mathbf{V} \mathbf{F} c) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- V F d) Esistono trasformazioni lineari prive di nucleo.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- **V F** b) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
- V F c) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ d) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- **V F** b) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- **V F** c) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- V F d) Non esistono spazi vettoriali di dimensione infinita.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** b) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** d) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
 - 7) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- V F b) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- **V F** c) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- ${\bf V}$ ${\bf F}$ b) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- ${f V}$ ${f F}$ c) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- V F d) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- ${f V}$ ${f F}$ b) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) Non esistono gruppi con esattamente 42 elementi.
- V F d) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- V F c) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- **V F** d) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- V F b) Esistono matrici quadrate reali prive di autovalori reali.
- \mathbf{V} \mathbf{F} c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F d) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- V F b) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- V F c) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- **V F** d) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F b) Non esistono campi con esattamente 7 elementi.
- V F c) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F d) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- \mathbf{V} \mathbf{F} b) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- **V F** c) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- V F d) Le operazioni colonna conservano il rango delle matrici reali.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- **V F** c) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
 - 7) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- V F b) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- V F c) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- **V F** d) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** b) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** c) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** d) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
 - 9) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Il determinante di una matrice reale 3×4 non è definito.
- \mathbf{V} \mathbf{F} b) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- **V F** c) Se $n \ge 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- ${f V}$ ${f F}$ d) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- \mathbf{V} \mathbf{F} b) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- **V F** c) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
- V F d) Ogni sistema lineare omogeneo ammette almeno una soluzione.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- V F b) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- \mathbf{V} \mathbf{F} c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F d) Esistono matrici quadrate reali prive di autovalori reali.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- ${f V}$ ${f F}$ c) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo
- V F d) Esistono trasformazioni lineari prive di nucleo.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- ${f V}$ ${f F}$ b) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- V F c) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.

- 5) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- **V F** b) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- V F c) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- V F d) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ b) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- V F c) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
- ${f V}$ ${f F}$ d) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- **V F** b) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- V F c) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Non esistono gruppi con esattamente 42 elementi.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- \mathbf{V} \mathbf{F} b) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- V F c) Non esistono spazi vettoriali di dimensione infinita.
- ${f V}$ ${f F}$ d) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- \mathbf{V} \mathbf{F} b) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** c) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- **V F** d) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono campi con esattamente 7 elementi.
- V F b) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F c) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- **V F** d) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il determinante di una matrice reale 3×4 non è definito.
- **V F** b) Se $n \geq 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- \mathbf{V} \mathbf{F} c) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- **V F** d) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- **V F** b) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** c) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** d) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} b) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- **V F** c) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- \mathbf{V} \mathbf{F} d) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** b) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** c) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** d) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
 - 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- **V F** b) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- **V F** c) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- V F d) Le operazioni colonna conservano il rango delle matrici reali.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
- \mathbf{V} \mathbf{F} b) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- V F c) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- **V F** d) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** b) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- V F c) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- **V F** d) $(1,2,3) \land (2,4,6) = (0,0,0)$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Ogni insieme di vettori non nulli di ${\Bbb R}^n$ a due a due ortogonali è sempre linearmente indipendente.
- **V F** b) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1=0, x_5=0$. Allora W^{\perp} ammette come equazione cartesiana $x_2=0, x_3=0, x_4=0$.
- **V F** c) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** d) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** b) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** d) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
 - 2) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Esiste una e una sola retta che ammette (1, 1, 1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- **V F** c) $(1,2,3) \wedge (2,4,6) = (0,0,0)$.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- **V F** c) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- **V F** d) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- ${f V}$ ${f F}$ b) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- V F c) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- V F d) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${\bf V}$ ${\bf F}$ a) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- \mathbf{V} \mathbf{F} b) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- ${f V}$ ${f F}$ c) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- V F d) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F b) Non esistono campi con esattamente 7 elementi.
- **V F** c) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F d) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- $V extbf{F}$ b) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} c) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- **V F** d) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- \mathbf{V} \mathbf{F} b) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- \mathbf{V} \mathbf{F} c) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- **V F** d) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono trasformazioni lineari prive di nucleo.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- \mathbf{V} \mathbf{F} c) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- ${f V} {f F} {f G}$ d) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- V F b) Le operazioni colonna conservano il rango delle matrici reali.
- \mathbf{V} \mathbf{F} c) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- **V F** d) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- ${f V}$ ${f F}$ b) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Non esistono gruppi con esattamente 42 elementi.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- V F b) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- **V F** c) Il determinante di una matrice reale 3×4 non è definito.
- **V F** d) Se $n \ge 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- **V F** b) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- **V F** c) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- V F d) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
 - 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** b) Se A e B sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- **V F** c) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- **V F** d) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.

- 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- **V F** b) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- V F c) Non esistono spazi vettoriali di dimensione infinita.
- **V F** d) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- V F c) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** b) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** c) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** d) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- ${f V}$ ${f F}$ b) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- **V F** c) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- **V F** d) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- V F b) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- ${f V}$ ${f F}$ c) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- **V F** d) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Il nucleo e l'immagine di un endomorfismo di ${\Bbb R}^4$ non possono mai coincidere.
- V F b) Esistono trasformazioni lineari prive di nucleo.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** d) La composizione di due endomorfismi di \mathbb{R}^8 iniettivi è sempre un endomorfismo di \mathbb{R}^8 iniettivo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- **V F** b) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- V F c) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Il prodotto vettoriale } ((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v} \text{ è nullo per ogni } \mathbf{v} \in \mathbb{R}^3.$
- **V F** b) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- V F c) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- V F d) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ b) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- ${f V}$ ${f F}$ c) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- **V F** d) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- V F b) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- \mathbf{V} \mathbf{F} c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F d) Esistono matrici quadrate reali prive di autovalori reali.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono campi con esattamente 7 elementi.
- **V F** b) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F c) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- V F d) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} b) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- **V F** c) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- \mathbf{V} \mathbf{F} d) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
- **V F** b) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- \mathbf{V} \mathbf{F} c) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** d) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono spazi vettoriali di dimensione infinita.
- **V F** b) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- **V F** c) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- \mathbf{V} \mathbf{F} d) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ b) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) Non esistono gruppi con esattamente 42 elementi.
- **V F** d) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- **V F** c) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- \mathbf{V} \mathbf{F} d) Date due matrici reali $A \in B$, è sempre definito il prodotto righe per colonne di A per B.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- **V F** b) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- \mathbf{V} \mathbf{F} c) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- V F d) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** b) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** c) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** d) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
 - 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- \mathbf{V} \mathbf{F} b) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- **V F** c) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- V F d) Le operazioni colonna conservano il rango delle matrici reali.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** c) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** d) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- **V F** b) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- **V F** c) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il determinante di una matrice reale 3×4 non è definito.
- \mathbf{V} \mathbf{F} b) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- **V F** c) Se $n \geq 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** d) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- V F b) Esistono trasformazioni lineari prive di nucleo.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- ${f V} {f F} {f G}$ d) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ b) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- ${f V}$ ${f F}$ c) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- V F d) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${\bf V} {\bf F}$ a) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
- \mathbf{V} \mathbf{F} b) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- V F c) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
- ${f V}$ ${f F}$ d) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono gruppi con esattamente 42 elementi.
- V F b) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- \mathbf{V} \mathbf{F} c) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6,+)$.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.
- **V F** b) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** c) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
- **V F** d) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- \mathbf{V} \mathbf{F} a) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- V F c) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** d) $(1,2,3) \land (2,4,6) = (0,0,0)$.

 \mathbf{V}

- 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- V F b) Non esistono spazi vettoriali di dimensione infinita.
- \mathbf{V} \mathbf{F} c) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- **V F** d) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** b) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
- \mathbf{V} \mathbf{F} c) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** d) Se A e B sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
 - \mathbf{F} a) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- V F b) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- \mathbf{V} \mathbf{F} c) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- **V F** d) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- **V F** b) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- \mathbf{V} \mathbf{F} c) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F b) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F d) Non esistono campi con esattamente 7 elementi.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- \mathbf{V} \mathbf{F} b) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
- V F c) Le operazioni colonna conservano il rango delle matrici reali.
- **V F** d) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** b) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** c) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- **V F** d) Se A e B sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- ${f V}$ ${f F}$ c) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- V F d) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
- V F b) Esistono matrici quadrate reali prive di autovalori reali.
- V F c) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- $\mathbf{V} \cdot \mathbf{F}$ b) Il determinante di una matrice reale 3×4 non è definito.
- ${f V}$ ${f F}$ c) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- **V F** d) Se $n \geq 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
- V F b) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- **V F** c) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- V F d) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** b) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
- **V F** c) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** d) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Se due matrici quadrate reali non hanno lo stesso rango allora non possono essere simili.
- \mathbf{V} \mathbf{F} c) Una matrice reale $n \times n$ è diagonalizzabile se e solo se ha n autovalori reali distinti.
- V F d) La molteplicità algebrica di un autovalore è sempre uguale alla sua molteplicità geometrica.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) La matrice prodotto di due matrici reali 3×3 di rango 1 ha sempre rango 1.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni matrice reale completamente ridotta con k pivot ha rango k.
- V F c) Ogni sistema lineare omogeneo ammette almeno una soluzione.
- **V F** d) L'insieme delle soluzioni di un sistema lineare di m equazioni in n incognite è sempre un sottospazio vettoriale di \mathbb{R}^n .
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (0, y, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- \mathbf{V} \mathbf{F} b) Il nucleo e l'immagine di un endomorfismo di \mathbb{R}^4 non possono mai coincidere.
- V F c) Esistono trasformazioni lineari prive di nucleo.
- ${f V} {f F} {f G}$ d) La composizione di due endomorfismi di ${\Bbb R}^8$ iniettivi è sempre un endomorfismo di ${\Bbb R}^8$ iniettivo.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Esistono rette che non sono fra loro né coincidenti, né incidenti, né parallele.
- **V F** b) Il prodotto vettoriale $((\mathbf{v} \wedge \mathbf{v}) \wedge \mathbf{v}) \wedge \mathbf{v}$ è nullo per ogni $\mathbf{v} \in \mathbb{R}^3$.
- V F c) Per ogni punto passa uno e un solo piano ortogonale a una retta data.
- **V F** d) I piani di rispettive equazioni cartesiane y = -5 e x + z = 3 sono fra loro paralleli.
 - 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il gruppo delle permutazioni su 3 elementi è isomorfo al gruppo $(\mathbb{Z}_6, +)$.
- V F b) Non esistono gruppi con esattamente 42 elementi.
- ${f V} {f F} {f C}$) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ d) L'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni sistema di generatori di \mathbb{R}^9 di cardinalità 9 è una base di \mathbb{R}^9 .
- **V F** b) Se V_1 e V_2 sono due sottospazi vettoriali di dimensione dispari di uno spazio vettoriale V di dimensione 11, allora V non può essere la somma diretta di V_1 e V_2 .
- **V F** c) Le funzioni x^k per $k \in \mathbb{N} \{0\}$ sono fra loro linearmente indipendenti in $\mathbb{R}[x]$.
- V F d) Non esistono spazi vettoriali di dimensione infinita.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Date due matrici reali A e B, è sempre definito il prodotto righe per colonne di A per B.
- **V F** b) La matrice 9×9 reale $A = (a_{ij})$ con $a_{ij} = i j$ ha determinante nullo.
- **V F** c) Se A e B sono due matrici reali $n \times n$, allora $(A B)^2 = A^2 2AB + B^2$.
- **V F** d) Per ogni matrice A a coefficienti tutti positivi esiste almeno una matrice B tale che $A = B^2$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ risulta $\langle \mathbf{v}, \mathbf{w} \rangle \geq \|\mathbf{v}\| \cdot \|\mathbf{w}\|$.
- ${f V}$ ${f F}$ b) Esistono spazi vettoriali euclidei V di dimensione positiva tali che non esiste alcuna isometria da V a V.
- V F c) Esistono spazi vettoriali reali di dimensione positiva su cui si può definire uno e un solo prodotto scalare.
- **V F** d) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u} + \mathbf{v}, \mathbf{u} \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{v}, \mathbf{v} \rangle$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Il determinante di una matrice reale 5×5 coincide sempre col determinante della sua trasposta.
- V F b) Ogni matrice reale triangolare i cui termini siano tutti non negativi ha sempre determinante non negativo.
- ${f V}$ ${f F}$ c) Ogni matrice reale 5×5 in cui la prima riga coincide con la trasposta della prima colonna ha determinante nullo.
- ${f V}$ ${f F}$ d) Non esistono matrici quadrate reali tali che tutte le loro potenze abbiano determinante negativo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se due matrici reali $n \times n$ sono simili allora hanno la stessa traccia, lo stesso determinante e lo stesso rango.
- V F b) Esistono matrici quadrate reali i cui autovalori reali hanno tutti molteplicità geometrica strettamente maggiore di 1.
- ${\bf V} {\bf F}$ c) Se una matrice reale $n \times n$ ha n autovalori reali distinti allora è diagonalizzabile.
- V F d) Nessuna matrice quadrata reale ammette il polinomio λ^4 come polinomio caratteristico.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il sottospazio vettoriale di \mathbb{R}^n contenente solo il vettore nullo ammette una e una sola base.
- V F b) Tutte le basi di uno spazio vettoriale finitamente generato V hanno la stessa cardinalità.
- **V F** c) L'insieme dei polinomi in x a coefficienti reali che non contengono monomi di grado 20 è un sottospazio vettoriale di $\mathbb{R}[x]$, rispetto alle operazioni indotte.
- ${f V}$ ${f F}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ che si annullano nel punto 3 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il prodotto righe per colonne di una matrice reale $h \times k$ per una matrice reale $k \times h$ è una matrice reale $k \times k$.
- **V F** b) Il prodotto di una matrice reale $n \times n$ con una colonna nulla per un'altra matrice reale $n \times n$ non può mai essere una matrice $n \times n$ invertibile.
- **V F** c) Una matrice reale $n \times n$ è invertibile se e solo se ha determinante nullo.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ invertibili, allora $A^{-1}B^{-1} = (AB)^{-1}$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (z, -y, x) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** b) Ogni insieme di vettori non nulli di \mathbb{R}^n a due a due ortogonali è sempre linearmente indipendente.
- **V F** c) Sia W il sottospazio vettoriale euclideo di \mathbb{R}^5 di equazione cartesiana $x_1 = 0, x_5 = 0$. Allora W^{\perp} ammette come equazione cartesiana $x_2 = 0, x_3 = 0, x_4 = 0$.
- **V F** d) Se $\langle \cdot, \cdot \rangle$ è un prodotto scalare su \mathbb{R}^n e $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$ per ogni $\mathbf{v} \in \mathbb{R}^n$, allora $\mathbf{u} = \mathbf{w}$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'intersezione fra l'immagine di un endomorfismo f di \mathbb{R}^n e il nucleo di f^2 è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** b) La funzione da $\mathbb{R}[x]$ a \mathbb{R} che porta ogni polinomio p nel numero reale p(1) è una trasformazione lineare.
- **V F** c) Esiste un'unica trasformazione lineare da \mathbb{R}^2 a \mathbb{R}^3 che porta (1,0) in (1,1,1) e (0,1) in (2,2,2).
- **V F** d) La funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ definita ponendo $f(x,y) = (\cos x, \sin y)$ per ogni $(x,y) \in \mathbb{R}^2$ è una trasformazione lineare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \cdot \mathbf{F}$ a) Una matrice quadrata reale A ha sempre lo stesso rango di -A.
- **V F** b) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzione se e solo se r(C) = r(A) + 1.
- V F c) Le operazioni colonna conservano il rango delle matrici reali.
- \mathbf{V} \mathbf{F} d) Se due matrici reali diagonali $n \times n$ hanno rango n allora anche la loro somma ha rango n.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Tutte le matrici ortogonali hanno determinante uguale a 1 o a -1.
- **V F** b) Se $n \geq 7$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^i a_{i7} \cdot \det M_{i7}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F c) Se una matrice quadrata reale A ha almeno una potenza con determinante nullo, allora A stessa ha determinante nullo.
- \mathbf{V} \mathbf{F} d) Il determinante di una matrice reale 3×4 non è definito.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,2,3) \land (2,4,6) = (0,0,0)$.
- V F b) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** c) I piani di rispettive equazioni cartesiane 2x + 3y z = 0 e x + y + 5z = 2 sono fra loro ortogonali.
- \mathbf{V} \mathbf{F} d) Esiste una e una sola retta che ammette (1,1,1) come terna di parametri direttori.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni gruppo isomorfo a $(\mathbb{Z}_4, +)$ è commutativo.
- V F b) L'insieme delle traslazioni della retta reale è un gruppo rispetto all'usuale operazione di composizione.
- V F c) L'insieme dei numeri interi dotato delle usuali operazioni di somma e prodotto è un anello.
- V F d) Non esistono campi con esattamente 7 elementi.