- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- **V F** b) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- V F c) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- $\mathbf{V} \quad \mathbf{F} \qquad d) \quad (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- **V F** b) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- \mathbf{V} \mathbf{F} c) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- \mathbf{V} \mathbf{F} d) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- V F b) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- \mathbf{V} \mathbf{F} c) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- V F d) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono sistemi lineari omogenei privi di soluzione.
- V F b) Nessuna matrice ortogonale ha determinante uguale a 2.
- **V F** c) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F d) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di f è 0.
- **V F** b) L'immagine di una trasformazione lineare $f: U \to W$ è sempre un sottospazio vettoriale di W.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- V F d) Esistono spazi vettoriali privi di endomorfismi.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F b) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- V F c) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- V F b) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** c) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F d) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** c) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W = n.
- \mathbf{V} \mathbf{F} d) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- **V F** b) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- **V F** b) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- ${f V} {f F} {f C}$) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
- **V F** d) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
 - 2) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** b) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- **V F** c) Il piano di equazione cartesiana y=5 e la retta di equazione cartesiana x+y+z=-1, y=0 sono fra loro paralleli.
- **V F** d) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) } \mathbb{R}^5 \text{ ammette un unico prodotto scalare.}$
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- \mathbf{V} \mathbf{F} c) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- \mathbf{V} \mathbf{F} d) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- **V F** b) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- V F c) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- **V F** d) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} b) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- **V F** c) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- V F d) Tutti gli spazi vettoriali ammettono almeno una base finita.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Tutti gli anelli commutativi sono anche campi.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** b) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A + I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** c) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- ${f V}$ ${f F}$ b) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** c) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- **V F** b) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- V F c) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- V F d) Esistono matrici quadrate reali simmetriche prive di autovalori reali.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- **V F** b) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- **V F** c) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- \mathbf{V} \mathbf{F} d) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono spazi vettoriali privi di endomorfismi.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** c) L'immagine di una trasformazione lineare $f:U\to W$ è sempre un sottospazio vettoriale di W.
- $\mathbf{V} \quad \mathbf{F} \qquad \mathbf{d}$) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di f è 0.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
- **V F** b) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- V F c) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** d) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- V F b) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- **V F** c) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- **V F** d) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- \mathbf{V} \mathbf{F} b) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- V F c) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- \mathbf{V} \mathbf{F} d) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
- **V F** b) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F c) Nessuna matrice ortogonale ha determinante uguale a 2.
- V F d) Non esistono sistemi lineari omogenei privi di soluzione.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- \mathbf{V} \mathbf{F} b) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- $\mathbf{V} \quad \mathbf{F} \quad c) \quad \mathbb{R}^5$ ammette un unico prodotto scalare.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- **V F** b) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
- V F c) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** d) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
- V F b) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- **V F** c) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- \mathbf{V} \mathbf{F} d) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.

- 1) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- V F c) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
- **V F** d) $(-1,0,0) \land (0,0,-1) = (0,1,0)$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x,y,z) = (|x|,|y|,|z|) per ogni $(x,y,z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** c) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A+I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** d) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutti gli anelli commutativi sono anche campi.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F c) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- ${f V}$ ${f F}$ b) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
- **V F** c) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F d) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** b) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W = n.
- \mathbf{V} \mathbf{F} c) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
- **V F** d) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F c) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
- **V F** d) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- ${f V}$ ${f F}$ b) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** c) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- **V F** d) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutti gli spazi vettoriali ammettono almeno una base finita.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- ${f V} {f F} {f C}$) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** d) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- V F b) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- ${\bf V} {\bf F} {\bf c}$) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- $\mathbf{V} \cdot \mathbf{F}$ d) Per ogni numero naturale k esistono infinite matrici reali di rango k.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutti gli spazi vettoriali ammettono almeno una base finita.
- ${f V}$ ${f F}$ b) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} c) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- **V F** d) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- **V F** b) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- **V F** c) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** d) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- \mathbf{V} \mathbf{F} b) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** d) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W = n.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Nessuna matrice ortogonale ha determinante uguale a 2.
- V F b) Non esistono sistemi lineari omogenei privi di soluzione.
- V F c) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
- **V F** d) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'immagine di una trasformazione lineare $f:U\to W$ è sempre un sottospazio vettoriale di W
- **V F** b) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di $f \in 0$.
- V F c) Esistono spazi vettoriali privi di endomorfismi.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** b) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
- V F d) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- V F b) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
- **V F** c) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- **V F** d) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- V F b) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
- **V F** c) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- **V F** d) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutti gli anelli commutativi sono anche campi.
- V F b) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- V F b) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- **V F** c) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- \mathbf{V} \mathbf{F} d) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F b) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- ${f V} {f F} {f C}$) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
- **V F** d) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- \mathbf{V} \mathbf{F} b) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** c) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- **V F** d) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- \mathbf{V} \mathbf{F} b) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- V F c) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- **V F** d) $(\mathbb{Z}_{31}, +, \cdot)$ è un campo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- \mathbf{V} \mathbf{F} b) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- $\mathbf{V} \quad \mathbf{F} \quad d) \mathbb{R}^5$ ammette un unico prodotto scalare.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
- **V F** b) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- **V F** c) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- V F d) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- \mathbf{V} \mathbf{F} b) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- V F c) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- **V F** d) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- \mathbf{V} \mathbf{F} b) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- ${\bf V} {\bf F}$ c) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- V F d) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A+I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** b) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** c) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.

- 1) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Tutti i sottospazi vettoriali di } \mathbb{R}^n \text{ sono finitamente generati.}$
- **V F** b) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- V F c) Tutti gli spazi vettoriali ammettono almeno una base finita.
- V F d) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** b) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- **V F** d) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Nessuna matrice ortogonale ha determinante uguale a 2.
- **V F** b) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F c) Non esistono sistemi lineari omogenei privi di soluzione.
- V F d) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'immagine di una trasformazione lineare $f:U\to W$ è sempre un sottospazio vettoriale di W
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** c) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di $f \in 0$.
- V F d) Esistono spazi vettoriali privi di endomorfismi.

- 5) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- V F b) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** c) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- **V F** d) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) Tutti gli anelli commutativi sono anche campi.
- V F d) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** b) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- **V F** c) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- \mathbf{V} \mathbf{F} b) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- **V F** c) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- V F d) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) } \mathbb{R}^5 \text{ ammette un unico prodotto scalare.}$
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** d) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A+I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W = n.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- \mathbf{V} \mathbf{F} d) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- **V F** b) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- $\mathbf{V} \quad \mathbf{F} \quad c) \ (\mathbb{Z}_{31}, +, \cdot) \ e \ un \ campo.$
- \mathbf{V} \mathbf{F} d) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- **V F** b) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** c) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- V F d) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- V F b) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- V F c) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- \mathbf{V} \mathbf{F} d) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- **V F** b) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** c) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- \mathbf{V} \mathbf{F} d) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- ${f V}$ ${f F}$ b) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A
- **V F** c) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** d) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 8) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- V F b) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- ${f V}$ ${f F}$ c) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- \mathbf{V} \mathbf{F} d) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F b) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** c) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- V F d) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- V F b) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- \mathbf{V} \mathbf{F} c) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** c) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W=n.
- \mathbf{V} \mathbf{F} d) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
 - 3) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** b) $(-1,0,0) \land (0,0,-1) = (0,1,0)$.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
- **V F** b) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F c) Non esistono sistemi lineari omogenei privi di soluzione.
- V F d) Nessuna matrice ortogonale ha determinante uguale a 2.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono spazi vettoriali privi di endomorfismi.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** c) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di f è 0.
- **V F** d) L'immagine di una trasformazione lineare $f: U \to W$ è sempre un sottospazio vettoriale di W.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
- **V F** b) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- **V F** c) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F d) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** b) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- **V F** c) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F d) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- $\mathbf{V} \quad \mathbf{F} \qquad \text{b) } (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
- \mathbf{V} \mathbf{F} c) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- V F d) Il gruppo delle permutazioni su 3 elementi è non commutativo.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** b) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- **V F** c) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** d) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) } \mathbb{R}^5 \text{ ammette un unico prodotto scalare.}$
- $\mathbf{V} \cdot \mathbf{F}$ d) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- V F b) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- \mathbf{V} \mathbf{F} c) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- V F d) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- V F b) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- V F d) Tutti gli spazi vettoriali ammettono almeno una base finita.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F d) Tutti gli anelli commutativi sono anche campi.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- **V F** b) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- V F c) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F b) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- ${f V}$ ${f F}$ c) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A
- **V F** d) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A + I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** b) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** c) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- $\mathbf{V} \cdot \mathbf{F}$ b) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- **V F** c) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- ${f V}$ ${f F}$ d) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana y=5 e la retta di equazione cartesiana x+y+z=-1, y=0 sono fra loro paralleli.
- **V F** b) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- V F c) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** d) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
- V F b) Non esistono sistemi lineari omogenei privi di soluzione.
- V F c) Nessuna matrice ortogonale ha determinante uguale a 2.
- **V F** d) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
- **V F** b) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F c) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** d) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- **V F** b) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- **V F** c) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- \mathbf{V} \mathbf{F} d) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono spazi vettoriali privi di endomorfismi.
- **V F** b) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di $f \in 0$.
- **V F** c) L'immagine di una trasformazione lineare $f: U \to W$ è sempre un sottospazio vettoriale di W.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- \mathbf{V} \mathbf{F} b) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- $\mathbf{V} \quad \mathbf{F} \quad d) \quad \mathbb{R}^5$ ammette un unico prodotto scalare.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- **V F** b) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
- **V F** c) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- ${f V}$ ${f F}$ d) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
- V F b) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- **V F** c) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- V F d) Il gruppo delle permutazioni su 3 elementi è non commutativo.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- \mathbf{V} \mathbf{F} b) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** c) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** d) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- \mathbf{V} \mathbf{F} b) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- V F c) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- **V F** d) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.

- 1) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{Tutti i sottospazi vettoriali di } \mathbb{R}^n \text{ sono finitamente generati.}$
- **V F** b) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- V F c) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- V F d) Tutti gli spazi vettoriali ammettono almeno una base finita.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F b) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- **V F** c) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- ${f V} {f F} {f G}$ d) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** b) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- V F c) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** b) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- **V F** c) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Tutti gli anelli commutativi sono anche campi.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- \mathbf{V} \mathbf{F} c) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
- **V F** d) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W = n.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A + I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** b) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** d) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
 - 8) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- \mathbf{V} \mathbf{F} b) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- **V F** c) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- **V F** d) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** b) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- V F c) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
- **V F** d) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- V F c) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** d) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- **V F** b) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
- V F c) Nessuna matrice ortogonale ha determinante uguale a 2.
- V F d) Non esistono sistemi lineari omogenei privi di soluzione.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- V F b) Esistono spazi vettoriali privi di endomorfismi.
- **V F** c) L'immagine di una trasformazione lineare $f: U \to W$ è sempre un sottospazio vettoriale di W.
- ${f V}$ ${f F}$ d) Se $f:\mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di f è 0.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
- V F c) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** d) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- V F b) Tutti gli spazi vettoriali ammettono almeno una base finita.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- **V F** d) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W=n
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** d) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
 - 7) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- **V F** b) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** c) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- V F d) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F b) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** c) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- V F d) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Tutti gli anelli commutativi sono anche campi.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- $\mathbf{V} \quad \mathbf{F} \quad c) \mathbb{R}^5$ ammette un unico prodotto scalare.
- \mathbf{V} \mathbf{F} d) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- **V F** b) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- **V F** c) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- V F d) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** b) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- **V F** c) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** d) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- $\mathbf{V} \quad \mathbf{F} \qquad \text{b) } (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
- **V F** c) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- V F d) Il gruppo delle permutazioni su 3 elementi è non commutativo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- V F b) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- \mathbf{V} \mathbf{F} c) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- $\mathbf{V} \cdot \mathbf{F}$ d) Per ogni numero naturale k esistono infinite matrici reali di rango k.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- V F b) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- V F c) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- \mathbf{V} \mathbf{F} d) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
 - 7) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- **V F** b) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- V F c) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** d) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** c) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A + I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** d) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** b) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
- **V F** c) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F d) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Nessuna matrice ortogonale ha determinante uguale a 2.
- **V F** b) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F c) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
- V F d) Non esistono sistemi lineari omogenei privi di soluzione.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- V F b) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- \mathbf{V} \mathbf{F} c) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- **V F** d) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'immagine di una trasformazione lineare $f: U \to W$ è sempre un sottospazio vettoriale di W.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- V F c) Esistono spazi vettoriali privi di endomorfismi.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di f è 0.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- **V F** b) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- $\mathbf{V} \quad \mathbf{F} \quad c) \quad \mathbb{R}^5$ ammette un unico prodotto scalare.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.

- 5) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
- **V F** b) $(1,0,0) \land (0,-1,0) = (0,0,-1)$.
- V F c) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** d) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** b) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
- **V F** d) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutti gli anelli commutativi sono anche campi.
- V F b) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutti gli spazi vettoriali ammettono almeno una base finita.
- ${f V}$ ${f F}$ b) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** c) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- **V F** b) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- **V F** c) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- ${f V} {f F} {f G}$ d) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.

- 1) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
- **V F** b) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- V F c) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- V F d) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora $\det A^{-1} = -\det A$.
- **V F** b) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- ${f V}$ ${f F}$ c) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
- V F d) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- V F b) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- ${\bf V} {\bf F}$ c) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- \mathbf{V} \mathbf{F} d) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- **V F** b) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** c) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- \mathbf{V} \mathbf{F} d) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A + I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** c) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** d) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- \mathbf{V} \mathbf{F} b) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- V F c) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- ${f V} {f F} {f G}$ d) Per ogni numero naturale k esistono infinite matrici reali di rango k.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F c) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** d) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- **V F** c) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** d) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
- **V F** b) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W=n
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** d) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** b) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W=n.
- **V F** c) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- \mathbf{V} \mathbf{F} d) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
 - 2) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- **V F** c) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- V F d) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- V F b) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- \mathbf{V} \mathbf{F} c) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- ${f V}$ ${f F}$ d) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** b) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- V F c) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** d) Se A e B sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- **V F** c) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- V F d) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- $\mathbf{V} \quad \mathbf{F} \qquad \text{b) } (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
- V F c) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- V F d) Il gruppo delle permutazioni su 3 elementi è non commutativo.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** b) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- \mathbf{V} \mathbf{F} c) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** d) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Non esistono sistemi lineari omogenei privi di soluzione.
- **V F** b) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F c) Nessuna matrice ortogonale ha determinante uguale a 2.
- V F d) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di $f \in 0$.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** c) L'immagine di una trasformazione lineare $f:U\to W$ è sempre un sottospazio vettoriale di W
- V F d) Esistono spazi vettoriali privi di endomorfismi.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- \mathbf{V} \mathbf{F} b) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- **V F** c) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- \mathbf{V} \mathbf{F} d) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Tutti gli anelli commutativi sono anche campi.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
- V F b) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- **V F** c) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- **V F** d) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- **V F** b) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- **V F** c) Il piano di equazione cartesiana y=5 e la retta di equazione cartesiana x+y+z=-1, y=0 sono fra loro paralleli.
- V F d) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- **V F** c) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- **V F** d) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- V F b) Tutti gli spazi vettoriali ammettono almeno una base finita.
- **V F** c) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- V F b) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- V F c) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- \mathbf{V} \mathbf{F} d) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** b) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** d) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A+I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- \mathbf{V} \mathbf{F} b) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- \mathbf{V} \mathbf{F} c) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- $\mathbf{V} \quad \mathbf{F} \qquad d$) \mathbb{R}^5 ammette un unico prodotto scalare.

Ogni quesito presenta quattro risposte; ce ne possono essere da 0 a 4 vere. Attraversare con una crocetta la lettera V se ritenete la risposta vera, la lettera V se la ritenete falsa. Per annullare una crocetta, cerchiarla. Ogni risposta assegna un punteggio di 1/2 punto se l'indicazione è esatta, -1/2 punto se è errata, 0 punti in caso di astensione. Non è consentito alcun ausilio (libri, appunti, calcolatrici,...). La scheda verrà ritirata al termine della prima ora. Nel testo k, m ed n indicano sempre numeri naturali positivi. Se non specificato diversamente le matrici citate si devono intendere reali, e su \mathbb{R}^n e $M_{m \times n}(\mathbb{R})$ si devono considerare le operazioni e strutture standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Nessuna matrice ortogonale ha determinante uguale a 2.
- V F b) Non esistono sistemi lineari omogenei privi di soluzione.
- **V F** c) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F d) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'immagine di una trasformazione lineare $f:U\to W$ è sempre un sottospazio vettoriale di W
- **V F** b) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di f è 0.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- V F d) Esistono spazi vettoriali privi di endomorfismi.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- \mathbf{V} \mathbf{F} b) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) } \mathbb{R}^5 \text{ ammette un unico prodotto scalare.}$
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- **V F** b) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
- V F c) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** d) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** b) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** c) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- V F b) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- **V F** c) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- **V F** d) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \qquad \text{a)} \quad (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
- \mathbf{V} \mathbf{F} b) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- V F c) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- **V F** d) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
- \mathbf{V} \mathbf{F} b) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** c) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- \mathbf{V} \mathbf{F} d) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
- \mathbf{V} \mathbf{F} b) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- ${\bf V} {\bf F}$ c) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- V F d) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.

Ogni quesito presenta quattro risposte; ce ne possono essere da 0 a 4 vere. Attraversare con una crocetta la lettera V se ritenete la risposta vera, la lettera F se la ritenete falsa. Per annullare una crocetta, cerchiarla. Ogni risposta assegna un punteggio di 1/2 punto se l'indicazione è esatta, -1/2 punto se è errata, 0 punti in caso di astensione. Non è consentito alcun ausilio (libri, appunti, calcolatrici,...). La scheda verrà ritirata al termine della prima ora. Nel testo k, m ed n indicano sempre numeri naturali positivi. Se non specificato diversamente le matrici citate si devono intendere reali, e su \mathbb{R}^n e $M_{m \times n}(\mathbb{R})$ si devono considerare le operazioni e strutture standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- V F b) Tutti gli spazi vettoriali ammettono almeno una base finita.
- \mathbf{V} \mathbf{F} c) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- ${f V} {f F} {f G}$ d) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Tutti gli anelli commutativi sono anche campi.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F d) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- V F c) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** d) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** b) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- **V F** c) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti
- V F d) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** c) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A+I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** d) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- V F b) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- \mathbf{V} \mathbf{F} c) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- \mathbf{V} \mathbf{F} d) Per ogni numero naturale k esistono infinite matrici reali di rango k.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- **V F** c) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W = n.
- \mathbf{V} \mathbf{F} d) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** b) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- ${f V}$ ${f F}$ b) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta ${}_{-}$ ${}_{-}$
- **V F** c) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- ${f V}$ ${f F}$ d) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.

Ogni quesito presenta quattro risposte; ce ne possono essere da 0 a 4 vere. Attraversare con una crocetta la lettera V se ritenete la risposta vera, la lettera V se la ritenete falsa. Per annullare una crocetta, cerchiarla. Ogni risposta assegna un punteggio di 1/2 punto se l'indicazione è esatta, -1/2 punto se è errata, 0 punti in caso di astensione. Non è consentito alcun ausilio (libri, appunti, calcolatrici,...). La scheda verrà ritirata al termine della prima ora. Nel testo k, m ed n indicano sempre numeri naturali positivi. Se non specificato diversamente le matrici citate si devono intendere reali, e su \mathbb{R}^n e $M_{m \times n}(\mathbb{R})$ si devono considerare le operazioni e strutture standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'immagine di una trasformazione lineare $f:U\to W$ è sempre un sottospazio vettoriale di W
- **V F** b) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di f è 0.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- V F d) Esistono spazi vettoriali privi di endomorfismi.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** b) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** c) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
- **V F** b) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F c) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
- **V F** d) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Tutti gli anelli commutativi sono anche campi.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.
- **V F** b) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W = n.
- \mathbf{V} \mathbf{F} c) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
- **V F** d) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = 1, z = t ammette (1,0,1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- V F c) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
- **V F** d) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \cdot \mathbf{F}$ a) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- **V F** b) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
- \mathbf{V} \mathbf{F} c) L'insieme delle funzioni da \mathbb{R} a \mathbb{R} derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- V F d) Tutti gli spazi vettoriali ammettono almeno una base finita.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- **V F** b) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
- **V F** c) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Nessuna matrice ortogonale ha determinante uguale a 2.
- V F b) Non esistono sistemi lineari omogenei privi di soluzione.
- **V F** c) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F d) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.

Ogni quesito presenta quattro risposte; ce ne possono essere da 0 a 4 vere. Attraversare con una crocetta la lettera V se ritenete la risposta vera, la lettera F se la ritenete falsa. Per annullare una crocetta, cerchiarla. Ogni risposta assegna un punteggio di 1/2 punto se l'indicazione è esatta, -1/2 punto se è errata, 0 punti in caso di astensione. Non è consentito alcun ausilio (libri, appunti, calcolatrici,...). La scheda verrà ritirata al termine della prima ora. Nel testo k, m ed n indicano sempre numeri naturali positivi. Se non specificato diversamente le matrici citate si devono intendere reali, e su \mathbb{R}^n e $M_{m \times n}(\mathbb{R})$ si devono considerare le operazioni e strutture standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** b) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- V F d) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- V F b) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- \mathbf{V} \mathbf{F} c) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- $\mathbf{V} \quad \mathbf{F} \quad d) \quad (\mathbb{Z}_{31}, +, \cdot) \text{ è un campo.}$
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- V F b) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
- \mathbf{V} \mathbf{F} c) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- \mathbf{V} \mathbf{F} d) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- **V F** b) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- ${f V}$ ${f F}$ c) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- V F d) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.

- 5) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- \mathbf{V} \mathbf{F} c) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- $\mathbf{V} \quad \mathbf{F} \quad d) \quad \mathbb{R}^5$ ammette un unico prodotto scalare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
- **V F** b) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- V F c) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- \mathbf{V} \mathbf{F} d) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A
- **V F** b) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
- V F c) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- **V F** d) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana y = 5 e la retta di equazione cartesiana x + y + z = -1, y = 0 sono fra loro paralleli.
- **V F** b) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- **V F** c) $(1,0,0) \wedge (0,-1,0) = (0,0,-1)$.
- V F d) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** c) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** d) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A + I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.

Ogni quesito presenta quattro risposte; ce ne possono essere da 0 a 4 vere. Attraversare con una crocetta la lettera V se ritenete la risposta vera, la lettera V se la ritenete falsa. Per annullare una crocetta, cerchiarla. Ogni risposta assegna un punteggio di 1/2 punto se l'indicazione è esatta, -1/2 punto se è errata, 0 punti in caso di astensione. Non è consentito alcun ausilio (libri, appunti, calcolatrici,...). La scheda verrà ritirata al termine della prima ora. Nel testo k, m ed n indicano sempre numeri naturali positivi. Se non specificato diversamente le matrici citate si devono intendere reali, e su \mathbb{R}^n e $M_{m \times n}(\mathbb{R})$ si devono considerare le operazioni e strutture standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il polinomio $7\lambda^2 + 2\lambda 3$ non è il polinomio caratteristico di alcuna matrice.
- V F b) Esistono matrici quadrate reali simmetriche prive di autovalori reali.
- \mathbf{V} \mathbf{F} c) Un endomorfismo di \mathbb{R}^n è semplice se e solo se la somma delle molteplicità geometriche dei suoi autovalori reali è uguale a n.
- V F d) La molteplicità geometrica di un autovalore è sempre non superiore alla sua molteplicità algebrica.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Per ogni matrice quadrata reale A $n \times n$ esiste un numero naturale k tale che A^k è la matrice nulla $n \times n$.
- V F b) Nessuna matrice ortogonale ha determinante uguale a 2.
- V F c) Non esistono sistemi lineari omogenei privi di soluzione.
- V F d) Ogni sistema lineare la cui matrice incompleta sia quadrata e invertibile ammette un'unica soluzione.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo $f(x, y, z) = (\sin x, \cos y, 0)$ per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) L'immagine di una trasformazione lineare $f:U\to W$ è sempre un sottospazio vettoriale di W.
- **V F** c) Se $f: \mathbb{R}^9 \to \mathbb{R}^9$ è un isomorfismo allora la dimensione del nucleo di $f \in 0$.
- V F d) Esistono spazi vettoriali privi di endomorfismi.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Le rette di rispettive equazioni cartesiane y = 0, z = 1 e y = 1, x = 1 sono fra loro sghembe.
- **V F** b) $(1,0,0) \land (0,-1,0) = (0,0,-1)$.
- V F c) Un piano ammette sempre un numero infinito di equazioni parametriche distinte.
- **V F** d) Il piano di equazione cartesiana y=5 e la retta di equazione cartesiana x+y+z=-1, y=0 sono fra loro paralleli.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri naturali è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 2×2 a determinante positivo è un gruppo rispetto all'usuale operazione di prodotto righe per colonne.
- V F c) Tutti gli anelli commutativi sono anche campi.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle funzioni da ${\Bbb R}$ a ${\Bbb R}$ derivabili è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Tutti i sottospazi vettoriali di \mathbb{R}^n sono finitamente generati.
- V F c) Tutti gli spazi vettoriali ammettono almeno una base finita.
- **V F** d) Se U e V sono due sottospazi vettoriali di \mathbb{R}^n allora $\dim(U+V)+\dim(U\cap V)=\dim U+\dim V$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B, C, D sono matrici reali 7×7 , allora (A + B)(C D) = BC AD BD + AC.
- V F b) Se la quarta potenza di una matrice quadrata reale A ha determinante nullo allora A non è invertibile.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 3×4 è un anello rispetto alle usuali operazioni di somma e prodotto righe per colonne fra matrici.
- **V F** d) Se A, B sono matrici reali 7×7 e $\alpha, \beta \in \mathbb{R}$, allora $\det(\alpha A + \beta B) = \alpha \det A + \beta \det B$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v} \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.
- \mathbf{V} \mathbf{F} b) Se f è una isometria di uno spazio vettoriale euclideo allora anche -f lo è.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) } \mathbb{R}^5 \text{ ammette un unico prodotto scalare.}$
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esistono vettori di \mathbb{R}^9 che non sono ortogonali a nessun altro vettore di \mathbb{R}^9 .
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se in una matrice quadrata reale A si moltiplicano per 5 tutti i suoi elementi si ottiene una matrice il cui determinante è il quintuplo del determinante di A.
- V F b) Il determinante di una matrice quadrata reale coincide sempre con quello della sua trasposta.
- **V F** c) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n (-1)^{i+n} \cdot a_{in} \cdot \det M_{in}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** d) Se A e B sono due matrici reali $n \times n$, si ha che $\det(BA) = \det A \cdot \det B$.

Ogni quesito presenta quattro risposte; ce ne possono essere da 0 a 4 vere. Attraversare con una crocetta la lettera V se ritenete la risposta vera, la lettera F se la ritenete falsa. Per annullare una crocetta, cerchiarla. Ogni risposta assegna un punteggio di 1/2 punto se l'indicazione è esatta, -1/2 punto se è errata, 0 punti in caso di astensione. Non è consentito alcun ausilio (libri, appunti, calcolatrici,...). La scheda verrà ritirata al termine della prima ora. Nel testo k, m ed n indicano sempre numeri naturali positivi. Se non specificato diversamente le matrici citate si devono intendere reali, e su \mathbb{R}^n e $M_{m \times n}(\mathbb{R})$ si devono considerare le operazioni e strutture standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Le radici reali del polinomio caratteristico di un endomorfismo f di \mathbb{R}^n sono tutti e soli gli autovalori reali di f.
- V F b) Esistono endomorfismi dotati di autovalori che hanno molteplicità geometrica nulla.
- **V F** c) Una matrice reale $n \times n$ è diagonalizzabile per similitudine se e solo se ha n autovalori reali distinti.
- V F d) Se due matrici quadrate reali hanno lo stesso determinante allora hanno anche lo stesso polinomio caratteristico.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) La somma di due sottospazi vettoriali di \mathbb{R}^n è sempre un sottospazio vettoriale di \mathbb{R}^n .
- **V F** b) Sia U un sottospazio vettoriale di \mathbb{R}^n . Ogni sottoinsieme linearmente indipendente di U ha cardinalità inferiore o uguale a n.
- **V F** c) Se $f: \mathbb{R}^k \to \mathbb{R}^m$ e $g: \mathbb{R}^m \to \mathbb{R}^n$ sono trasformazioni lineari allora $g \circ f: \mathbb{R}^k \to \mathbb{R}^n$ è una trasformazione lineare.
- **V F** d) Le matrici associate a un endomorfismo di \mathbb{R}^n rispetto a basi diverse sono sempre tra loro simili.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni combinazione lineare di due matrici reali $n \times n$ invertibili è una matrice reale invertibile.
- V F b) La trasposta di una matrice reale simmetrica è sempre una matrice reale simmetrica.
- **V F** c) Una matrice reale $n \times n$ è non invertibile se e solo se ha rango strettamente inferiore a n.
- V F d) Se due matrici reali invertibili hanno la stessa inversa, allora coincidono.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definito ponendo f(x, y, z) = (x, 2y, 3z) per ogni $(x, y, z) \in \mathbb{R}^3$ è una isometria rispetto al prodotto scalare standard.
- \mathbf{V} \mathbf{F} b) Ogni insieme di vettori di \mathbb{R}^n che siano non nulli e a due a due diversi fra loro è linearmente indipendente.
- **V F** c) Se W^{\perp} è l'ortogonale di un sottospazio vettoriale euclideo W di \mathbb{R}^n , allora dim W^{\perp} +dim W=n.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale V. Allora $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \cdot \|\mathbf{v}\|$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: \mathbb{R}^3 \to \mathbb{R}^3$ è una trasformazione lineare, allora il nucleo di $f \circ f \circ f$ è un sottospazio vettoriale di \mathbb{R}^3 .
- **V F** b) La funzione da $M_3(\mathbb{R})$ a $M_3(\mathbb{R})$ che porta ogni matrice reale A nella matrice A + I (dove I è la matrice reale identica 3×3) è una trasformazione lineare.
- **V F** c) Se $f: V \to W$ è un isomorfismo e S è un sistema di generatori per V, allora f(S) è un sistema di generatori per W.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (|x|, |y|, |z|) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Unendo due sistemi lineari che ammettono soluzione si ottiene sempre un sistema lineare che ammette soluzione.
- \mathbf{V} \mathbf{F} b) Un sistema lineare di m equazioni in n incognite ammette soluzione se e solo se m=n.
- \mathbf{V} \mathbf{F} c) Per ogni numero naturale k esistono infinite matrici reali di rango k.
- **V F** d) La matrice reale identica $n \times n$ è allo stesso tempo completamente ridotta per righe e completamente ridotta per colonne.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Il determinante di una matrice quadrata reale A coincide sempre con quello della sua opposta -A.
- **V F** b) Se $n \geq 2$ e $A = (a_{ij}) \in M_n(\mathbb{R})$ allora $\det A = \sum_{i=1}^n a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- V F c) Il determinante di ogni matrice quadrata reale nulla è sempre nullo.
- **V F** d) Se $A \in M_n(\mathbb{R})$ e A è invertibile allora det $A^{-1} = -\det A$.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(-1,0,0) \wedge (0,0,-1) = (0,1,0)$.
- V F b) Per ogni punto passa uno e un solo piano perpendicolare a una retta data.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + 5z = 0 e 3x + 3y + 15z = 1 sono fra loro ortogonali.
- ${f V}$ ${f F}$ d) La retta di equazione parametrica x=t,y=1,z=t ammette (1,0,1) come terna di parametri direttori.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Fra due sottoinsiemi infiniti di \mathbb{R} esiste sempre almeno una corrispondenza biunivoca.
- **V F** b) L'insieme dei numeri reali è un gruppo rispetto all'operazione \star definita ponendo $x \star y = x y$ per ogni $x, y \in \mathbb{R}$.
- V F c) Il gruppo delle permutazioni su 3 elementi è non commutativo.
- $\mathbf{V} \quad \mathbf{F} \qquad d$) $(\mathbb{Z}_{31}, +, \cdot)$ è un campo.