- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- V F c) Esistono gruppi non commutativi con meno di 10 elementi.
- V F d) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n$.
- ${f V}$ ${f F}$ b) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- **V F** c) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- ${f V}$ ${f F}$ d) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- \mathbf{V} \mathbf{F} b) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- **V F** c) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- **V F** d) Il prodotto fra matrici reali $n \times n$ è associativo.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- $\mathbf{V} \cdot \mathbf{F}$ b) Esistono matrici reali 7×9 di rango 8.
- V F c) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti
- V F d) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- V F b) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- V F d) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante è una funzione alternante rispetto alle righe della matrice.
- **V F** b) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1,\ldots,n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F c) Ogni matrice antisimmetrica ha determinante nullo.
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- V F b) Esistono matrici quadrate reali prive di autovalori reali.
- V F c) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** c) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- V F d) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- **V F** b) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1, 1, 1) come terna di parametri direttori.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Siano $A \in B$ due matrici reali $n \times n$. Le matrici $A \in B$ sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- **V F** b) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- \mathbf{V} \mathbf{F} c) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- V F d) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
 - 2) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- \mathbf{V} \mathbf{F} a) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
- **V F** b) Le rette di rispettive equazioni parametriche x = t, y = t, z = t e x = s, y = s 1, z = 2s sono fra loro sghembe.
- **V F** c) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- **V F** d) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- **V F** c) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- ${f V} {f F} {f G}$ d) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)} \quad \text{L'unica matrice reale } 9 \times 9 \text{ di rango } 9 \text{ è la matrice identica.}$
- **V F** b) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- V F c) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- V F d) Una matrice completamente ridotta per righe non può mai contenere righe nulle.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** b) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- \mathbf{V} \mathbf{F} c) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- **V F** d) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Ogni anello isomorfo all'anello \mathbb{Z}_7 è un campo.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ d) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
- ${f V}$ ${f F}$ b) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** c) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- **V F** b) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** c) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A+B)(C+D) = (AC+BD) + (AD+BC).
- ${f V}$ ${f F}$ d) L'anello delle matrici reali 8×8 possiede divisori dello zero.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- ${f V}$ ${f F}$ b) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo
- **V F** c) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- V F d) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** b) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.
- ${f V}$ ${f F}$ c) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- **V F** d) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- V F c) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
- V F b) Ogni matrice antisimmetrica ha determinante nullo.
- **V F** c) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F d) Il determinante è una funzione alternante rispetto alle righe della matrice.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- **V F** b) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- \mathbf{V} \mathbf{F} c) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- ${f V}$ ${f F}$ d) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${f V} {f F}$ a) Il prodotto fra matrici reali $n \times n$ è associativo.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- \mathbf{V} \mathbf{F} c) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- \mathbf{V} \mathbf{F} d) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
- V F b) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Esistono matrici reali 7×9 di rango 8.
- V F d) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V
- **V F** b) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- **V F** c) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- **V F** b) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- ${f V} {f F} {f C}$) Ogni retta di ${\Bbb R}^3$ ammette una e una sola equazione cartesiana.
- **V F** d) Le rette di rispettive equazioni parametriche x=t, y=t, z=t e x=s, y=s-1, z=2s sono fra loro sghembe.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ b) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- **V F** c) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- V F d) Esistono gruppi non commutativi con meno di 10 elementi.

- 1) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1, 1, 1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- V F c) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** d) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- ${f V}$ ${f F}$ c) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** d) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Ogni anello isomorfo all'anello \mathbb{Z}_7 è un campo.
- V F c) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- \mathbf{V} \mathbf{F} b) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- **V F** c) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** d) Siano $A \in B$ due matrici reali $n \times n$. Le matrici $A \in B$ sono entrambe invertibili se e solo se $\det(AB) \neq 0$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** b) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- V F c) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
- **V F** d) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- \mathbf{V} \mathbf{F} c) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
- V F d) Se due matrici quadrate reali sono simili hanno la stessa traccia.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) L'anello delle matrici reali 8×8 possiede divisori dello zero.
- **V F** b) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- **V F** d) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- **V F** b) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- V F c) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- \mathbf{V} \mathbf{F} d) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- **V F** b) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- **V F** c) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- \mathbf{V} \mathbf{F} d) L'unica matrice reale 9×9 di rango 9 è la matrice identica.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- V F b) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** c) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- **V F** d) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) L'anello delle matrici reali 8×8 possiede divisori dello zero.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- **V F** c) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** d) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- V F b) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
- **V F** c) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- **V F** d) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
 - 4) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 7×9 di rango 8.
- **V F** b) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- V F c) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
- V F d) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- **V F** b) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- V F c) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
- $\mathbf{V} \cdot \mathbf{F}$ d) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F b) Il determinante è una funzione alternante rispetto alle righe della matrice.
- **V F** c) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
- V F d) Ogni matrice antisimmetrica ha determinante nullo.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- \mathbf{V} \mathbf{F} b) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
- V F c) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- V F d) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1,1,1) come terna di parametri direttori.
- V F b) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** c) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- **V F** d) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- V F b) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni anello isomorfo all'anello \mathbb{Z}_7 è un campo.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- V F b) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- ${f V}$ ${f F}$ c) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** b) Siano $A \in B$ due matrici reali $n \times n$. Le matrici $A \in B$ sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- \mathbf{V} \mathbf{F} c) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- V F d) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- **V F** b) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- **V F** c) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.
- ${f V}$ ${f F}$ d) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad a$) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- V F b) Esistono gruppi non commutativi con meno di 10 elementi.
- ${f V}$ ${f F}$ c) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- V F d) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- ${f V}$ ${f F}$ b) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| > |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- **V F** d) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- **V F** b) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- **V F** c) Le rette di rispettive equazioni parametriche x=t,y=t,z=t e x=s,y=s-1,z=2s sono fra loro sghembe.
- \mathbf{V} \mathbf{F} d) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- \mathbf{V} \mathbf{F} b) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
- V F c) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- V F d) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- \mathbf{V} \mathbf{F} b) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il prodotto fra matrici reali $n \times n$ è associativo.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** b) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
- **V F** c) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- **V F** b) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- **V F** c) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- V F d) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** b) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
- V F c) L'anello delle matrici reali 8 × 8 possiede divisori dello zero.
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 7×9 di rango 8.
- V F b) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- V F c) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- V F d) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- **V F** c) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- **V F** d) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.

- 5) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
- **V F** c) Le rette di rispettive equazioni parametriche x = t, y = t, z = t e x = s, y = s 1, z = 2s sono fra loro sghembe.
- **V F** d) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Ogni anello isomorfo all'anello } \mathbb{Z}_7 \stackrel{.}{\mathrm{e}} \text{ un campo.}$
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ c) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- V F d) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F b) Ogni matrice antisimmetrica ha determinante nullo.
- V F c) Il determinante è una funzione alternante rispetto alle righe della matrice.
- \mathbf{V} \mathbf{F} d) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- **V F** b) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- ${f V}$ ${f F}$ c) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo.
- ${f V}$ ${f F}$ d) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
- **V F** b) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- **V F** d) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
- **V F** b) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** d) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** c) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- V F d) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- **V F** b) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- V F c) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F d) Esistono gruppi non commutativi con meno di 10 elementi.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- **V F** b) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1, 1, 1) come terna di parametri direttori.
- **V F** c) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- \mathbf{V} \mathbf{F} b) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- **V F** c) Il prodotto fra matrici reali $n \times n$ è associativo.
- **V F** d) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.
- ${f V}$ ${f F}$ b) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- \mathbf{V} \mathbf{F} c) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- V F d) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Siano A e B due matrici reali $n \times n$. Le matrici A e B sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- \mathbf{V} \mathbf{F} b) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- V F c) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- **V F** d) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 8) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
- ${f V}$ ${f F}$ b) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- V F c) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- **V F** d) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- V F b) Esistono matrici quadrate reali prive di autovalori reali.
- V F c) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Il prodotto fra matrici reali $n \times n$ è associativo.
- \mathbf{V} \mathbf{F} c) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- **V F** c) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- V F d) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
 - 3) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1, 1, 1) come terna di parametri direttori.
- **V F** b) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
- V F b) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- V F c) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esistono matrici reali 7×9 di rango 8.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
- \mathbf{V} \mathbf{F} b) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- **V F** c) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- V F d) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
- V F b) Ogni matrice antisimmetrica ha determinante nullo.
- V F c) Il determinante è una funzione alternante rispetto alle righe della matrice.
- **V F** d) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- V F c) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Ogni anello isomorfo all'anello } \mathbb{Z}_4 \text{ è commutativo.}$
- V F b) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) Esistono gruppi non commutativi con meno di 10 elementi.
- ${f V}$ ${f F}$ d) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- ${f V}$ ${f F}$ b) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** c) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- **V F** d) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- **V F** c) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- ${f V} {f F} {f G}$ d) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ
- ${f V}$ ${f F}$ b) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo
- **V F** c) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- V F d) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- V F b) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** c) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- **V F** d) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c)} \quad \text{Ogni anello isomorfo all'anello } \mathbb{Z}_7 \ \text{\`e} \ \text{un campo}.$
- ${f V}$ ${f F}$ d) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- **V F** c) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- \mathbf{V} \mathbf{F} d) L'anello delle matrici reali 8×8 possiede divisori dello zero.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** b) Siano $A \in B$ due matrici reali $n \times n$. Le matrici $A \in B$ sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- \mathbf{V} \mathbf{F} c) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- \mathbf{V} \mathbf{F} d) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** b) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
- **V F** c) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- \mathbf{V} \mathbf{F} b) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
- **V F** c) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- V F d) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- **V F** b) Le rette di rispettive equazioni parametriche x=t, y=t, z=t e x=s, y=s-1, z=2s sono fra loro sghembe.
- \mathbf{V} \mathbf{F} c) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
- **V F** d) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
- V F b) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- $\mathbf{V} \quad \mathbf{F} \quad$ c) Esistono matrici reali 7×9 di rango 8.
- V F d) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
- V F b) Il determinante è una funzione alternante rispetto alle righe della matrice.
- **V F** c) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F d) Ogni matrice antisimmetrica ha determinante nullo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- V F b) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- V F c) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo.
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se
- **V F** b) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- V F c) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- \mathbf{V} \mathbf{F} d) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.

- 5) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
- V F b) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- **V F** d) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- **V F** b) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- **V F** c) Le rette di rispettive equazioni parametriche x=t, y=t, z=t e x=s, y=s-1, z=2s sono fra loro sghembe.
- \mathbf{V} \mathbf{F} d) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Esistono gruppi non commutativi con meno di 10 elementi.
- \mathbf{V} \mathbf{F} c) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- ${f V}$ ${f F}$ d) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** b) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- \mathbf{V} \mathbf{F} c) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- \mathbf{V} \mathbf{F} d) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Il prodotto fra matrici reali $n \times n$ è associativo.
- \mathbf{V} \mathbf{F} b) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- \mathbf{V} \mathbf{F} c) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- **V F** b) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- V F c) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** d) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** b) Siano $A \in B$ due matrici reali $n \times n$. Le matrici $A \in B$ sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- V F c) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- \mathbf{V} \mathbf{F} d) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- \mathbf{V} \mathbf{F} c) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
- V F d) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** b) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
- **V F** c) Se A e B sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- \mathbf{V} \mathbf{F} d) L'anello delle matrici reali 8×8 possiede divisori dello zero.

- 5) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Ogni anello isomorfo all'anello } \mathbb{Z}_7 \text{ è un campo.}$
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- ${f V}$ ${f F}$ d) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- V F c) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
- **V F** d) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** b) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** d) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- \mathbf{V} \mathbf{F} b) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
- V F c) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- ${f V}$ ${f F}$ d) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
 - 9) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1,1,1) come terna di parametri direttori.
- **V F** b) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- V F c) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** d) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- ${f V}$ ${f F}$ b) L'anello delle matrici reali 8×8 possiede divisori dello zero.
- **V F** c) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** d) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- V F b) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Esistono matrici reali 7×9 di rango 8.
- V F d) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \cdot \mathbf{F}$ a) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- **V F** b) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
- V F c) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- **V F** d) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni matrice antisimmetrica ha determinante nullo.
- **V F** b) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
- **V F** c) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F d) Il determinante è una funzione alternante rispetto alle righe della matrice.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità
- **V F** b) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- **V F** c) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- **V F** d) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** c) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- V F d) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
 - 7) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- **V F** b) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1, 1, 1) come terna di parametri direttori.
- **V F** c) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- V F a) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- V F b) Esistono matrici quadrate reali prive di autovalori reali.
- V F c) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- ${f V}$ ${f F}$ b) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni anello isomorfo all'anello \mathbb{Z}_7 è un campo.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- **V F** c) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- **V F** d) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- ${f V}$ ${f F}$ b) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo
- **V F** c) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- ${f V}$ ${f F}$ d) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- ${f V}$ ${f F}$ b) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- \mathbf{V} \mathbf{F} c) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- **V F** d) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono gruppi non commutativi con meno di 10 elementi.
- V F b) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- \mathbf{V} \mathbf{F} c) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- ${f V}$ ${f F}$ d) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- V F b) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- **V F** c) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- \mathbf{V} \mathbf{F} d) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- **V F** b) Il prodotto fra matrici reali $n \times n$ è associativo.
- \mathbf{V} \mathbf{F} c) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
 - 7) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- **V F** b) Le rette di rispettive equazioni parametriche x=t,y=t,z=t e x=s,y=s-1,z=2s sono fra loro sghembe.
- $\mathbf{V} \quad \mathbf{F} \quad c$) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
- **V F** d) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- ${f V}$ ${f F}$ c) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** d) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- \mathbf{V} \mathbf{F} b) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- **V F** c) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** d) Siano A e B due matrici reali $n \times n$. Le matrici A e B sono entrambe invertibili se e solo se $\det(AB) \neq 0$.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 7×9 di rango 8.
- V F b) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- V F c) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
- **V F** d) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- V F b) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è
- \mathbf{V} \mathbf{F} c) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- ${f V}$ ${f F}$ d) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- V F c) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- ${f V} {f F} {f F}$ b) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
- **V F** c) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.

- 5) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- **V F** b) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- $\mathbf{V} \cdot \mathbf{F} = \mathbf{c}$) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
- **V F** d) Le rette di rispettive equazioni parametriche x = t, y = t, z = t e x = s, y = s 1, z = 2s sono fra loro sghembe.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F b) Ogni matrice antisimmetrica ha determinante nullo.
- **V F** c) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
- V F d) Il determinante è una funzione alternante rispetto alle righe della matrice.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- V F b) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni anello isomorfo all'anello \mathbb{Z}_7 è un campo.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- V F b) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** c) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- **V F** d) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) L'anello delle matrici reali 8×8 possiede divisori dello zero.
- **V F** b) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- **V F** c) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
- **V F** d) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \cdot \mathbf{F}$ b) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- ${f V}$ ${f F}$ c) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- V F d) Esistono gruppi non commutativi con meno di 10 elementi.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- **V F** b) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- \mathbf{V} \mathbf{F} c) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- **V F** d) Siano A e B due matrici reali $n \times n$. Le matrici A e B sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Il prodotto fra matrici reali $n \times n$ è associativo.
- \mathbf{V} \mathbf{F} b) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- **V F** d) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- ${f V}$ ${f F}$ b) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- **V F** c) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.
- **V F** d) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- \mathbf{V} \mathbf{F} c) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** d) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- **V F** b) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- V F c) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- \mathbf{V} \mathbf{F} d) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
- V F b) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- V F c) Esistono matrici quadrate reali prive di autovalori reali.
- V F d) Se due matrici quadrate reali sono simili hanno la stessa traccia.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- V F a) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- **V F** c) La retta di equazione parametrica x=t,y=t,z=1 ammette (1,1,1) come terna di parametri direttori.
- **V F** d) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
- **V F** b) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- **V F** c) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** d) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** b) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0, 0)\}.$
- **V F** c) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- V F d) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
 - 2) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1,1,1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- **V F** c) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Il prodotto fra matrici reali $n \times n$ è associativo.
- \mathbf{V} \mathbf{F} c) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- ${f V}$ ${f F}$ d) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il determinante è una funzione alternante rispetto alle righe della matrice.
- V F b) Ogni matrice antisimmetrica ha determinante nullo.
- **V F** c) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- **V F** d) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- V F c) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Ogni anello isomorfo all'anello } \mathbb{Z}_4 \text{ è commutativo.}$
- V F b) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) Esistono gruppi non commutativi con meno di 10 elementi.
- ${f V}$ ${f F}$ d) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- ${f V}$ ${f F}$ b) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** c) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- **V F** d) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- V F b) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- \mathbf{V} \mathbf{F} c) Esistono matrici reali 7×9 di rango 8.
- V F d) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- \mathbf{V} \mathbf{F} b) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- **V F** c) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- V F d) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.

- 1) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- ${f V} {f F} {f F}$ b) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
- V F c) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- **V F** d) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- ${f V}$ ${f F}$ b) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- V F c) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni anello isomorfo all'anello \mathbb{Z}_7 è un campo.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- **V F** b) Siano $A \in B$ due matrici reali $n \times n$. Le matrici $A \in B$ sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- ${f V}$ ${f F}$ c) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- **V F** d) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Le rette di rispettive equazioni parametriche x = t, y = t, z = t e x = s, y = s 1, z = 2s sono fra loro sghembe.
- **V F** b) $(1,1,1) \land (0,0,0) = (1,1,1)$.
- **V F** c) Il piano di equazione cartesiana z = 0 e la retta di equazione cartesiana x + y + z = 2, z = 1 sono fra loro paralleli.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- V F b) L'anello delle matrici reali 8 × 8 possiede divisori dello zero.
- **V F** c) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
- **V F** d) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** b) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- **V F** c) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- **V F** d) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo.
- V F b) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- ${f V}$ ${f F}$ c) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- \mathbf{V} \mathbf{F} d) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** b) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
- **V F** c) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- ${f V}$ ${f F}$ d) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- ${f V}$ ${f F}$ b) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria
- **V F** c) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- **V F** d) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.

- 1) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ Esistono matrici reali 7×9 di rango 8.
- V F b) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- V F c) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- V F d) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- **V F** b) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- **V F** d) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V
- **V F** b) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- **V F** c) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- **V F** b) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- \mathbf{V} \mathbf{F} c) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
- **V F** d) Le rette di rispettive equazioni parametriche x=t, y=t, z=t e x=s, y=s-1, z=2s sono fra loro sghembe.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1,\ldots,n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F b) Il determinante è una funzione alternante rispetto alle righe della matrice.
- V F c) Ogni matrice antisimmetrica ha determinante nullo.
- \mathbf{V} \mathbf{F} d) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- ${f V}$ ${f F}$ b) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- \mathbf{V} \mathbf{F} c) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- V F d) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F b) Esistono gruppi non commutativi con meno di 10 elementi.
- ${f V}$ ${f F}$ c) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- **V F** b) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- **V F** c) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.
- \mathbf{V} \mathbf{F} d) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Il prodotto fra matrici reali $n \times n$ è associativo.
- \mathbf{V} \mathbf{F} b) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- \mathbf{V} \mathbf{F} d) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.

- 1) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- **V F** b) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- **V F** c) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- V F d) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- ${f V}$ ${f F}$ b) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) Ogni anello isomorfo all'anello } \mathbb{Z}_7 \text{ è un campo.}$
- ${f V}$ ${f F}$ d) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
- \mathbf{V} \mathbf{F} b) L'anello delle matrici reali 8×8 possiede divisori dello zero.
- **V F** c) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** d) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- V F c) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- **V F** d) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** b) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** c) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** d) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- **V F** b) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- **V F** c) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- $\mathbf{V} \cdot \mathbf{F}$ d) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** b) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- **V F** c) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- V F d) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1, 1, 1) come terna di parametri direttori.
- **V F** b) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- V F d) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- **V F** b) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A = 1.
- **V F** c) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** d) Siano A e B due matrici reali $n \times n$. Le matrici A e B sono entrambe invertibili se e solo se $\det(AB) \neq 0$.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- **V F** b) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- $\mathbf{V} \cdot \mathbf{F}$ c) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- V F d) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F b) Il determinante è una funzione alternante rispetto alle righe della matrice.
- V F c) Ogni matrice antisimmetrica ha determinante nullo.
- \mathbf{V} \mathbf{F} d) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono matrici quadrate reali prive di autovalori reali.
- V F b) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- \mathbf{V} \mathbf{F} c) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
- V F d) Se due matrici quadrate reali sono simili hanno la stessa traccia.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Ogni anello isomorfo all'anello } \mathbb{Z}_7 \ \mathrm{\grave{e}} \ \mathrm{un \ campo}.$
- V F b) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
- V F c) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- ${f V}$ ${f F}$ d) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle \cdot, \cdot \rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.
- **V F** b) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- V F c) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
- **V F** d) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
 - 6) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1, 1, 1) come terna di parametri direttori.
- **V F** b) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- V F c) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** d) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- **V F** b) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
- V F c) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** d) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- **V F** b) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
- **V F** c) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- ${f V}$ ${f F}$ d) L'anello delle matrici reali 8×8 possiede divisori dello zero.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 7×9 di rango 8.
- V F b) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- V F c) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipen-
- V F d) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- **V F** b) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$.
- **V F** c) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- ${f V}$ ${f F}$ d) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \cdot \mathbf{F}$ a) Ogni anello isomorfo all'anello \mathbb{Z}_4 è commutativo.
- ${f V}$ ${f F}$ b) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- V F c) Esistono gruppi non commutativi con meno di 10 elementi.
- V F d) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- V F b) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
- \mathbf{V} \mathbf{F} c) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
- **V F** d) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
 - 4) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- ${f V}$ ${f F}$ b) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- \mathbf{V} \mathbf{F} c) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- **V F** d) Il prodotto fra matrici reali $n \times n$ è associativo.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
- **V F** b) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- ${f V}$ ${f F}$ c) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
- **V F** d) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
- ${f V}$ ${f F}$ b) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo.
- V F c) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- **V F** d) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- \mathbf{V} \mathbf{F} b) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
- **V F** c) Siano A e B due matrici reali $n \times n$. Le matrici A e B sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- **V F** d) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.
- **V F** b) Le rette di rispettive equazioni parametriche x=t, y=t, z=t e x=s, y=s-1, z=2s sono fra loro sghembe.
- **V F** c) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- **V F** b) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
- **V F** c) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
- ${f V}$ ${f F}$ d) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.

- 1) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Ogni polinomio in x a coefficienti reali è il polinomio caratteristico di almeno un endomorfismo
- V F b) Se due matrici quadrate reali sono diagonalizzabili per similitudine allora anche la loro somma lo è.
- \mathbf{V} \mathbf{F} c) Se un endomorfismo f di \mathbb{R}^n è semplice allora è semplice anche l'endomorfismo 2f.
- V F d) La molteplicità geometrica di un autovalore λ è sempre uguale alla molteplicità algebrica di λ .
 - 2) Dire quali delle seguenti affermazioni sono vere:
- V F a) Un sistema lineare ammette soluzione se e solo se le sue equazioni sono linearmente dipendenti.
- \mathbf{V} \mathbf{F} b) Esistono matrici reali 7×9 di rango 8.
- V F c) Esistono sistemi lineari di 8 equazioni in 5 incognite che ammettono un numero infinito di soluzioni.
- V F d) Ogni sistema lineare omogeneo ha un numero infinito di soluzioni.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- $\mathbf{V} \cdot \mathbf{F}$ a) Ogni funzione suriettiva da \mathbb{R} a \mathbb{R} è una trasformazione lineare.
- **V F** b) Due spazi vettoriali reali finitamente generati sono isomorfi se e solo se hanno la stessa dimensione.
- **V F** c) Esistono trasformazioni lineari $f: \mathbb{R}^8 \to \mathbb{R}^4$ il cui nucleo abbia dimensione 2.
- V F d) Gli endomorfismi di uno spazio vettoriale finitamente generato sono isomorfismi se e solo se sono suriettivi.
 - 4) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) Le rette di rispettive equazioni parametriche x = t, y = t, z = t e x = s, y = s 1, z = 2s sono fra loro sghembe.
- **V F** b) $(1,1,1) \wedge (0,0,0) = (1,1,1)$.
- \mathbf{V} \mathbf{F} c) Ogni retta di \mathbb{R}^3 ammette una e una sola equazione cartesiana.
- **V F** d) Il piano di equazione cartesiana z=0 e la retta di equazione cartesiana x+y+z=2, z=1 sono fra loro paralleli.

- 5) Dire quali delle seguenti affermazioni sono vere:
- V F a) Il gruppo delle traslazioni del piano reale è un gruppo commutativo rispetto all'usuale operazione di composizione.
- $\mathbf{V} \quad \mathbf{F} \quad$ b) Ogni anello isomorfo all'anello \mathbb{Z}_7 è un campo.
- ${f V}$ ${f F}$ c) Se A e B sono due insiemi infiniti di numeri naturali esiste sempre una corrispondenza biunivoca fra A e B.
- V F d) L'insieme dei numeri interi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- V F a) Due basi di uno stesso spazio vettoriale finitamente generato hanno sempre la stessa cardinalità.
- **V F** b) Siano U e W due sottospazi vettoriali di dimensione 3 di \mathbb{R}^{2020} tali che dim(U+W)=5. Allora U e W hanno in comune almeno un vettore non nullo.
- **V F** c) La coppia ((1,2),(2,1)) è una base ordinata dello spazio vettoriale $(\mathbb{Z}_3,\mathbb{Z}_3^2,+,\cdot)$.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Sia U un sottospazio vettoriale di \mathbb{R}^n e siano $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Se $\mathbf{v} + \mathbf{w} \in U$, allora $\mathbf{v}, \mathbf{w} \in U$.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $A \in B$ sono due matrici reali $n \times n$ si ha sempre che $AB \neq BA$.
- **V F** b) Per ogni matrice reale A di tipo 3×4 è definita la matrice A^2 .
- \mathbf{V} \mathbf{F} c) L'anello delle matrici reali 8×8 possiede divisori dello zero.
- **V F** d) Se A, B, C, D sono matrici reali $n \times n$ si ha sempre che (A + B)(C + D) = (AC + BD) + (AD + BC).
 - 8) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale V. Allora per ogni $\mathbf{v}, \mathbf{w} \in V$ si ha che $\|\mathbf{v}\| \|\mathbf{w}\| \ge |\langle \mathbf{v}, \mathbf{w} \rangle|$.
- ${f V}$ ${f F}$ b) La composizione di due isometrie di uno spazio vettoriale euclideo V è sempre un'isometria di V.
- **V F** c) L'angolo fra i due vettori (1,0,1), (0,1,1) è di $\pi/3$ radianti.
- **V F** d) Se un endomorfismo f di \mathbb{R}^n è un'isometria, allora f porta ciascuna base ortonormale di \mathbb{R}^n in una base ortonormale di \mathbb{R}^n .
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Ogni matrice antisimmetrica ha determinante nullo.
- **V F** b) Sia A una matrice $n \times n$ a coefficienti in un campo \mathbb{K} e sia S_n l'insieme delle permutazioni sull'insieme $\{1, \ldots, n\}$. Allora det $A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}$.
- V F c) Il determinante è una funzione alternante rispetto alle righe della matrice.
- **V F** d) Ogni matrice $n \times n$ a determinante nullo ha rango strettamente inferiore a n.

- 1) Dire quali delle seguenti affermazioni sono vere:
- V F a) Se due matrici quadrate reali sono simili hanno la stessa traccia.
- \mathbf{V} \mathbf{F} b) Se un endomorfismo f di \mathbb{R}^n ha 0 come autovalore reale allora f non è suriettivo.
- V F c) Tutte le matrici quadrate reali simmetriche sono diagonalizzabili per similitudine.
- V F d) Esistono matrici quadrate reali prive di autovalori reali.
 - 2) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è un sottoinsieme linearmente indipendente dello spazio vettoriale standard \mathbb{R}^5 , allora esistono due vettori $\mathbf{u}, \mathbf{w} \in \mathbb{R}^5$ tali che $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}, \mathbf{w}\}$ sia una base di \mathbb{R}^5 .
- ${f V}$ ${f F}$ b) Se due spazi vettoriali reali sono isomorfi fra loro e uno dei due ha dimensione n allora anche l'altro ha dimensione n.
- **V F** c) Sia $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ un sistema ordinato di generatori di uno spazio vettoriale V. Allora per ogni vettore $\mathbf{v} \in V$ esiste una e una sola n-upla ordinata di scalari (a_1, \dots, a_n) tale che $\mathbf{v} = a_1\mathbf{v}_1 + \dots + a_n\mathbf{v}_n$.
- \mathbf{V} \mathbf{F} d) L'insieme dei polinomi a coefficienti reali nella variabile x di grado 7 è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - 3) Dire quali delle seguenti affermazioni sono vere:
- \mathbf{V} \mathbf{F} a) Per ogni coppia (A, B) di matrici reali è definita la somma A + B.
- \mathbf{V} \mathbf{F} b) Esistono matrici reali 4×4 che ammettono due inverse distinte fra loro.
- ${f V}$ ${f F}$ c) L'insieme delle matrici reali 7×7 è un campo rispetto alle usuali operazioni di somma e prodotto righe per colonne.
- $\mathbf{V} \quad \mathbf{F} \quad d$) Il prodotto fra matrici reali $n \times n$ è associativo.
 - 4) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) L'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito ponendo $f(x_1, x_2, x_3, x_4) = (x_2, x_1, x_4, x_3)$ per ogni $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ è una isometria rispetto al prodotto scalare standard.
- V F b) Ogni spazio vettoriale euclideo finitamente generato possiede almeno una base ortonormale.
- **V F** c) L'ortogonale W^{\perp} del sottospazio vettoriale euclideo W di \mathbb{R}^5 di equazione cartesiana $x_1 = 0$ ammette come base $B = \{(1, 0, 0, 0, 0)\}.$
- **V F** d) Sia $\|\cdot\|$ la norma indotta da un prodotto scalare $\langle\cdot,\cdot\rangle$ su uno spazio vettoriale reale finitamente generato V e siano \mathbf{u}, \mathbf{v} due versori di V fra loro ortogonali. Allora $\|\mathbf{u} + \mathbf{v}\|^2 = 2$.

- 5) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Ogni trasformazione lineare $f: U \to W$ ammette una e una sola matrice associata.
- ${f V}$ ${f F}$ b) Sia V lo spazio vettoriale dei polinomi in x a coefficienti reali. La funzione da V a V che porta ogni polinomio nella sua derivata terza è una trasformazione lineare.
- **V F** c) Se $f: V \to W$ è una trasformazione lineare e $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ è una n-upla di vettori linearmente dipendenti di V, allora $(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ è una n-upla di vettori linearmente dipendenti di W.
- **V F** d) La funzione $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita ponendo f(x, y, z) = (x, x, 0) per ogni $(x, y, z) \in \mathbb{R}^3$ è una trasformazione lineare.
 - 6) Dire quali delle seguenti affermazioni sono vere:
- **V F** a) Se due matrici reali ammettono la stessa forma ridotta per colonne allora hanno anche lo stesso rango.
- **V F** b) Un sistema lineare con matrice incompleta A e matrice completa C ammette soluzioni se e solo se r(A) < r(C).
- \mathbf{V} \mathbf{F} c) L'unica matrice reale 9×9 di rango 9 è la matrice identica.
- V F d) Una matrice completamente ridotta per righe non può mai contenere righe nulle.
 - 7) Dire quali delle seguenti affermazioni sono vere:
- ${f V}$ ${f F}$ a) Sia A una matrice ortogonale. Allora A è invertibile se e solo se det A=1.
- **V F** b) Se $A = (a_{ij}) \in M_n(\mathbb{R})$ allora det $A = \sum_{i=1}^n (-1)^{i+1} \cdot a_{i1} \cdot \det M_{i1}$, dove M_{ij} rappresenta il minore complementare dell'elemento a_{ij} .
- **V F** c) Siano $A \in B$ due matrici reali $n \times n$. Le matrici $A \in B$ sono entrambe invertibili se e solo se $\det(AB) \neq 0$.
- \mathbf{V} \mathbf{F} d) Se una matrice reale A ha un minore il cui determinante è nullo, allora A non è invertibile.
 - 8) Dire quali delle seguenti affermazioni sono vere nello spazio vettoriale euclideo standard \mathbb{R}^3 :
- **V F** a) $(0,0,1) \wedge (0,0,1) = (0,1,0)$.
- V F b) Per ogni punto passa uno e un solo piano parallelo a un piano dato.
- **V F** c) I piani di rispettive equazioni cartesiane x + y + z = 1 e 2x 2z = 3 sono fra loro ortogonali.
- **V F** d) La retta di equazione parametrica x = t, y = t, z = 1 ammette (1,1,1) come terna di parametri direttori.
 - 9) Dire quali delle seguenti affermazioni sono vere:
- V F a) Esistono gruppi non commutativi con meno di 10 elementi.
- ${f V}$ ${f F}$ b) Ogni anello isomorfo all'anello ${\Bbb Z}_4$ è commutativo.
- ${f V}$ ${f F}$ c) Se A e B sono due sottoinsiemi infiniti del piano reale esiste sempre una corrispondenza biunivoca fra A e B.
- V F d) L'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.