- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 7 × 7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) l'insieme R dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - C) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
- 2) Siano $A, B \in C$ tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - B) la matrice A + B + C è regolare.
 - C) A^n non può essere la matrice nulla.
 - D) $A, B \in C$ sono invertibili.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - B) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - C) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - D) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.

- A) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
- B) S ammette soluzioni se e solo se $\det A = \det C$.
- C) può accadere che A abbia rango 5 e C abbia rango 8.
- D) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) T non può ammettere più di n autovettori distinti.
 - B) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - C) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - D) se A è una matrice reale triangolare allora T è diagonalizzabile.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - B) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - C) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - D) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro ortogonali.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1è 2.
 - C) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.

- 1) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - B) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - C) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - D) A e B hanno lo stesso determinante.
- 2) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - B) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - C) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - D) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono una retta ed un piano fra loro ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
 - B) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - D) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
- 5) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - B) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - C) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - D) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.

- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) in ogni gruppo c'è uno ed un solo elemento neutro.
 - B) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - C) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 7) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se **S** ammette infinite soluzioni allora m < n.
 - B) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - C) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - D) il rango di C è sempre strettamente superiore al rango di A.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(x,y,z)\in \mathbb{R}^3: x^2+y^2+z^2=1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - D) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - C) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - D) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.

- 1) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) A, $B \in C$ sono invertibili.
 - B) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - C) la matrice A + B + C è regolare.
 - D) A^n non può essere la matrice nulla.
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
 - B) può accadere che A abbia rango 5 e C abbia rango 8.
 - C) S ammette soluzioni se e solo se $\det A = \det C$.
 - D) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
- 3) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se A è una matrice reale triangolare allora T è diagonalizzabile.
 - B) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - C) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - D) T non può ammettere più di n autovettori distinti.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - B) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - C) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - D) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .

6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):

- A) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
- B) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
- C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
- D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - B) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - D) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) l'insieme IR dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - D) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.

- 1) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x+3y=1 è 2.
 - B) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - C) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
 - D) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) il rango di C è sempre strettamente superiore al rango di A.
 - B) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - C) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - D) se **S** ammette infinite soluzioni allora m < n.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - C) in ogni gruppo c'è uno ed un solo elemento neutro.
 - D) l'insieme ${\bf N}$ dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) $A \in B$ hanno lo stesso determinante.
 - B) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - C) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - D) se A è simmetrica allora V ammette una base spettrale relativa a T.

5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora

- A) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- C) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - B) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - C) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
 - D) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - B) l'insieme $\{(x,y,z)\in \mathbb{R}^3: x^2+y^2+z^2=1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(I\!\! R)$, dotato delle usuali operazioni.
- 8) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
 - B) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - C) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - D) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - C) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - D) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
 - B) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - C) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - D) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - B) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - C) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
 - D) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.

5) Sia \mathbf{S} un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad \mathbf{S} , rispettivamente.

- A) **S** ammette soluzioni se e solo se $\det A = \det C$.
- B) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
- C) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
- D) può accadere che A abbia rango 5 e C abbia rango 8.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - B) T non può ammettere più di n autovettori distinti.
 - C) se A è una matrice reale triangolare allora T è diagonalizzabile.
 - D) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - B) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
 - C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - D) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1è 2.
 - B) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - D) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) in ogni gruppo c'è uno ed un solo elemento neutro.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - D) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle.$
 - C) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - D) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - B) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - C) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - D) $A \in B$ hanno lo stesso determinante.
- 3) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) la matrice A + B + C è regolare.
 - B) A^n non può essere la matrice nulla.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) $A, B \in C$ sono invertibili.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - B) l'insieme delle funzioni da IR in IR costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - C) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro ortogonali.

- 6) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - C) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
- 7) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - B) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - D) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - C) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 9) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - B) se **S** ammette infinite soluzioni allora m < n.
 - C) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - D) il rango di C è sempre strettamente superiore al rango di A.

- 1) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - B) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - C) se $A \cdot {}^t A = B \cdot {}^t B$ allora A = B.
 - D) se A + B + C è una matrice regolare allora anche $A, B \in C$ sono matrici regolari.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - C) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - D) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - B) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - D) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
- 4) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) S ammette soluzioni se e solo se $\det A = \det C$.
 - B) può accadere che A abbia rango 5 e C abbia rango 8.
 - C) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
 - D) se l'insieme Sol(S) contiene esattamente una n-upla allora $\rho(A) = n$.

- 5) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - B) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - C) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - D) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - B) l'insieme ${\bf N}$ dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - C) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) in ogni gruppo c'è uno ed un solo elemento neutro.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - B) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - C) T non può ammettere più di n autovettori distinti.
 - D) se A è una matrice reale triangolare allora T è diagonalizzabile.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - B) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - C) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - D) per ogni $u,v\in V$ risulta $\langle u,v\rangle=\|u\|^2+\|v\|^2.$
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.

- 1) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se **S** ammette infinite soluzioni allora m < n.
 - B) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - C) il rango di C è sempre strettamente superiore al rango di A.
 - D) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) l'insieme R dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - C) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - D) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1è 2.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - D) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
- 6) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - B) la matrice A + B + C è regolare.
 - C) $A, B \in C$ sono invertibili.
 - D) A^n non può essere la matrice nulla.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - B) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - C) A e B hanno lo stesso determinante.
 - D) se T ammette n autovalori strettamente positivi allora T è invertibile.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - C) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - D) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - B) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - D) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - C) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro ortogonali.
- 3) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x+3y=1 è 2.
 - B) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - C) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
 - B) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - D) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.

5) Sia \mathbf{S} un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad \mathbf{S} , rispettivamente.

- A) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
- B) può accadere che A abbia rango 5 e C abbia rango 8.
- C) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
- D) **S** ammette soluzioni se e solo se det $A = \det C$.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se A è una matrice reale triangolare allora T è diagonalizzabile.
 - B) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - C) T non può ammettere più di n autovettori distinti.
 - D) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - B) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - C) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - D) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme IR dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - B) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
- 9) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) la matrice A + B + C è regolare.
 - B) $A, B \in C$ sono invertibili.
 - C) A^n non può essere la matrice nulla.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - C) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - D) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
- 3) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - B) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - C) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - D) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - B) in ogni gruppo c'è uno ed un solo elemento neutro.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - B) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - B) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - C) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - D) $A \in B$ hanno lo stesso determinante.
- 7) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - B) se **S** ammette infinite soluzioni allora m < n.
 - C) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - D) il rango di C è sempre strettamente superiore al rango di A.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - B) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - D) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - B) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - D) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - D) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se A è una matrice reale triangolare allora T è diagonalizzabile.
 - B) T non può ammettere più di n autovettori distinti.
 - C) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - D) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - B) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - C) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - D) se $u,v \in V$ e v è il vettore nullo allora $\langle u,v \rangle = 0.$
- 4) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
 - B) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
 - C) S ammette soluzioni se e solo se $\det A = \det C$.
 - D) può accadere che A abbia rango 5 e C abbia rango 8.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono una retta ed un piano fra loro ortogonali.

- 6) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - B) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - C) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - C) l'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - D) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
- 8) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) $A, B \in C$ sono invertibili.
 - B) A^n non può essere la matrice nulla.
 - C) la matrice A + B + C è regolare.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - C) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - B) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - C) se A + B + C è una matrice regolare allora anche $A, B \in C$ sono matrici regolari.
 - D) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - B) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - C) A e B hanno lo stesso determinante.
 - D) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - B) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - C) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
 - D) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - C) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - B) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - C) in ogni gruppo c'è uno ed un solo elemento neutro.
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
- 7) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - B) se **S** ammette infinite soluzioni allora m < n.
 - C) il rango di C è sempre strettamente superiore al rango di A.
 - D) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - B) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
 - C) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - D) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1 è 2.
 - B) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - C) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
 - D) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - B) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
 - C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) può accadere che A abbia rango 5 e C abbia rango 8.
 - B) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
 - C) S ammette soluzioni se e solo se $\det A = \det C$.
 - D) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - B) se A è una matrice reale triangolare allora T è diagonalizzabile.
 - C) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - D) T non può ammettere più di n autovettori distinti.

- 5) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - B) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
 - C) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - D) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
- 6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 7) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1 è 2.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - B) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - D) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) in ogni gruppo c'è uno ed un solo elemento neutro.
 - B) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - D) l'insieme ${\bf N}$ dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - C) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - D) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
- 3) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) A^n non può essere la matrice nulla.
 - B) $A, B \in C$ sono invertibili.
 - C) la matrice A + B + C è regolare.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - B) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme R dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - D) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
- 5) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - C) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - D) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.

- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - B) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - C) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 7) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - B) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - D) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
- 8) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) il rango di C è sempre strettamente superiore al rango di A.
 - B) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - C) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - D) se S ammette infinite soluzioni allora m < n.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) A e B hanno lo stesso determinante.
 - B) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - C) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - D) se A è simmetrica allora V ammette una base spettrale relativa a T.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - B) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - C) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
 - D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - C) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - D) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) **S** ammette soluzioni se e solo se $\det A = \det C$.
 - B) può accadere che A abbia rango 5 e C abbia rango 8.
 - C) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
 - D) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) $\mathcal{A} \in \mathcal{B}$ sono una retta ed un piano fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.

- 5) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - D) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
- 6) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - B) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - C) se A è una matrice reale triangolare allora T è diagonalizzabile.
 - D) T non può ammettere più di n autovettori distinti.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - B) in ogni gruppo c'è uno ed un solo elemento neutro.
 - C) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - D) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
- 8) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
 - B) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - C) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - D) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - B) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - D) l'insieme $\{(x,y,z)\in \mathbb{R}^3: x^2+y^2+z^2=1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - C) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) $A \in B$ hanno lo stesso determinante.
 - B) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - C) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - D) se A è simmetrica allora V ammette una base spettrale relativa a T.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
- 4) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) A, $B \in C$ sono invertibili.
 - B) la matrice A + B + C è regolare.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) A^n non può essere la matrice nulla.

5) Sia \mathbf{S} un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad \mathbf{S} , rispettivamente.

- A) il rango di C è sempre strettamente superiore al rango di A.
- B) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- C) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
- D) se **S** ammette infinite soluzioni allora m < n.
- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - B) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - C) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - D) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
 - B) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - C) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - D) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
 - B) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - C) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x+3y=1 è 2.
 - D) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 2) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1 è 2.
 - B) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - C) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - C) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) T non può ammettere più di n autovettori distinti.
 - B) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - C) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - D) se A è una matrice reale triangolare allora T è diagonalizzabile.

5) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora

- A) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
- B) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
- C) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
- D) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme IR dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - B) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
- 7) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) la matrice A + B + C è regolare.
 - B) $A, B \in C$ sono invertibili.
 - C) A^n non può essere la matrice nulla.
 - D) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - B) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - C) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - D) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
- 9) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se m < n l'insieme Sol(S) non è vuoto.
 - B) può accadere che A abbia rango 5 e C abbia rango 8.
 - C) S ammette soluzioni se e solo se $\det A = \det C$.
 - D) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - B) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
 - C) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - D) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) in ogni gruppo c'è uno ed un solo elemento neutro.
 - B) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - D) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
- 3) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - B) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - C) A e B hanno lo stesso determinante.
 - D) se T ammette n autovalori strettamente positivi allora T è invertibile.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - C) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - C) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - D) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
- 6) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - B) se $A \cdot {}^t A = B \cdot {}^t B$ allora A = B.
 - C) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - D) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - C) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - D) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
- 8) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - B) se **S** ammette infinite soluzioni allora m < n.
 - C) il rango di C è sempre strettamente superiore al rango di A.
 - D) se m=n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono una retta ed un piano fra loro ortogonali.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - C) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - D) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) S ammette soluzioni se e solo se $\det A = \det C$.
 - B) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
 - C) può accadere che A abbia rango 5 e C abbia rango 8.
 - D) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - C) $\mathcal{A} \in \mathcal{B}$ sono una retta ed un piano fra loro ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - B) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - D) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.

5) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora

- A) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
- B) T non può ammettere più di n autovettori distinti.
- C) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
- D) se A è una matrice reale triangolare allora T è diagonalizzabile.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - B) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - C) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - D) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - C) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme \mathbb{R} dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
- 8) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) $A, B \in C$ sono invertibili.
 - B) A^n non può essere la matrice nulla.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) la matrice A + B + C è regolare.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
 - B) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - C) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.

- 1) Siano A, B e C tre matrici reali $n \times n$. È vero che
 - A) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - B) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
 - C) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - D) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - B) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - D) in ogni gruppo c'è uno ed un solo elemento neutro.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(I\!\! R)$, dotato delle usuali operazioni.
 - B) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - C) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - D) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - B) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - C) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - D) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.

5) Sia \mathbf{S} un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad \mathbf{S} , rispettivamente.

- A) il rango di C è sempre strettamente superiore al rango di A.
- B) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
- C) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
- D) se **S** ammette infinite soluzioni allora m < n.
- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - B) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - C) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
 - D) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1è 2.
 - B) nel piano euclideo standard il punto medio del segmento di estremi (-1,-1), (3,5) è (1,2).
 - C) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - D) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) $A \in B$ hanno lo stesso determinante.
 - B) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - C) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - D) se A è simmetrica allora V ammette una base spettrale relativa a T.

- 1) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) S ammette soluzioni se e solo se $\det A = \det C$.
 - B) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
 - C) può accadere che A abbia rango 5 e C abbia rango 8.
 - D) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
- 2) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - B) T non può ammettere più di n autovettori distinti.
 - C) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - D) se A è una matrice reale triangolare allora T è diagonalizzabile.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
 - B) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - C) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
 - D) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - B) l'insieme ${\bf N}$ dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
 - C) in ogni gruppo c'è uno ed un solo elemento neutro.
 - D) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - C) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.

- 6) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1 è 2.
 - B) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - C) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
 - D) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
- 7) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - B) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
 - C) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - D) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
 - C) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x, y, z) = (x + y, x y) è una trasformazione lineare.
 - C) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - D) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.

- 1) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) la matrice A + B + C è regolare.
 - B) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - C) A^n non può essere la matrice nulla.
 - D) $A, B \in C$ sono invertibili.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme IR dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - B) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - C) l'insieme delle funzioni da $I\!\!R$ in $I\!\!R$ costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - D) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
 - B) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
 - C) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
 - D) la $F: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - B) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.

5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora

- A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
- B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- D) $\mathcal{A} \in \mathcal{B}$ sono una retta ed un piano fra loro ortogonali.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
 - B) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - C) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - D) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - B) A e B hanno lo stesso determinante.
 - C) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - D) se T ammette n autovalori strettamente positivi allora T è invertibile.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).
 - B) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - C) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - D) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
- 9) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - B) il rango di C è sempre strettamente superiore al rango di A.
 - C) se **S** ammette infinite soluzioni allora m < n.
 - D) se m = n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se (v_1, \ldots, v_n) è una base ortonormale di V allora $\left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n y_j v_j \right\rangle = \sum_{i=1}^n x_i y_i$.
 - B) per ogni $u \in V$ risulta $\langle u, u \rangle = \langle u, -u \rangle$.
 - C) se $u, v \in V$ e v è il vettore nullo allora $\langle u, v \rangle = 0$.
 - D) per ogni $u, v \in V$ risulta $\langle u, v \rangle = ||u||^2 + ||v||^2$.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) $A \in M_n(\mathbb{R})$ è invertibile se e solo se il rango di A è non nullo.
 - B) il nucleo della trasformazione lineare da $M_2(\mathbb{R})$ ad $M_2(\mathbb{R})$ che manda ogni matrice reale 2×2 nella matrice nulla ha dimensione 4.
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita come F(x,y,z) = (x+y,x-y) è una trasformazione lineare.
 - D) se A è una matrice reale $n \times n$ ortogonale allora ha determinante uguale a 1 o a -1.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) può accadere che A abbia rango 5 e C abbia rango 8.
 - B) **S** ammette soluzioni se e solo se $\det A = \det C$.
 - C) se m < n l'insieme $Sol(\mathbf{S})$ non è vuoto.
 - D) se l'insieme $Sol(\mathbf{S})$ contiene esattamente una n-upla allora $\rho(A) = n$.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la conica di equazione $x^2 4xy + y^2 + 2x = 0$ è una parabola.
 - B) se u, v sono due vettori dello spazio vettoriale euclideo standard di dimensione 3, orientato in modo naturale, si ha che $u \wedge v$ è un multiplo di u.
 - C) nello spazio euclideo standard 3-dimensionale il volume del 3-simplesso di vertici (1,1,1),(1,1,0),(1,0,0),(0,0,0) è 1/6.
 - D) nello spazio euclideo standard il punto simmetrico del punto (3, 2, 1) rispetto al punto (1, 3, 2) è il punto (-1, 4, 3).

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) in ogni gruppo c'è uno ed un solo elemento neutro.
 - B) se $(\mathbf{K}, V, +, \cdot)$ è uno spazio vettoriale allora V è un gruppo commutativo rispetto all'operazione +.
 - C) l'insieme delle matrici reali $n \times n$ a determinante uguale a -1 è un gruppo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme N dei numeri naturali è un campo rispetto alle usuali operazioni di somma e di prodotto.
- 6) Siano $A, B \in C$ tre matrici reali $n \times n$. È vero che
 - A) se A + B + C è una matrice regolare allora anche A, B e C sono matrici regolari.
 - B) se tutti gli elementi della diagonale principale di A sono uguali fra loro allora A non è regolare.
 - C) se $A \cdot {}^{t}A = B \cdot {}^{t}B$ allora A = B.
 - D) se B = -A ed n è pari allora A e B hanno lo stesso determinante.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} che sono strettamente crescenti è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) ogni insieme di n vettori linearmente indipendenti di uno spazio vettoriale V di dimensione n è una base di V.
 - D) l'insieme delle matrici reali 3×3 con la prima riga nulla è un sistema di generatori per lo spazio vettoriale reale $M_3(\mathbb{R})$, dotato delle usuali operazioni.
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametrica e cartesiana x=s,y=t,z=0 e z=1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono una retta ed un piano fra loro ortogonali.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
- 9) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una data base \mathcal{B} di V. Allora
 - A) se T è diagonalizzabile allora la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n.
 - B) se T è diagonalizzabile allora anche 5T è diagonalizzabile.
 - C) T non può ammettere più di n autovettori distinti.
 - D) se A è una matrice reale triangolare allora T è diagonalizzabile.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $v \in V$ con v non nullo risulta $\langle v, v \rangle > 0$.
 - B) se $u, v \in V$ allora $|\langle u, v \rangle| \le ||u|| \cdot ||v||$.
 - C) ogni sottospazio vettoriale di V è isomorfo al suo complemento ortogonale.
 - D) se $v \in V$ allora $||v||^2 = \langle v, v \rangle$.
- 2) Siano A, B e C tre matrici reali $n \times n$ con determinante strettamente positivo. Allora
 - A) A^n non può essere la matrice nulla.
 - B) la matrice A + B + C è regolare.
 - C) ${}^{t}(A \cdot B \cdot C)$ è una matrice regolare.
 - D) $A, B \in C$ sono invertibili.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(1,0,0,0),(2,0,0,0),(3,0,0,0),(4,0,0,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - B) l'insieme delle matrici reali 5×5 con tutti gli elementi positivi è un sottospazio vettoriale di $M_5(\mathbb{R})$ (dotato delle usuali operazioni), rispetto alle operazioni indotte.
 - C) l'insieme delle funzioni reali del tipo $a \cdot x + b \cdot \sin x + c \cdot \cos x$ con $a, b, c \in \mathbb{R}$ è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle successioni reali convergenti a 1, dotato delle usuali operazioni di somma e prodotto per uno scalare, è uno spazio vettoriale reale.
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni cartesiane x=2 e y-z=3 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente.
 - A) se S è un sistema lineare omogeneo ammette sempre almeno una soluzione.
 - B) se m=n e le colonne di A sono tutte uguali fra loro allora $Sol(\mathbf{S})$ è necessariamente non vuoto.
 - C) se S ammette infinite soluzioni allora m < n.
 - D) il rango di C è sempre strettamente superiore al rango di A.

6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):

- A) lo spazio vettoriale di tutti i polinomi a coefficienti reali ha dimensione infinita.
- B) la $F: M_2(I\!\! R) \to M_2(I\!\! R)$ definita da $F(A) = 3A^2 A$ è una trasformazione lineare.
- C) se $A, B \in M_n(\mathbb{R})$ allora $\det(A \cdot B) = \det A \cdot \det B$.
- D) se una matrice reale 4×4 ha determinante nullo allora ha almeno un elemento nullo.
- 7) Sia T un endomorfismo su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A, B due matrici di T rispetto a due basi fissate di V. Allora
 - A) il polinomio caratteristico di A ed il polinomio caratteristico di B non possono avere radici in comune.
 - B) se T ammette n autovalori strettamente positivi allora T è invertibile.
 - C) se A è simmetrica allora V ammette una base spettrale relativa a T.
 - D) A e B hanno lo stesso determinante.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard il punto medio del segmento di estremi (-1, -1), (3, 5) è (1, 2).
 - B) nello spazio euclideo standard 3-dimensionale l'area del triangolo di vertici (1,0,0), (2,0,1), (1,1,1) è $\frac{\sqrt{3}}{2}$.
 - C) nel piano euclideo standard la conica di equazione $x^2 + 2xy + y^2 1 = 0$ è una iperbole.
 - D) nel piano euclideo standard la distanza fra il punto di coordinate (1,2) e la retta di equazione x + 3y = 1 è 2.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni da \mathbb{R} in \mathbb{R} costanti è un campo rispetto alle usuali operazioni di somma e prodotto fra funzioni.
 - B) l'insieme IR dei numeri reali è un gruppo rispetto alla usuale operazione di divisione.
 - C) l'insieme delle matrici reali 7×7 invertibili è un gruppo non commutativo rispetto alla usuale operazione di prodotto righe per colonne.
 - D) l'insieme dei numeri interi pari è un anello rispetto alle usuali operazioni di somma e prodotto.