- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - B) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - C) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - D) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
- 2) Siano $A, B \in C$ tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - B) $A \cdot B \cdot C$ è invertibile.
 - C) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - D) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x,y,z) = (x-z,y) è una trasformazione lineare.
 - B) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - C) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - D) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora

- A) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
- B) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
- C) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
- D) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
- 6) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - B) se A è simmetrica allora T è diagonalizzabile.
 - C) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - D) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - B) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - C) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - D) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - B) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - C) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - D) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.

- 1) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - B) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - C) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - D) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
- 2) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - B) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - C) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2, y=-t, z=t e x=1+t, y=-t, z=2 è $\frac{1}{2}$.
 - D) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - B) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - C) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - D) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
- 5) Siano $A, B \in C$ tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora
 - A) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - B) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - C) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - D) $\det(-A) = \det A$.

- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - B) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - C) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - D) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
- 7) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) le equazioni di ${\bf S}$ sono linearmente indipendenti se e solo se ${\bf S}$ ammette soltanto la soluzione nulla.
 - C) Se ${f S}$ ammette solo la soluzione nulla allora la matrice incompleta associata ad ${f S}$ è quadrata e regolare.
 - D) può accadere che S ammetta infinite soluzioni.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - C) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - D) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - C) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - D) V ammette una ed una sola base ortogonale.

- 1) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - B) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - C) $A \cdot B \cdot C$ è invertibile.
 - D) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
 - B) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - C) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
 - D) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
- 3) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
 - B) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - C) se A è simmetrica allora T è diagonalizzabile.
 - D) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) V ammette una ed una sola base ortogonale.
 - B) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - C) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - D) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
 - B) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - C) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - B) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2,y=-t,z=t e x=1+t,y=-t,z=2 è $\frac{1}{2}$.
 - C) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - D) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - C) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - D) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.

- 1) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - B) nel piano euclideo standard l'area del parallelogramma di vertici (0,-1), (1,2), (3,0), (4,3) è uguale a 8.
 - C) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
 - D) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
- 2) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) può accadere che S ammetta infinite soluzioni.
 - B) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
 - C) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
 - D) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - B) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - C) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - D) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- 4) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - B) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - C) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - D) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.

5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora

- A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
- B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- C) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - C) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
 - D) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - B) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - C) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
- 8) Siano $A,\,B$ e C tre matrici reali $n\times n,\,\mathbf{0}$ la matrice nulla e I la matrice identica $n\times n.$ Allora
 - A) $\det(-A) = \det A$.
 - B) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - C) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - D) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
 - B) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - C) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - D) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.

- 1) Siano A, B e C tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora A) det(-A) = det A.
 - B) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - C) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - D) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - B) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - D) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - C) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
 - D) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora

- A) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
- B) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
- C) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
- D) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
- 6) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se A è simmetrica allora T è diagonalizzabile.
 - B) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - C) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
 - D) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - B) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
 - C) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - D) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - B) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
 - C) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - D) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - B) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - C) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - D) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - B) V ammette una ed una sola base ortogonale.
 - C) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - D) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
- 2) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - B) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - C) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - D) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
- 3) Siano $A, B \in C$ tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $A \cdot B \cdot C$ è invertibile.
 - B) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - C) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - D) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - B) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - C) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - D) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.

- 6) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2,y=-t,z=t e x=1+t,y=-t,z=2 è $\frac{1}{2}$.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - C) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - D) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
- 7) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - B) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - C) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - D) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - C) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 9) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
 - B) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
 - D) può accadere che S ammetta infinite soluzioni.

- 1) Siano $A, B \in C$ tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora
 - A) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - B) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - C) $\det(-A) = \det A$.
 - D) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - B) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - C) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - D) l'insieme delle funzioni continue da IR in IR che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - B) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - D) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
- 4) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) se $\rho(A) < m$ e $\rho(C) < n$ allora S non può ammettere soluzioni.
 - B) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - C) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
 - D) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.

- 5) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - B) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - C) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - D) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2,y=-t,z=t e x=1+t,y=-t,z=2 è $\frac{1}{2}$.
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - B) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - D) esistono gruppi non commutativi dotati di un numero finito di elementi.
- 7) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se A è simmetrica allora T è diagonalizzabile.
 - B) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - C) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - D) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) V ammette una ed una sola base ortogonale.
 - B) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - C) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - D) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) $\mathcal{A} \in \mathcal{B}$ sono un piano ed una retta fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.

- 1) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
 - C) può accadere che ${\bf S}$ ammetta infinite soluzioni.
 - D) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - B) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - D) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - B) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - C) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - D) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
- 6) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - B) $A \cdot B \cdot C$ è invertibile.
 - C) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - D) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
- 7) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - B) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - C) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - D) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - B) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - C) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
 - D) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
- 9) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - B) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - C) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - D) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 2) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - D) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro ortogonali.
- 3) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - B) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - C) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - D) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
- 4) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
 - B) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - D) se $T: \mathbb{R}^n \to \mathbb{R}^m \ (m, n > 0)$ è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .

5) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora

- A) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
- B) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
- C) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
- D) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
- 6) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
 - B) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - C) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - D) se A è simmetrica allora T è diagonalizzabile.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - B) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - C) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - D) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - D) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
- 9) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $A \cdot B \cdot C$ è invertibile.
 - B) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - C) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - D) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono un piano ed una retta fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - C) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - D) V ammette una ed una sola base ortogonale.
- 3) Siano A, B e C tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora A) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - B) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - C) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - D) $\det(-A) = \det A$.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - B) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - C) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - D) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - B) l'insieme delle funzioni continue da IR in IR che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - D) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
- 6) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - B) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - C) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - D) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
- 7) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
 - B) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) Se ${f S}$ ammette solo la soluzione nulla allora la matrice incompleta associata ad ${f S}$ è quadrata e regolare.
 - D) può accadere che S ammetta infinite soluzioni.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - B) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - C) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - D) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2, y=-t, z=t e x=1+t, y=-t, z=2 è $\frac{1}{2}$.
 - B) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - C) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - D) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - C) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - D) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
- 2) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
 - B) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - C) se A è simmetrica allora T è diagonalizzabile.
 - D) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) V ammette una ed una sola base ortogonale.
 - B) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - C) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - D) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
- 4) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano A e C la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
 - B) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
 - C) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
 - D) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.

5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora

- A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
- B) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
- C) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- D) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
- 6) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - B) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2, y=-t, z=t e x=1+t, y=-t, z=2 è $\frac{1}{2}$.
 - C) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - D) nello spazio euclideo standard 3-dimensionale i tre punti (1, 2, 3), (4, 5, 6), (7, 8, 9) sono allineati.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - C) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - D) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
- 8) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - B) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - C) $A \cdot B \cdot C$ è invertibile.
 - D) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - C) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.

- 1) Siano $A, B \in C$ tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora
 - A) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - B) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - C) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - D) $\det(-A) = \det A$.
- 2) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - B) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - C) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - D) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - B) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - C) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
 - D) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - B) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - C) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - B) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - C) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - D) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
- 6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- 7) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
 - B) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) può accadere che S ammetta infinite soluzioni.
 - D) Se $\bf S$ ammette solo la soluzione nulla allora la matrice incompleta associata ad $\bf S$ è quadrata e regolare.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - B) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - C) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
 - D) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
- 9) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - B) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - C) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
 - D) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da IR in IR che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - C) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - D) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - B) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
 - C) se $T: \mathbb{R}^n \to \mathbb{R}^m \ (m, n > 0)$ è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x,y,z) = (x-z,y) è una trasformazione lineare.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - B) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
 - C) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
 - D) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
- 4) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - B) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
 - C) se A è simmetrica allora T è diagonalizzabile.
 - D) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.

5) Siano A, B e C tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora A) se $\det(A \cdot B) = 1$ allora $\det(B \cdot A) = 1$.

- B) $\det(-A) = \det A$.
- C) $A \cdot B \cdot C = C \cdot B \cdot A$.
- D) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
- 6) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono rette fra loro parallele.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 7) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - B) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - C) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - D) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
- 8) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - B) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - C) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - D) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - B) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - C) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - D) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) V ammette una ed una sola base ortogonale.
 - B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - C) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - D) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
- 3) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - B) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - C) $A \cdot B \cdot C$ è invertibile.
 - D) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - B) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - D) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
- 5) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
 - B) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - C) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - D) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.

- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - B) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 7) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - B) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - C) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - D) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2, y=-t, z=t e x=1+t, y=-t, z=2 è $\frac{1}{2}$.
- 8) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) può accadere che S ammetta infinite soluzioni.
 - B) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
 - C) le equazioni di ${\bf S}$ sono linearmente indipendenti se e solo se ${\bf S}$ ammette soltanto la soluzione nulla.
 - D) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 9) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - B) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - C) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - D) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - B) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - C) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
 - D) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x,y,z) = (x-z,y) è una trasformazione lineare.
- 2) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - B) V ammette una ed una sola base ortogonale.
 - C) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - D) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
 - B) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - C) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
 - D) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.

- 5) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2, y=-t, z=t e x=1+t, y=-t, z=2 è $\frac{1}{2}$.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - C) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - D) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
- 6) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se A è simmetrica allora T è diagonalizzabile.
 - B) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - C) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
 - D) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - B) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - C) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - D) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
- 8) Siano A, B e C tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora A) $\det(-A) = \det A$.
 - B) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - C) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - D) $A \cdot B \cdot C = C \cdot B \cdot A$.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - B) l'insieme delle funzioni continue da IR in IR che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - D) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).

- 1) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - D) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
- 2) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - B) se $S \in T$ hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - C) se $A \in B$ sono simili allora $S \in T$ hanno lo stesso polinomio caratteristico.
 - D) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
- 4) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - B) $A \cdot B \cdot C$ è invertibile.
 - C) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - D) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
- 5) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) può accadere che S ammetta infinite soluzioni.
 - B) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
 - C) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
 - D) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.

6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):

- A) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
- B) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
- C) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
- D) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
 - B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - C) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - D) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
- 8) Quali delle seguenti affermazioni sono vere?
 - A) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
 - B) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - C) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - D) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - C) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.

- 1) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 2) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - B) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - C) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - D) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1,\ldots,\mathbf{u}_n)$ di V. Allora
 - A) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - B) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - C) se A è simmetrica allora T è diagonalizzabile.
 - D) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.

5) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora

- A) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
- B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- C) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
- D) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
- 6) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - C) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - D) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
- 7) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $A \cdot B \cdot C$ è invertibile.
 - B) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - C) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - D) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C)$.
- 8) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - B) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - C) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - D) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
- 9) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
 - B) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - C) se $\rho(A) < m$ e $\rho(C) < n$ allora S non può ammettere soluzioni.
 - D) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - B) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - C) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
 - D) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - B) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - C) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - D) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
- 3) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - B) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - C) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - D) se $S \in T$ hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - C) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2, y=-t, z=t e x=1+t, y=-t, z=2 è $\frac{1}{2}$.
 - D) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da IR in IR che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - C) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - D) l'insieme $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
- 6) Siano A, B e C tre matrici reali $n \times n$, 0 la matrice nulla e I la matrice identica $n \times n$. Allora
 - A) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - B) $\det(-A) = \det A$.
 - C) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - D) $A \cdot B \cdot C = C \cdot B \cdot A$.
- 7) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - B) V ammette una ed una sola base ortogonale.
 - C) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - D) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
- 8) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) Se ${\bf S}$ ammette solo la soluzione nulla allora la matrice incompleta associata ad ${\bf S}$ è quadrata e regolare.
 - B) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) può accadere che S ammetta infinite soluzioni.
 - D) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
- 9) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.

- 1) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - C) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - D) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
- 2) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
 - B) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
 - C) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - D) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
- 3) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - B) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2,y=-t,z=t e x=1+t,y=-t,z=2 è $\frac{1}{2}$.
 - C) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - D) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.

5) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora

- A) se A è simmetrica allora T è diagonalizzabile.
- B) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$.
- C) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
- D) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
- 6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) V ammette una ed una sola base ortogonale.
 - B) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
 - C) detta $(x_1, ..., x_n)$ l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, ..., \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - D) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
 - B) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - C) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - D) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
- 8) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
 - B) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - C) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - D) $A \cdot B \cdot C$ è invertibile.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - C) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.

- 1) Siano A, B e C tre matrici reali $n \times n$, $\mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora A) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - B) $\det(-A) = \det A$.
 - C) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - D) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - C) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - D) esistono gruppi non commutativi dotati di un numero finito di elementi.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - B) l'insieme delle matrici reali $A=(a_j^i)\in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4=a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - C) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - D) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - B) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - C) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - D) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .

5) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora

- A) può accadere che ${\bf S}$ ammetta infinite soluzioni.
- B) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
- C) le equazioni di ${\bf S}$ sono linearmente indipendenti se e solo se ${\bf S}$ ammette soltanto la soluzione nulla
- D) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
 - B) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - C) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - D) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
- 7) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - B) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - C) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - D) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
- 9) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - B) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - C) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - D) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.

- 1) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
 - B) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
 - C) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - D) se ${\bf S}$ ammette soluzione allora le equazioni di ${\bf S}$ sono linearmente indipendenti.
- 2) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se A è simmetrica allora T è diagonalizzabile.
 - B) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - C) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - D) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.
- 3) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
 - B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - C) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
 - D) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - B) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
 - C) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - D) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.

5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z=0 e x+y=1 rispetto al riferimento cartesiano naturale. Allora

- A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
- B) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
- C) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
- D) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
- 6) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
 - B) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - C) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
 - D) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
- 7) Siano $A, B \in C$ tre matrici reali $n \times n, \mathbf{0}$ la matrice nulla e I la matrice identica $n \times n$. Allora
 - A) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - B) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
 - C) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - D) $\det(-A) = \det A$.
- 8) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - B) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
 - C) l'insieme delle funzioni continue da IR in IR che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
- 9) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) se $T: \mathbb{R}^n \to \mathbb{R}^m$ (m, n > 0) è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - B) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - C) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - D) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.

- 1) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) $A \cdot B \cdot C$ è invertibile.
 - B) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - C) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - D) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
- 2) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - B) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - C) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - D) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.
- 3) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - B) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
 - C) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - D) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
- 4) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da IR in IR è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - D) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 5) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono un piano ed una retta fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono piani fra loro paralleli.
 - D) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.

6) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora

- A) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
- B) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
- \mathcal{C}) V ammette una ed una sola base ortogonale.
- D) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
- 7) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - B) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
 - C) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - D) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2, y=-t, z=t e x=1+t, y=-t, z=2 è $\frac{1}{2}$.
 - B) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - C) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - D) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
- 9) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
 - B) può accadere che S ammetta infinite soluzioni.
 - C) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\|\cdot\|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$.
 - B) V ammette una ed una sola base ortogonale.
 - C) detta (x_1, \ldots, x_n) l'*n*-upla delle coordinate del generico vettore $\mathbf{v} \in V$ rispetto ad una base $(\mathbf{u}_1, \ldots, \mathbf{u}_n)$ di V ortonormale, si ha che $x_i = \langle \mathbf{v}, \mathbf{u}_i \rangle$ per ogni indice i.
 - D) per ogni $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ ed ogni $\alpha, \beta \in \mathbb{R}$ si ha che $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \cdot \langle \mathbf{u}, \mathbf{w} \rangle + \beta \cdot \langle \mathbf{v}, \mathbf{w} \rangle$.
- 2) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) l'applicazione da \mathbb{R}^3 in \mathbb{R}^3 che manda ogni vettore nel vettore nullo è un endomorfismo.
 - B) se $T: \mathbb{R}^n \to \mathbb{R}^m \ (m, n > 0)$ è una trasformazione lineare allora l'immagine di T è un sottospazio vettoriale di \mathbb{R}^m .
 - C) la funzione $F: \mathbb{R}^3 \to \mathbb{R}^2$ definita da F(x, y, z) = (x z, y) è una trasformazione lineare.
 - D) se T è un automorfismo sullo spazio vettoriale reale standard \mathbb{R}^n allora la matrice associata a T rispetto alla base canonica è invertibile.
- 3) Sia S un sistema lineare a coefficienti reali di m equazioni in n incognite (m, n) interi positivi). Siano $A \in C$ la matrice incompleta e completa associate ad S, rispettivamente. Allora
 - A) ogni sottospazio vettoriale 5-dimensionale di $M_3(\mathbb{R})$ può essere rappresentato, relativamente alla base canonica di $M_3(\mathbb{R})$, da un (opportuno) sistema lineare parametrico di 9 equazioni in 5 parametri.
 - B) se $\rho(A) < m$ e $\rho(C) < n$ allora **S** non può ammettere soluzioni.
 - C) S ammette soluzione se e solo se il rango di C è strettamente maggiore del rango di A.
 - D) se S ammette soluzione allora le equazioni di S sono linearmente indipendenti.
- 4) Quali delle seguenti affermazioni sono vere?
 - A) nello spazio euclideo standard il volume del tetraedro di vertici (0,0,0), (3,0,3), (3,3,0), (0,3,3) è 9.
 - B) nel piano euclideo standard la distanza fra il punto di coordinate (2, -3) e la retta di equazione 2x 3y = 1 è uguale a $\frac{10}{3}$.
 - C) nello spazio euclideo standard 3-dimensionale i tre punti (1,2,3), (4,5,6), (7,8,9) sono allineati.
 - D) nello spazio euclideo standard 3-dimensionale il coseno dell'angolo fra le rette di equazioni parametriche x=2,y=-t,z=t e x=1+t,y=-t,z=2 è $\frac{1}{2}$.

- 5) Si dica quali delle seguenti affermazioni sono vere:
 - A) esistono gruppi non commutativi dotati di un numero finito di elementi.
 - B) l'insieme dei numeri interi è un gruppo rispetto all'operazione di somma.
 - C) l'insieme delle traslazioni del piano (inclusa la traslazione nulla) è un gruppo rispetto alla usuale operazione di composizione.
 - D) l'insieme dei numeri complessi è un campo rispetto alle usuali operazioni di somma e prodotto.
- 6) Siano $A, B \in C$ tre matrici reali $n \times n$, 0 la matrice nulla e I la matrice identica $n \times n$. Allora
 - A) se $det(A \cdot B) = 1$ allora $det(B \cdot A) = 1$.
 - B) $A \cdot B \cdot C = C \cdot B \cdot A$.
 - C) $\det(-A) = \det A$.
 - D) se B è l'inversa di C allora B^{100} è l'inversa di C^{100} .
- 7) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme delle funzioni continue da IR in IR che hanno integrale uguale a 1 sull'intervallo [0,1] è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - B) l'insieme $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ è un sottospazio vettoriale dello spazio vettoriale reale \mathbb{R}^3 (dotato delle usuali operazioni).
 - C) l'insieme delle matrici reali $A = (a_j^i) \in \mathcal{M}_9(\mathbb{R})$ tali che $a_5^4 = a_4^5$ è un sottospazio vettoriale dello spazio vettoriale reale $\mathcal{M}_9(\mathbb{R})$ (dotato delle usuali operazioni).
 - D) l'insieme delle matrici reali 4×4 che hanno esattamente un termine uguale a 1 e tutti gli altri uguali a 0 è una base per lo spazio vettoriale reale $\mathcal{M}_4(\mathbb{R})$, dotato delle usuali operazioni.
- 8) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni parametriche x=3,y=s,z=-t e x=1,y=s-3,z=2 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro ortogonali.
 - B) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - C) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro ortogonali.
 - D) \mathcal{A} e \mathcal{B} sono un piano ed una retta fra loro paralleli.
- 9) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n > 0 e sia A la matrice associata a T rispetto ad una base fissata $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ di V. Allora
 - A) se la somma delle molteplicità geometriche degli autovalori reali di T è uguale a n allora T è diagonalizzabile.
 - B) se A è simmetrica allora T è diagonalizzabile.
 - C) A è anche la matrice associata a S rispetto a $(\mathbf{u}_1, \dots, \mathbf{u}_n)$.
 - D) se $T(\mathbf{u}_1) = \mathbf{u}_1, T(\mathbf{u}_2) = \mathbf{u}_2, \dots, T(\mathbf{u}_n) = \mathbf{u}_n$ allora $(\mathbf{u}_1, \dots, \mathbf{u}_n)$ è una base spettrale per T.

- 1) Sia $\langle \cdot, \cdot \rangle$ un prodotto scalare su di uno spazio vettoriale reale V di dimensione finita n > 0 e sia $\| \cdot \|$ la norma indotta da $\langle \cdot, \cdot \rangle$. Allora
 - A) se n = 3 e $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ è una base ortogonale di V allora il sottospazio generato dai vettori \mathbf{v}_1 e \mathbf{v}_2 è il complemento ortogonale di quello generato dal vettore \mathbf{v}_3 .
 - B) ((-2,0),(0,-2)) e ((-3,0),(-1,1)) sono basi concordi dello spazio vettoriale euclideo standard \mathbb{R}^2 .
 - C) per ogni $\mathbf{u}, \mathbf{v} \in V$ si ha che $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
 - D) se $T: V \to V$ è una trasformazione ortogonale allora lo è anche -T.
- 2) Siano A, B e C tre matrici reali $n \times n$ invertibili e I la matrice identica $n \times n$. Allora
 - A) se $A \cdot C = I$ allora $A \cdot B \cdot C = B$.
 - B) $A \cdot B \cdot C$ è invertibile.
 - C) $({}^{t}A \cdot {}^{t}B \cdot {}^{t}C) = {}^{t}(A \cdot B \cdot C).$
 - D) $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.
- 3) Si dica quali delle seguenti affermazioni sono vere:
 - A) l'insieme $\{(0,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ è una base per lo spazio vettoriale standard 4-dimensionale sul campo \mathbb{R} .
 - B) l'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - C) l'insieme dei polinomi a coefficienti reali nella indeterminata x è uno spazio vettoriale reale rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) l'insieme delle matrici reali 5×5 è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- 4) Siano \mathcal{A} e \mathcal{B} i sottospazi dello spazio euclideo standard 3-dimensionale di rispettive equazioni z = 0 e x + y = 1 rispetto al riferimento cartesiano naturale. Allora
 - A) $\mathcal{A} \in \mathcal{B}$ sono piani fra loro paralleli.
 - B) \mathcal{A} e \mathcal{B} sono rette fra loro ortogonali.
 - C) \mathcal{A} e \mathcal{B} sono rette fra loro parallele.
 - D) \mathcal{A} e \mathcal{B} sono piani fra loro ortogonali.

- 5) Sia S un sistema lineare omogeneo a coefficienti reali nelle incognite reali x_1, \ldots, x_n . Allora
 - A) Se S ammette solo la soluzione nulla allora la matrice incompleta associata ad S è quadrata e regolare.
 - B) le equazioni di S sono linearmente indipendenti se e solo se S ammette soltanto la soluzione nulla.
 - C) l'insieme delle soluzioni di S è un sottospazio vettoriale di \mathbb{R}^n rispetto alle usuali operazioni di somma e prodotto per uno scalare.
 - D) può accadere che S ammetta infinite soluzioni.
- 6) Si dica quali delle seguenti affermazioni sono vere (gli spazi vettoriali reali citati devono essere considerati rispetto alle usuali operazioni di somma e prodotto per uno scalare):
 - A) la somma di due trasformazioni lineari da \mathbb{R}^5 a \mathbb{R}^5 è una trasformazione lineare.
 - B) la funzione $F: \mathcal{M}_5(\mathbb{R}) \to \mathbb{R}^2$ che porta ogni matrice A nella coppia $F(A) = (Tr(A), \det A)$ è una trasformazione lineare.
 - C) l'identità da \mathbb{R}^4 a \mathbb{R}^4 è una trasformazione lineare.
 - D) tutte le trasformazioni lineari iniettive $T: \mathbb{R}^8 \to \mathbb{R}^8$ sono anche suriettive.
- 7) Siano S e T due endomorfismi su uno spazio vettoriale reale V di dimensione finita n>0 e siano A e B le matrici associate ad S e a T rispetto ad una base fissata di V. Allora
 - A) se A e B sono simili allora S e T hanno lo stesso polinomio caratteristico.
 - B) se S e T hanno lo stesso polinomio caratteristico allora hanno gli stessi autovalori.
 - C) la somma delle molteplicità geometriche degli autovalori di T è non superiore a n.
 - D) se $A^2 = B^2$ allora $S \circ S = T \circ T$.
- 8) Quali delle seguenti affermazioni sono vere?
 - A) se \mathbf{u} e \mathbf{v} sono due vettori dello spazio vettoriale euclideo standard \mathbb{R}^3 , orientato in modo naturale, si ha che $\mathbf{u} \wedge \mathbf{v}$ è un vettore ortogonale sia a \mathbf{u} che a \mathbf{v} .
 - B) la trasformazione dello spazio euclideo standard in sé che porta il generico punto (x, y, z) nel punto (x, -y, -z) è una isometria.
 - C) nel piano euclideo standard l'area del parallelogramma di vertici (0, -1), (1, 2), (3, 0), (4, 3) è uguale a 8.
 - D) nello spazio euclideo standard la distanza fra il punto (0,0,0) e il piano di equazione cartesiana 2x + y 3z = 1 è uguale a $\frac{1}{\sqrt{14}}$.
- 9) Si dica quali delle seguenti affermazioni sono vere:
 - A) nell'insieme dei numeri razionali l'usuale operazione di prodotto è associativa.
 - B) l'insieme dei numeri reali è un campo rispetto alle usuali operazioni di somma e prodotto.
 - C) l'insieme delle matrici reali $n \times n$ $(n \ge 2)$ è un gruppo commutativo rispetto alla usuale operazione di somma.
 - D) l'insieme dei numeri naturali è un anello rispetto alle usuali operazioni di somma e prodotto.