Projective normality of model wonderful varieties

Jacopo Gandini

(joint with Paolo Bravi and Andrea Maffei)

Oberwolfach, March $8^{\rm th}$ 2012

1/11

The problem

G is a semisimple connected algebraic group over \mathbb{C} .

Definition

A G-variety M is wonderful (of rank n) if

- i) M is smooth and projective,
- M possesses an open orbit whose complement is the union of n smooth prime divisors (the **boundary divisors**) with normal crossings and non-empty intersection,
- iii) every orbit closure in M equals the intersection of the boundary divisors which contain it.

Question. Let *M* be a wonderful variety and let $\mathcal{L}, \mathcal{L}' \in Pic(M)$ be globally generated. Is the multiplication of sections

 $m_{\mathcal{L},\mathcal{L}'}: \Gamma(M,\mathcal{L}) \times \Gamma(M,\mathcal{L}') \longrightarrow \Gamma(M,\mathcal{L}\otimes \mathcal{L}')$

surjective?

The problem

G is a semisimple connected algebraic group over \mathbb{C} .

Definition

A G-variety M is wonderful (of rank n) if

- i) M is smooth and projective,
- ii) *M* possesses an open orbit whose complement is the union of *n* smooth prime divisors (the **boundary divisors**) with normal crossings and non-empty intersection,
- iii) every orbit closure in M equals the intersection of the boundary divisors which contain it.

surjective?

The problem

G is a semisimple connected algebraic group over \mathbb{C} .

Definition

A G-variety M is wonderful (of rank n) if

- i) M is smooth and projective,
- ii) *M* possesses an open orbit whose complement is the union of *n* smooth prime divisors (the **boundary divisors**) with normal crossings and non-empty intersection,
- iii) every orbit closure in M equals the intersection of the boundary divisors which contain it.

Question. Let *M* be a wonderful variety and let $\mathcal{L}, \mathcal{L}' \in Pic(M)$ be globally generated. Is the multiplication of sections

$$m_{\mathcal{L},\mathcal{L}'}: \Gamma(M,\mathcal{L}) \times \Gamma(M,\mathcal{L}') \longrightarrow \Gamma(M,\mathcal{L}\otimes \mathcal{L}')$$

surjective?

Symmetric wondeful varieties. Let $\theta : G \to G$ be an algebraic involution and denote G^{θ} the set of fixed points: then $G/N_G(G^{\theta})$ admits a wonderful compactification [De Concini-Procesi 83].

In this case the question was raised in [Faltings 98] and a positive answer was given in [Chirivì-Maffei 04]: $m_{\mathcal{L},\mathcal{L}'}$ is surjective for every \mathcal{L},\mathcal{L}' .

Model wondeful varieties. Let $K \subset G$ be such that G/K is quasi affine and $\mathbb{C}[G/K] \simeq \bigoplus_{hr(G)} V$: then $G/N_G(K)$ admits a wonderful compactification.

There exists a unique model wonderful variety M_G^{mod} of maximal dimension: every *G*-stable subvariety of M_G^{mod} is a model wonderful variety for *G* and every model wonderful variety for *G* is isomorphic to a *G*-stable subvariety of M_G^{mod} [Luna 07].

Symmetric wondeful varieties. Let θ : $G \rightarrow G$ be an algebraic involution and denote G^{θ} the set of fixed points: then $G/N_G(G^{\theta})$ admits a wonderful compactification [De Concini-Procesi 83].

In this case the question was raised in [Faltings 98] and a positive answer was given in [Chirivì-Maffei 04]: $m_{\mathcal{L},\mathcal{L}'}$ is surjective for every $\mathcal{L}, \mathcal{L}'$.

Model wondeful varieties. Let $K \subset G$ be such that G/K is quasi affine and $\mathbb{C}[G/K] \simeq \bigoplus_{hr(G)} V$: then $G/N_G(K)$ admits a wonderful compactification.

There exists a unique model wonderful variety M_G^{mod} of maximal dimension: every G-stable subvariety of M_G^{mod} is a model wonderful variety for G and every model wonderful variety for G is isomorphic to a G-stable subvariety of M_G^{mod} [Luna 07].

Symmetric wondeful varieties. Let θ : $G \rightarrow G$ be an algebraic involution and denote G^{θ} the set of fixed points: then $G/N_G(G^{\theta})$ admits a wonderful compactification [De Concini-Procesi 83].

In this case the question was raised in [Faltings 98] and a positive answer was given in [Chirivì-Maffei 04]: $m_{\mathcal{L},\mathcal{L}'}$ is surjective for every \mathcal{L},\mathcal{L}' .

Model wondeful varieties. Let $K \subset G$ be such that G/K is quasi affine and $\mathbb{C}[G/K] \simeq \bigoplus_{Irr(G)} V$: then $G/N_G(K)$ admits a wonderful compactification.

There exists a unique model wonderful variety M_G^{mod} of maximal dimension: every G-stable subvariety of M_G^{mod} is a model wonderful variety for G and every model wonderful variety for G is isomorphic to a G-stable subvariety of M_G^{mod} [Luna 07].

Symmetric wondeful varieties. Let θ : $G \rightarrow G$ be an algebraic involution and denote G^{θ} the set of fixed points: then $G/N_G(G^{\theta})$ admits a wonderful compactification [De Concini-Procesi 83].

In this case the question was raised in [Faltings 98] and a positive answer was given in [Chirivì-Maffei 04]: $m_{\mathcal{L},\mathcal{L}'}$ is surjective for every \mathcal{L},\mathcal{L}' .

Model wondeful varieties. Let $K \subset G$ be such that G/K is quasi affine and $\mathbb{C}[G/K] \simeq \bigoplus_{Irr(G)} V$: then $G/N_G(K)$ admits a wonderful compactification.

There exists a unique model wonderful variety M_G^{mod} of maximal dimension: every *G*-stable subvariety of M_G^{mod} is a model wonderful variety for *G* and every model wonderful variety for *G* is isomorphic to a *G*-stable subvariety of M_G^{mod} [Luna 07].

Colors

Let M be a wonderful variety. Fix $T \subset B$ a maximal torus and a Borel subgroup.

Definition

The colors of M are the elements of the set

 $\Delta = \{B\text{-stable prime divisors of } M \text{ which are not } G\text{-stable}\}$

The classes of colors form a basis of the Picard group [Brion 89]:

 ${\sf Pic}(M)\simeq \mathbb{Z}[\Delta], \qquad \qquad {\sf Pic}(M)_{\geqslant 0}\simeq \mathbb{N}[\Delta]$

where $Pic(M)_{\geq 0}$ is the monoid of globally generated line bundles.

Let M be a wonderful variety. Fix $T \subset B$ a maximal torus and a Borel subgroup.

Definition

The colors of M are the elements of the set

 $\Delta = \{B\text{-stable prime divisors of } M \text{ which are not } G\text{-stable}\}$

The classes of colors form a basis of the Picard group [Brion 89]:

 $\mathsf{Pic}(M)\simeq \mathbb{Z}[\Delta], \qquad \qquad \mathsf{Pic}(M)_{\geqslant 0}\simeq \mathbb{N}[\Delta]$

where $Pic(M)_{\geq 0}$ is the monoid of globally generated line bundles.

Let M be a wonderful variety. Fix $T \subset B$ a maximal torus and a Borel subgroup.

Definition

The colors of M are the elements of the set

 $\Delta = \{B\text{-stable prime divisors of } M \text{ which are not } G\text{-stable}\}$

The classes of colors form a basis of the Picard group [Brion 89]:

$$\operatorname{Pic}(M) \simeq \mathbb{Z}[\Delta], \qquad \qquad \operatorname{Pic}(M)_{\geq 0} \simeq \mathbb{N}[\Delta]$$

where $Pic(M)_{\geq 0}$ is the monoid of globally generated line bundles.

Let $z \in M$ the B^- fixed point and let Y = Gz the closed orbit.

Definition

The spherical roots of M are the elements of the set

 $\Sigma = \{T \text{-weights of the } T \text{-module } T_z M / T_z Y\}.$

) There is a natural bijection

 $\Sigma \longleftrightarrow \{ \text{boundary divisors of } M \}$ $\sigma \longmapsto M^{\sigma} : T_z M / T_z M^{\sigma} \simeq \mathbb{C}_{\sigma}$ This induces a pairing $c : \Sigma \times \Delta \to \mathbb{Z}$ defined by $[M^{\sigma}] = \sum_{D \in \Delta} c(\sigma, D)[D]$

By identifying σ with $[M^{\sigma}]$ we get an inclusion $\mathbb{Z}[\Sigma] \subset \mathbb{Z}[\Delta]$. ii) Σ is the basis of a reduced root system Φ_{Σ} [Brion 90, Knop 90].

Let $z \in M$ the B^- fixed point and let Y = Gz the closed orbit.

Definition

The spherical roots of M are the elements of the set

 $\Sigma = \{T \text{-weights of the } T \text{-module } T_z M / T_z Y\}.$

i) There is a natural bijection

$$\begin{array}{rcl} \Sigma & \longleftrightarrow & \{ \text{boundary divisors of } M \} \\ \sigma & \longmapsto & M^{\sigma} & : & T_z M / T_z M^{\sigma} \simeq \mathbb{C}_{\sigma} \end{array}$$

This induces a pairing $c: \Sigma imes \Delta o \mathbb{Z}$ defined by

$$[M^{\sigma}] = \sum_{D \in \Delta} c(\sigma, D)[D]$$

By identifying σ with $[M^{\sigma}]$ we get an inclusion $\mathbb{Z}[\Sigma] \subset \mathbb{Z}[\Delta]$.

ii) Σ is the basis of a reduced root system Φ_{Σ} [Brion 90, Knop 90]

Let $z \in M$ the B^- fixed point and let Y = Gz the closed orbit.

Definition

The spherical roots of M are the elements of the set

 $\Sigma = \{T \text{-weights of the } T \text{-module } T_z M / T_z Y\}.$

i) There is a natural bijection

$$\begin{array}{rcl} \Sigma & \longleftrightarrow & \{ \text{boundary divisors of } M \} \\ \sigma & \longmapsto & M^{\sigma} & : & T_z M / T_z M^{\sigma} \simeq \mathbb{C}_{\sigma} \end{array}$$

This induces a pairing $c: \Sigma \times \Delta \rightarrow \mathbb{Z}$ defined by

$$[M^{\sigma}] = \sum_{D \in \Delta} c(\sigma, D)[D]$$

By identifying σ with $[M^{\sigma}]$ we get an inclusion $\mathbb{Z}[\Sigma] \subset \mathbb{Z}[\Delta]$.

) Σ is the basis of a reduced root system Φ_{Σ} [Brion 90, Knop 90]

Let $z \in M$ the B^- fixed point and let Y = Gz the closed orbit.

Definition

The spherical roots of M are the elements of the set

 $\Sigma = \{T \text{-weights of the } T \text{-module } T_z M / T_z Y\}.$

i) There is a natural bijection

$$\begin{array}{rcl} \Sigma & \longleftrightarrow & \{ \text{boundary divisors of } M \} \\ \sigma & \longmapsto & M^{\sigma} & : & T_z M / T_z M^{\sigma} \simeq \mathbb{C}_{\sigma} \end{array}$$

This induces a pairing $c: \Sigma \times \Delta \rightarrow \mathbb{Z}$ defined by

$$[M^{\sigma}] = \sum_{D \in \Delta} c(\sigma, D)[D]$$

By identifying σ with $[M^{\sigma}]$ we get an inclusion $\mathbb{Z}[\Sigma] \subset \mathbb{Z}[\Delta]$. ii) Σ is the basis of a reduced root system Φ_{Σ} [Brion 90, Knop 90].

The triple (Σ, Δ, c) was introduced by Luna to classify wonderful varieties via their invariants [Luna 01] and it is as a big part of the combinatorial datum of M (the *spherical system*).

Example. In the case of the wonderful compactification of G_{ad} regarded as a symmetric $G \times G$ variety, then the following identifications hold:

More generally, whenever M is a (non-exceptional) symmetric wonderful variety, the triple (Σ, Δ, c) is identified with the triple of the root system Φ_{Σ} .

The triple (Σ, Δ, c) was introduced by Luna to classify wonderful varieties via their invariants [Luna 01] and it is as a big part of the combinatorial datum of M (the *spherical system*).

Example. In the case of the wonderful compactification of G_{ad} regarded as a symmetric $G \times G$ variety, then the following identifications hold:

Σ	\longleftrightarrow	$\{\text{simple roots of } G \text{ w.r.t. } T \subset B\}$
Δ	\longleftrightarrow	{fund. weights of G w.r.t. $T \subset B$ }
С	\longleftrightarrow	Cartan matrix of G w.r.t. $T \subset B$

More generally, whenever M is a (non-exceptional) symmetric wonderful variety, the triple (Σ, Δ, c) is identified with the triple of the root system Φ_{Σ} .

The triple (Σ, Δ, c) was introduced by Luna to classify wonderful varieties via their invariants [Luna 01] and it is as a big part of the combinatorial datum of M (the *spherical system*).

Example. In the case of the wonderful compactification of G_{ad} regarded as a symmetric $G \times G$ variety, then the following identifications hold:

Σ	\longleftrightarrow	$\{\text{simple roots of } G \text{ w.r.t. } T \subset B\}$
Δ	\longleftrightarrow	{fund. weights of G w.r.t. $T \subset B$ }
с	\longleftrightarrow	Cartan matrix of G w.r.t. $T \subset B$

More generally, whenever M is a (non-exceptional) symmetric wonderful variety, the triple (Σ, Δ, c) is identified with the triple of the root system Φ_{Σ} .

The triple (Σ, Δ, c) was introduced by Luna to classify wonderful varieties via their invariants [Luna 01] and it is as a big part of the combinatorial datum of M (the *spherical system*).

Example. In the case of the wonderful compactification of G_{ad} regarded as a symmetric $G \times G$ variety, then the following identifications hold:

Σ	\longleftrightarrow	$\{\text{simple roots of } G \text{ w.r.t. } T \subset B\}$
Δ	\longleftrightarrow	{fund. weights of G w.r.t. $T \subset B$ }
С	\longleftrightarrow	Cartan matrix of G w.r.t. $T \subset B$

More generally, whenever M is a (non-exceptional) symmetric wonderful variety, the triple (Σ, Δ, c) is identified with the triple of the root system Φ_{Σ} .

If $E, F \in \mathbb{N}[\Delta]$, we write $F \leq_{\Sigma} E$ if $E - F \in \mathbb{N}[\Sigma]$. Denote $\Delta(E) = \{ D \in \mathbb{N}[\Delta] : D \leq_{\Sigma} E \}.$

Definition

Let $E, F \in \mathbb{N}[\Delta]$. We say that E covers F if $F \leq_{\Sigma} E$ and F is maximal with this property. If this the case, we say that the difference $E - F \in \mathbb{N}[\Sigma]$ is a covering relation for (Σ, Δ, c) .

Remark 1. Let $\gamma \in \mathbb{N}[\Sigma] \subset \mathbb{Z}[\Delta]$ and write $\gamma = \gamma^+ - \gamma^-$, where $\gamma^+, \gamma^- \in \mathbb{N}[\Delta]$ have no common support. Then γ is a covering relation if and only if γ^+ covers γ^- .

If $E, F \in \mathbb{N}[\Delta]$, we write $F \leq \Sigma E$ if $E - F \in \mathbb{N}[\Sigma]$. Denote

$$\Delta(E) = \{ D \in \mathbb{N}[\Delta] : D \leq_{\Sigma} E \}.$$

Definition

Let $E, F \in \mathbb{N}[\Delta]$. We say that E covers F if $F <_{\Sigma} E$ and F is maximal with this property. If this the case, we say that the difference $E - F \in \mathbb{N}[\Sigma]$ is a covering relation for (Σ, Δ, c) .

Remark 1. Let $\gamma \in \mathbb{N}[\Sigma] \subset \mathbb{Z}[\Delta]$ and write $\gamma = \gamma^+ - \gamma^-$, where $\gamma^+, \gamma^- \in \mathbb{N}[\Delta]$ have no common support. Then γ is a covering relation if and only if γ^+ covers γ^- .

If $E, F \in \mathbb{N}[\Delta]$, we write $F \leq \Sigma E$ if $E - F \in \mathbb{N}[\Sigma]$. Denote

$$\Delta(E) = \{ D \in \mathbb{N}[\Delta] : D \leq_{\Sigma} E \}.$$

Definition

Let $E, F \in \mathbb{N}[\Delta]$. We say that E covers F if $F <_{\Sigma} E$ and F is maximal with this property. If this the case, we say that the difference $E - F \in \mathbb{N}[\Sigma]$ is a covering relation for (Σ, Δ, c) .

Remark 1. Let $\gamma \in \mathbb{N}[\Sigma] \subset \mathbb{Z}[\Delta]$ and write $\gamma = \gamma^+ - \gamma^-$, where $\gamma^+, \gamma^- \in \mathbb{N}[\Delta]$ have no common support. Then γ is a covering relation if and only if γ^+ covers γ^- .

If $E, F \in \mathbb{N}[\Delta]$, we write $F \leq_{\Sigma} E$ if $E - F \in \mathbb{N}[\Sigma]$. Denote

$$\Delta(E) = \{ D \in \mathbb{N}[\Delta] : D \leq_{\Sigma} E \}.$$

Definition

Let $E, F \in \mathbb{N}[\Delta]$. We say that E covers F if $F <_{\Sigma} E$ and F is maximal with this property. If this the case, we say that the difference $E - F \in \mathbb{N}[\Sigma]$ is a covering relation for (Σ, Δ, c) .

Remark 1. Let $\gamma \in \mathbb{N}[\Sigma] \subset \mathbb{Z}[\Delta]$ and write $\gamma = \gamma^+ - \gamma^-$, where $\gamma^+, \gamma^- \in \mathbb{N}[\Delta]$ have no common support. Then γ is a covering relation if and only if γ^+ covers γ^- .

If $E \in \mathbb{N}[\Delta]$, denote $s_E \in \Gamma(M, \mathcal{L}_E)^{(B)}$ the canonical section and denote $V_E = \langle Gs_E \rangle$. If $\gamma \in \mathbb{N}[\Sigma]$, denote $s^{\gamma} \in \Gamma(M, \mathcal{L}_{\gamma})^G$ the canonical section.

Definition

Let $E, F \in \mathbb{N}[\Delta]$ and $D \in \Delta(E + F)$. We say that (E, F, D) is a **low triple** if the following condition holds:

If $E' \in \Delta(E)$ and $F' \in \Delta(F)$ are such that $D \in \Delta(E' + F')$, then E' = E and F' = F.

If $E \in \mathbb{N}[\Delta]$, denote $s_E \in \Gamma(M, \mathcal{L}_E)^{(B)}$ the canonical section and denote $V_E = \langle Gs_E \rangle$. If $\gamma \in \mathbb{N}[\Sigma]$, denote $s^{\gamma} \in \Gamma(M, \mathcal{L}_{\gamma})^G$ the canonical section. Then for $E \in \mathbb{N}[\Delta]$ we have

$$\Gamma(M,\mathcal{L}_E) = \bigoplus_{F \in \Delta(E)} s^{E-F} V_F.$$

Definition

Let $E, F \in \mathbb{N}[\Delta]$ and $D \in \Delta(E + F)$. We say that (E, F, D) is a **low triple** if the following condition holds:

If $E' \in \Delta(E)$ and $F' \in \Delta(F)$ are such that $D \in \Delta(E' + F')$, then E' = E and F' = F.

If $E \in \mathbb{N}[\Delta]$, denote $s_E \in \Gamma(M, \mathcal{L}_E)^{(B)}$ the canonical section and denote $V_E = \langle Gs_E \rangle$. If $\gamma \in \mathbb{N}[\Sigma]$, denote $s^{\gamma} \in \Gamma(M, \mathcal{L}_{\gamma})^G$ the canonical section. Then for $E \in \mathbb{N}[\Delta]$ we have

$$\Gamma(M,\mathcal{L}_E) = \bigoplus_{F \in \Delta(E)} s^{E-F} V_F.$$

Definition

Let $E, F \in \mathbb{N}[\Delta]$ and $D \in \Delta(E + F)$. We say that (E, F, D) is a low triple if the following condition holds:

If $E' \in \Delta(E)$ and $F' \in \Delta(F)$ are such that $D \in \Delta(E' + F')$, then E' = E and F' = F.

If $E \in \mathbb{N}[\Delta]$, denote $s_E \in \Gamma(M, \mathcal{L}_E)^{(B)}$ the canonical section and denote $V_E = \langle Gs_E \rangle$. If $\gamma \in \mathbb{N}[\Sigma]$, denote $s^{\gamma} \in \Gamma(M, \mathcal{L}_{\gamma})^G$ the canonical section. Then for $E \in \mathbb{N}[\Delta]$ we have

$$\Gamma(M,\mathcal{L}_E) = \bigoplus_{F \in \Delta(E)} s^{E-F} V_F.$$

Definition

Let $E, F \in \mathbb{N}[\Delta]$ and $D \in \Delta(E + F)$. We say that (E, F, D) is a low triple if the following condition holds:

If $E' \in \Delta(E)$ and $F' \in \Delta(F)$ are such that $D \in \Delta(E' + F')$, then E' = E and F' = F.

If $T = \sum n_D D \in \mathbb{Z}[\Delta]$, denote $ht(T) = \sum n_D$.

Bravi, G., Maffei (Bravi, G., Maffei

Let M be a wonderful variety and suppose that

- i) For every low triple (E, F, D) with $E, F \in \Delta$, it holds $s^{E+F-D}V_D \subset V_EV_F$.
- ii) For every covering relation $\gamma \in \mathbb{N}[\Sigma]$, it holds $ht(\gamma^+) \leq 2$.

Then the multiplication $m_{E,F}$ is surjective for every $E,F\in\mathbb{N}[\Delta].$

In case (Σ, Δ, c) is the triple associated to Φ_{Σ} , then it is very easy to show that $ht(\gamma^+) \leq 2$ for every covering relation $\gamma \in \mathbb{N}[\Sigma]$.

Conjecture

For every covering relation $\gamma \in \mathbb{N}[\Sigma]$, it holds $\mathrm{ht}(\gamma^+) \leqslant 2$.

Reduction theorem

If $T = \sum n_D D \in \mathbb{Z}[\Delta]$, denote $ht(T) = \sum n_D$.

Theorem (Bravi, G., Maffei)

Let M be a wonderful variety and suppose that

i) For every low triple (E, F, D) with $E, F \in \Delta$, it holds $s^{E+F-D}V_D \subset V_EV_F$.

ii) For every covering relation $\gamma \in \mathbb{N}[\Sigma]$, it holds $\operatorname{ht}(\gamma^+) \leq 2$. Then the multiplication $m_{E,F}$ is surjective for every $E, F \in \mathbb{N}[\Delta]$.

In case (Σ, Δ, c) is the triple associated to Φ_{Σ} , then it is very easy to show that $ht(\gamma^+) \leqslant 2$ for every covering relation $\gamma \in \mathbb{N}[\Sigma]$.

Conjecture

For every covering relation $\gamma \in \mathbb{N}[\Sigma],$ it holds $\mathrm{ht}(\gamma^+) \leqslant 2.$

Reduction theorem

If $T = \sum n_D D \in \mathbb{Z}[\Delta]$, denote $ht(T) = \sum n_D$.

Theorem (Bravi, G., Maffei)

Let M be a wonderful variety and suppose that

i) For every low triple (E, F, D) with $E, F \in \Delta$, it holds $s^{E+F-D}V_D \subset V_EV_F$.

ii) For every covering relation $\gamma \in \mathbb{N}[\Sigma]$, it holds $\operatorname{ht}(\gamma^+) \leq 2$. Then the multiplication $m_{E,F}$ is surjective for every $E, F \in \mathbb{N}[\Delta]$.

In case (Σ, Δ, c) is the triple associated to Φ_{Σ} , then it is very easy to show that $ht(\gamma^+) \leq 2$ for every covering relation $\gamma \in \mathbb{N}[\Sigma]$.

Conjecture

For every covering relation $\gamma \in \mathbb{N}[\Sigma]$, it holds $\mathrm{ht}(\gamma^+) \leqslant 2.$

If $T = \sum n_D D \in \mathbb{Z}[\Delta]$, denote $ht(T) = \sum n_D$.

Theorem (Bravi, G., Maffei)

Let M be a wonderful variety and suppose that

i) For every low triple (E, F, D) with $E, F \in \Delta$, it holds $s^{E+F-D}V_D \subset V_EV_F$.

ii) For every covering relation $\gamma \in \mathbb{N}[\Sigma]$, it holds $\operatorname{ht}(\gamma^+) \leq 2$. Then the multiplication $m_{E,F}$ is surjective for every $E, F \in \mathbb{N}[\Delta]$.

In case (Σ, Δ, c) is the triple associated to Φ_{Σ} , then it is very easy to show that $ht(\gamma^+) \leq 2$ for every covering relation $\gamma \in \mathbb{N}[\Sigma]$.

Conjecture

For every covering relation $\gamma \in \mathbb{N}[\Sigma]$, it holds $ht(\gamma^+) \leq 2$.

On the contrary, condition i) may not be satisfied.

Example. Let G = SO(9) and let $M = M_G^{\text{mod}}$. Then the restriction to the closed orbit induces an inclusion $\text{Pic}(M) \subset \mathfrak{X}(B)$:

 $\Sigma = \{\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, 2\alpha_4\}$ $\Delta = \{\omega_1, \omega_2, \omega_3, 2\omega_4\}$

Then $(\omega_2, \omega_2, \omega_1)$ is a low triple and $V(\omega_1) \not\subset V(\omega_2)^{\otimes 2}$: it follows that $s^{2\omega_2-\omega_1}V_{\omega_1} \not\subset V_{\omega_2}^2$ and m_{ω_2,ω_2} is not surjective.

(Bravi, G., Maffei)

Let G be semisimple and connected of classical type and let $M = M_{C}^{mod}$. Then the multiplication

 $m_{E,F}: \Gamma(M, \mathcal{L}_E) \times \Gamma(M, \mathcal{L}_F) \longrightarrow \Gamma(M, \mathcal{L}_{E+F})$

On the contrary, condition i) may not be satisfied.

Example. Let G = SO(9) and let $M = M_G^{\text{mod}}$. Then the restriction to the closed orbit induces an inclusion $Pic(M) \subset \mathcal{X}(B)$:

$$\begin{split} \boldsymbol{\Sigma} &= \{ \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 + \boldsymbol{\alpha}_4, 2\boldsymbol{\alpha}_4 \} \\ \boldsymbol{\Delta} &= \{ \boldsymbol{\omega}_1, \boldsymbol{\omega}_2, \boldsymbol{\omega}_3, 2\boldsymbol{\omega}_4 \} \end{split}$$

Then $(\omega_2, \omega_2, \omega_1)$ is a low triple and $V(\omega_1) \not\subset V(\omega_2)^{\otimes 2}$: it follows that $s^{2\omega_2-\omega_1}V_{\omega_1} \not\subset V_{\omega_2}^2$ and m_{ω_2,ω_2} is not surjective.

Theorem (Bravi, G., Maffei)

Let G be semisimple and connected of classical type and let $M = M_G^{mod}$. Then the multiplication

 $m_{E,F}: \Gamma(M, \mathcal{L}_E) \times \Gamma(M, \mathcal{L}_F) \longrightarrow \Gamma(M, \mathcal{L}_{E+F})$

On the contrary, condition i) may not be satisfied.

Example. Let G = SO(9) and let $M = M_G^{\text{mod}}$. Then the restriction to the closed orbit induces an inclusion $Pic(M) \subset \mathcal{X}(B)$:

$$\Sigma = \{\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, 2\alpha_4\}$$
$$\Delta = \{\omega_1, \omega_2, \omega_3, 2\omega_4\}$$

Then $(\omega_2, \omega_2, \omega_1)$ is a low triple and $V(\omega_1) \not\subset V(\omega_2)^{\otimes 2}$: it follows that $s^{2\omega_2-\omega_1}V_{\omega_1} \not\subset V_{\omega_2}^2$ and m_{ω_2,ω_2} is not surjective.

Theorem (Bravi, G., Maffei)

Let G be semisimple and connected of classical type and let $M = M_G^{mod}$. Then the multiplication

 $m_{E,F}: \Gamma(M, \mathcal{L}_E) \times \Gamma(M, \mathcal{L}_F) \longrightarrow \Gamma(M, \mathcal{L}_{E+F})$

On the contrary, condition i) may not be satisfied.

Example. Let G = SO(9) and let $M = M_G^{\text{mod}}$. Then the restriction to the closed orbit induces an inclusion $Pic(M) \subset \mathcal{X}(B)$:

$$\Sigma = \{\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, 2\alpha_4\}$$
$$\Delta = \{\omega_1, \omega_2, \omega_3, 2\omega_4\}$$

Then $(\omega_2, \omega_2, \omega_1)$ is a low triple and $V(\omega_1) \not\subset V(\omega_2)^{\otimes 2}$: it follows that $s^{2\omega_2-\omega_1}V_{\omega_1} \not\subset V_{\omega_2}^2$ and m_{ω_2,ω_2} is not surjective.

Theorem (Bravi, G., Maffei)

Let G be semisimple and connected of classical type and let $M = M_G^{mod}$. Then the multiplication

 $m_{E,F}: \Gamma(M, \mathcal{L}_E) \times \Gamma(M, \mathcal{L}_F) \longrightarrow \Gamma(M, \mathcal{L}_{E+F})$

Thank you