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ABSTRACT OF THE DISSERTATION

Classical Billiards and Quantum Large Deviations

by Marco Lenci

Dissertation Director: Joel L. Lebowitz

This dissertation treats two topics in the general realm of probability in mathematical

physics:

Part I, Infinite step billiards, deals with the classical motion in a certain family

of non-compact billiards, defined via the following: To a given sequence of non-negative

numbers {pn}n∈N, such that pn ց 0, there corresponds a billiard table P :=
⋃

n∈N[n, n+

1]× [0, pn].

For these dynamical systems, we derive two categories of results. In the context of

topological dynamics, we study the so-called escape orbits. In particular, we find that,

for a large set of infinite step billiards, there is almost surely a unique escape orbit

which is somehow an attractor for every other trajectory. From the viewpoint of strict

ergodic theory, we present results about the existence of ergodic billiards. The main

theorem states that generically these systems are ergodic for almost all initial velocities.

In Part II, Large deviations for ideal quantum systems, we consider a general

d-dimensional quantum system of non-interacting particles in a very large (formally

infinite) container.

We prove that, in equilibrium, the fluctuations in the density of particles in a sub-

domain Λ of the container are described by a large deviation function related to the

ii



pressure of the system. That is, untypical densities occur with a probability expo-

nentially small in the volume of Λ, with the coefficient in the exponent given by the

appropriate thermodynamic potential. Furthermore, small fluctuations satisfy the cen-

tral limit theorem.
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Infinite step billiards
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Chapter 1

Introduction

The theory of dynamical systems is the tool that mathematicians have devised to study

the time evolution of systems of physical interest. The first basic fact one learns as

a student is that the knowledge of the equations that govern this evolution does not

ensure that one can in practice predict the state of the system for future times.

This “general principle” is as old as mechanics itself, but only in relatively recent

times has it become common knowledge that this unpredictability is not (only) a con-

sequence of the complicated nature of the dynamical equations, or of the large number

of degrees of freedom. Systems with very few degrees of freedom and very simple evo-

lution laws can exhibit chaotic behavior. Although the solutions to the equations are

unique—and thus completely determined by the choice of the initial conditions—the

dependence on the initial conditions does not allow for approximations that hold for a

long time. This phenomenon goes by the name of deterministic chaos.

Only for a very few systems are mathematicians able to integrate the equations of

motion, whence the term integrable systems. (It is hard to give a precise definition of

“very few”, especially after the discovery of the KAM theorem, but everybody who has

come across the field takes that as “none but the trivial examples in the textbooks”.) For

all other systems, the theory actually tries to deal with their intrinsic unpredictability

and one of the main tools it employs is probability. This branch of the theory of

dynamical systems is called ergodic theory.

One of the tasks ergodic theory takes on is that of classifying systems according to

their chaotic properties. For instance, in vague terms, a dynamical system is ergodic

when there are no non-trivial constants of the motion; chaotic when there is sensitive

dependence on the initial conditions (this is not a well-established notion, but rather
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chaoticity encompasses many mathematical definitions such as mixing, Anosov systems,

K-systems and others). We will use some of these definitions in this part of the work,

assuming the reader is well familiar with them. Standard references include [AA, CFS,

Ma, W].

1.1 Billiards

We have said that the vast majority of the systems in which physicists are interested

cannot be integrated. As a matter of fact, they are hard to study from the point of

view of ergodic theory, too. Therefore mathematicians are forced to consider models,

abstract simplified systems that are easier to approach but, one hopes, still retain the

relevant features of the physical systems they represent.

Billiards may seem very far from anything a mathematical physicist would come

across during his or her working hours. However, billiard models have been extremely

popular in the last decades.

From a mathematical point of view, a billiard is a dynamical system defined by

the uniform motion of a point inside a domain (called the table) with totally elastic

reflections at the boundary, i.e., reflections for which the tangential component of the

velocity remains constant and the normal component changes sign.

The nice characteristics of these models is obviously that, for most of the time, they

obey the simplest possible law of motion, that is, constant velocity. The complications

arise only from the collisions with the boundary of the table. Hence, for these systems,

geometric intuition can play a decisive role in making them treatable. On the other

hand, billiards are known to exhibit the entire array of ergodic properties we have

mentioned. For instance, billiards in rectangles and ellipses are integrable; billiards

in generic polygons are ergodic, but not mixing; billiards in domains with dispersing

boundaries can be K-systems (like the celebrated Sinai billiard [CFS]). A nice and

complete reference is [T].

Other than the reason outlined above, the popularity of billiards is due to their

wide use in the field of quantum chaos [Gu, H]. Certainly we do not want to delve into
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this subject here; let it suffice to say that research in quantum chaos tries to link the

chaotic properties of classical Hamiltonian systems with the spectral properties of the

Schrödinger operators in their quantum versions. For billiards, this reduces to studying

the eigenvalue problem for the Laplacian on a certain domain, with Dirichlet boundary

conditions. This is a problem that has a long tradition, so one need not start from

scratch.

1.2 Billiards in polygons

Even in the case—apparently simple—of a bounded polygonal billiard (with a finite

number of sides), it took several decades and some non-trivial techniques (see in par-

ticular the milestone work [KMS]) to produce what might be called a theory, a good

treatment of which can be found in [G2, G3]. We give here a brief and incomplete

review of some of the main results.

Usually one assumes that the magnitude of the particle’s velocity equals one. Thus,

if P is the table, the phase space is P ×S1, endowed with the Lebesgue measure on each

component. It is also commonly assumed that the trajectory which hits a vertex stops

there. In fact, there is no general way to uniquely continue an orbit that encounters

a vertex (a singular orbit, in jargon). However, the set of initial conditions which give

rise to non-singular trajectories has always full measure. (It might be worthwhile to

anticipate here that, for our models, there is actually a way to define even singular

orbits for all times. We will adopt it in Section 2.1.)

Among the class of polygonal billiards, a table P is rational if the angles between the

sides of P are all of the form πni/mi, where the integers ni and mi are assumed to be

the lowest terms of the fraction. In this case, a trajectory will have only a finite number

of possible velocities. This implies a decomposition of the phase space in a family of

flow-invariant surfaces Sθ, 0 ≤ θ ≤ π/m, m := l.c.m.{mi}. If θ = 0, π/m, then Sθ =

P×{0, 2π/m, . . . , 2π(m−1)/m}. In all other cases, Sθ = P×{θ, θ+π/m, . . . , θ+π(2m−

1)/m}. These surfaces were first named (in [FK]) Überlagerungsflächen, but in this

thesis we will spare the reader that term. There is a natural way to extend the Lebesgue
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measure (or any measure, for that matter) from P to Sθ. A planar representations of

Sθ is obtained by the usual unfolding procedure for the orbits [FK, ZK].

Excluding the particular cases θ = 0, π/m, it is known that the billiard flow re-

stricted to any of the Sθ is essentially equivalent to a geodesic flow φθ,t on a closed

oriented surface S, endowed with a flat Riemannian metric with conical singularities.

This surface is tiled by 2m copies of P , properly “glued” together. The topological

type of the surface S, i.e., its genus g, is determined by the geometry of the rational

polygon:

g(S) = 1 +
m

2

n∑

i=1

ni − 1

mi
. (1.1)

With the use of this equivalence, a number of theorems regarding the existence and

the number of ergodic invariant measures for the flow have been proven (cf. [ZK] and

references therein).

More refined results concerning the billiard flows were then obtained by exploring the

analogies of these flows with the interval exchange transformations (using the induced

map on the boundary) on one hand [K, BKM, M, V1, V2], and with holomorphic

quadratic differentials on compact Riemann surfaces, on the other [KMS, G3].

The deep connections between these three different subjects have been very useful

in the understanding of polygonal billiard flows. We summarize some of the most

important statements about rational polygons in the next proposition. (Briefly, let us

recall that an almost integrable billiard is a billiard whose table is a finite connected

union of pieces belonging to a tiling of the plane by reflection, e.g, a rectangular tiling,

or a tiling by equilateral triangles, etc.)

Proposition 1.1 The following statements hold true:

(i) [KMS, Ar] Given a (finite) rational polygon P and the family of its invariant

surfaces {Sθ}, the Lebesgue measure on Sθ is the unique ergodic measure for the

billiard flow, for almost all θ.

(ii) [ZK] For all but countably many directions, a rational polygonal billiard is minimal

(i.e., all infinite semi-orbits are dense) in Sθ.
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(iii) [G1, G2, B] For almost integrable billiards, “minimal directions” and “ergodic

directions” coincide.

(iv) [GK] Let Rn be the space of n-gons such that their sides are either horizontal

or vertical, parametrized by the length of the sides. Then for any direction θ,

0 < θ < π/2, there is a dense Gδ-set in Rn, such that for each polygon of this set

the corresponding flow φθ,t is weakly mixing.

(v) [Ka] For any rational polygon and any direction θ, the billiard flow φθ,t is not

mixing.

Other important results, concerning generic polygonal tables, can be proven (we

still refer to [G3] for a more exhaustive review):

Proposition 1.2 The following statements hold true:

(i) [G3, GKT] For any given polygon, the metric entropy with respect to any flow-

invariant measure is zero; furthermore, the topological entropy is also zero.

(ii) [GKT] Given an arbitrary polygon and an orbit, either the orbit is periodic or its

closure contains at least one vertex.

In Proposition 1.1,(iv) we have encountered the concept of a Gδ-subset of a topo-

logical space as a way to define a typical subset. This notion of typicality was first used

by [ZK], and has become customary since [KMS]. Up to an affine transformation and

a rescaling, every polygon with n sides is equivalent to a polygon with a vertex at the

origin and an adjacent vertex at (1, 0). The space of n-gons can thus be identified with

some quotient of R2(n−2). This is a complete metric space and the above definition

applies.

It is very hard to establish ergodic properties for generic polygons, but one can use

the results for rational polygons to approximate the former with the latter. Necessarily

one ends up with density statements:

Proposition 1.3 In the space of n-gons:
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(i) [ZK] The typical polygon is topologically transitive.

(ii) [KMS] The typical polygon is ergodic for almost all directions θ.

1.3 Non-compact billiards

Although the open questions about billiards in finite polygons are still many, it seems

that the state-of-the-art could be considered fairly satisfactory, at least in terms of

generic properties. However, until recently (before [DDL1] and especially [Tr]), even

the simplest among the statements of Propositions 1.1-1.3 were unproven for (possibly

non-compact) polygons with an infinite number of sides.

The interest in extending the previous results to infinite polygons goes beyond mere

scientific curiosity. The billiard flow in a polygon with infinitely many sides is associated

to an interval exchange transformation with a countable partition, which is a quite

general automorphism of a measure-space. An intriguing example of a billiard in an

infinite polygon, related to the models we will study henceforth, is provided by the

“staircase” table briefly mentioned in [EFV].

Another motivation to pursue a generalization comes from interest in non-compact

billiards. These are open systems (i.e., the particle might “escape at infinity”) and one

would like to see how this affects the dynamics. Even for a generic (non-necessarily

polygonal) unbounded billiard, not much more is known than the existence (or non-

existence) of certain types of trajectories [L, Ki, Le]. Furthermore, links between these

questions and quantum chaos can be found in [Le]. Actually, since that article presents

many analogies with this work (including the author), we will report its findings in

Appendix A.

Some time ago Del Magno, Degli Esposti and Lenci [DDL1] introduced a family

of billiards in certain non-compact infinite polygons. They were named infinite step

billiards. An example is depicted in Fig. 1.1. This has incited Troubetzkoy to fill some

voids in the area, extending some of the statements of Propositions 1.1-1.3 to the case

of infinite polygons. His techniques have been recently adapted to the infinite step
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billiards in [DDL2], which also contains results that are more specifically related to

these models. Further work is currently in progress [Tr2].

P

Figure 1.1: An infinite step billiard.

Infinite step billiards constitute the contents of Part I of this dissertation. In Chapter

2 we introduce the mathematical framework, including the fundamental concept of

escape orbit. The analysis of the escape orbits turns out (rather unexpectedly) to have

several implications for the dynamics of the billiards. We prove that, for almost all

choices of the initial velocity, there is a unique escape orbit. This orbit is a topologically

complex object (possibly a Cantor set) and acts somehow as an attractor for all other

trajectories. The above is described in Chapter 3, for a large class of models, as proved

in [DDL2]. However, the same results were already known in [DDL1] for a specific

example. That model, the exponential step billiard, was studied in some detail, and is

here presented in Chapter 4. Finally, Chapter 5 (that, once again, comes from [DDL2])

deals with the ergodic properties of our class of billiards, using the ideas of [Tr]. It

is shown that, defining the space of infinite step billiards by means of a very natural

metric, the typical table is ergodic for almost all initial velocities. Part I is completed

by Section 5.3 which contains some results on the metric entropy.
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Chapter 2

Infinite step billiards

An infinite step billiard is defined as follows: Consider a sequence {pn}n∈N of non-

negative numbers such that pn+1 ≤ pn ∀n and limn→∞ pn = 0. In words, {pn} is

decreasing and vanishing. Also, let us fix p0 = 1 (although this condition is inessen-

tial and will be relaxed in Chapter 5). The billiard table is the step polygon P :=
⋃

n∈N[n, n+1]× [0, pn] (Fig. 1.1), which is called infinite if pn > 0 ∀n. Let (x, y) be the

coordinates on P .

Following the considerations of Section 1.2, we see that a point particle can travel

within P only in four directions θ ∈ S1 (two if the motion is vertical or horizontal—

degenerate cases which we disregard). One of these directions lies in the first quadrant,

θ ∈]0, π/2[. In the remainder, with the exception of Section 5.2, we will use the notation

α := tan θ ∈]0,+∞[. The invariant surface associated to the billiard flow is labeled by

SP
α (or just by Sα, when there is no means of confusion). It can be represented on the

plane as in Fig. 2.1, with four copies of P , via the aforementioned unfolding procedure.

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e e

ef

f

f

f

S α

Figure 2.1: The invariant surface SP
α for the infinite billiard.
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We explain how to use Fig. 2.1: A point in Sα moves with constant speed along

a line of slope α, heading upwards. Whenever it touches the boundary—say at some

point on a horizontal side labeled by b—it reappears at the corresponding point on

the lower side labeled by b. Then it continues its motion on another line of slope α.

Analogously, when it hits a vertical side on the right, it reappears on the associated

side on the left. A trajectory in Sα, then, is the union of segments of slope α, whose

endpoints are on the boundaries of that domain. The intersection of Sα with the i-th

quadrant is a copy of P (corresponding to the direction θ + iπ/2 for the velocity) and

thus there is a natural projection Sα −→ P . It is easy to see that the projection of a

trajectory in Sα is a trajectory in P .

We denote by (X, Y ) the intrinsic coordinates on Sα, inherited by the planar rep-

resentation as in Fig. 2.1. There, the 3π/2 corners represent the non-removable singu-

larities, or singular vertices, Vk, of coordinates (k, pk) on P , or (±k,±pk) on S. More

precisely, recalling Section 1.2, Vk is a conical singularity. In fact, one sees that, in the

metric induced by the Euclidean metric on the plane, it takes an angle 6π to go around

it.

With the additional condition
∑

n pn < ∞, SP
α can be considered a non-compact,

finite-area surface of infinite genus. We denote by P (n) the truncated billiard that one

obtains by closing the table at x = n. The corresponding invariant surface is denoted

by SP (n)

α , or simply by S
(n)
α (Fig. 2.2), and (1.1) shows that it has genus n. Only to S

(n)
α

can we apply the many statements of Section 1.2. The purpose of this work is precisely

to extend some of those results to the infinite table P .

2.1 The return map

On Sα, the first vertical side of P becomes the closed curve L := {0}× [−1, 1[ (keeping

in mind that (0,−1) and (0, 1) are identified in Fig. 2.1) which separates Sα in two

symmetric parts. We will occasionally identify L with the interval [−1, 1[.

The billiard flow along a direction α is denoted by φα,t (or φt when there is no

danger of confusion). It will be shown in the next section that, for α 6= +∞, the
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a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e e

ef

f

f

f

S α
(n)

Figure 2.2: The invariant surface S
(n)
α for the truncated bil-

liard.

forward semi-orbit of almost every point of L (w.r.t. the Lebesgue measure) intersects

L again. This means that the flow induces a.e. on L a Poincaré map Pα, which we call

the (first) return map. It is easy to see that Pα is an infinite-partition interval exchange

transformation (i.e.t.).

On L we establish the convention that the map is continuous from above: i.e., an

orbit going to the singular vertex (n, pn) of Sα will continue from the point (−n, pn),

thus behaving like the orbits above it, i.e., bouncing backwards. In the same spirit,

a trajectory hitting (−n, pn) will continue from (−n,−pn), while orbits encountering

vertex (n,−pn) will just pass through. This corresponds to partitioning L ≃ [−1, 1[

into right-open subintervals.

The fact that the number of subintervals is infinite is exactly what makes the study

of the ergodic properties of this system a non-trivial task.

It is now natural to relate Pα to the family of return maps P (n)
α corresponding to

the truncated billiards P (n). These are finite-partition i.e.t.’s defined on all of L (with

abuse of notation, L also denotes the obvious closed curve on S
(n)
α , Fig. 2.2).

2.2 Escape orbits

Let E
(n)
α ⊂ L be the set of points whose forward orbit starts along the direction α and

reaches the n-th aperture Gn := {n} × [−pn, pn[ without colliding with any vertical

walls. E
(n)
α is the union of at most n right-open intervals, since the backward evolution
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of Gn can only split once for each of the n − 1 singular vertices (Fig. 2.3). Hence

E
(n)
α =

⋃mn

j=1 I
(n)
α,j . We denote n.i.(E

(n)
α ) := mn ≤ n, where n.i. stands for “number of

intervals”. Moreover, |E(n)
α | = 2pn and E

(n+1)
α ⊂ E

(n)
α . From this we infer that the

family {I(n)
α,j}n,j can be rearranged into families of nested right-open intervals, whose

lengths vanish as n→ ∞. Also, the sequence of i.e.t.’s P (n)
α converges a.e. in L to Pα,

as n→ ∞.

α

(3)

E

Figure 2.3: Construction of E
(n)
α as the backward evolution of

the “aperture” Gn. The beam of orbits may split at singular

vertices.

The subset of L on which Pα is not defined is denoted by Eα :=
⋂

n>0 E
(n)
α and

clearly |Eα| = 0. Each point of this set is the limit of an infinite sequence of nested

vanishing right-open intervals (the constituents of the sets E
(n)
α ). Elementary topology

arguments allow us to assert an almost converse statement: each infinite sequence yields

a point of Eα, unless the “pathological” property holds that the intervals eventually

share their right extremes.

The orbits starting from such points will never collide with any vertical side of Sα (or

P ) and thus, as t→ +∞, will go to infinity, maintaining a positive constant x-velocity.

We call them escape orbits : their importance in this context will become especially

clear in Chapter 3.

We have chosen this name for simplicity, but, strictly speaking, we consider only the

asymptotic behavior of the forward semi-orbit. A glance at Fig. 2.1, however, shows at
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once that the backward semi-orbit having initial condition (0, Y0) is uniquely associated,

by symmetry around the origin, to the forward semi-orbit of (0,−Y0).

Remark. The above assertion needs to be better stated: although the manifold

Sα is symmetric around the origin, the flow defined on it is not exactly invariant for

time-reversal, as Fig. 2.1 seems to suggest. This is due to our convention in Section

2.1 about the continuity from above for the flow. The time-reversed motion on Sα is

isomorphic to the motion on a manifold like Sα with the opposite convention (continuity

from below). Nevertheless, little changes since only singular orbits (a null-measure set)

are going to be affected by this slight asymmetry.

2.3 Preliminary results

Certain facts about the dynamics are immediate to derive. Let us start with the case

of rational heights, pn ∈ Q. Many interesting infinite step billiards have this property,

in particular our main example (pn = 2−n), treated in Chapter 4. One has

Proposition 2.1 Fix n ∈ N and suppose pk ∈ Q, ∀k ≤ n. Consider the billiard P (n).

If α ∈ Q, all the trajectories are periodic. If α 6∈ Q, the flow is minimal and the

Lebesgue measure is the unique invariant ergodic measure.

Proof. This proposition can be derived from quite a number of results in the

literature (cf. Proposition 1.1). However, to give an exact reference, [G1, Thm. 3]

contains the assertion, since P (n) is an almost integrable billiard table.

It may be interesting to remark that the ideas on which the proofs are based were

already known sixty years ago, as [FK] witnesses. The invariant surface S
(n)
α is divided

into a finite number of strips, that are either minimal sets or collections of periodic

orbits (the two cases cannot occur simultaneously for an almost integrable billiard).

These strips are delimited by generalized diagonals, that is, pieces of trajectory that

connect two (possibly coincident) singular vertices of the invariant surface. The above

is nowadays called the structure theorem for rational billiards, a sharp formulation of

which is found, e.g., in [AG].
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Using this, minimality is easily established when, for a given direction, no generalized

diagonals and no periodic orbits are found. Q.E.D.

The primary consequence of Proposition 2.1 is

Proposition 2.2 Let an infinite step billiard P with rational heights (pn ∈ Q, ∀n)

be given. If α ∈ Q, a semi-orbit can be either periodic or unbounded. If α 6∈ Q, all

semi-orbits are unbounded.

Proof. If α ∈ Q and we had a non-periodic bounded trajectory, this would natu-

rally correspond to a trajectory of S
(n)
α , for some n ∈ N, which has only periodic orbits.

On the other hand, if α 6∈ Q, the dynamics over each S
(n)
α is minimal. Hence, every

semi-trajectory reaches the abscissa X = n. Q.E.D.

One might wonder whether in the case of rational heights it is easy to find unbounded

orbits for α ∈ Q. Escape orbits are natural candidates. For instance, in the model we

treat in Chapter 4 we have at least one of them for every direction (Proposition 4.11).

However, it might be interesting to construct less trivial examples, such as unbounded

non-escape orbits. This be can done in the following way.

Consider a billiard table P whose heights pn ∈ Q are yet to be determined. Now let

a particle depart from (0, 0), with slope α ∈ Q. Fix p1, . . . , pn1−1 in such a way that the

particle hits no vertical walls before reaching the vertical line x = n1; also choose n1

in such a way that the particle approaches the line x = n1 with a positive slope. Call

(n1, y1) the intersection of the trajectory with this line. Now fix pn1 := y1. We have

thus made our orbit singular. According to the conventions established at the beginning

of this section, the particle will bounce against the vertex and reverse x-velocity. Now,

by Proposition 2.2, two possible cases may occur: either the trajectory will reach again,

after some time, the line x = n1, and cross it, or it “will try” to become periodic in the

truncated billiard P (n1). In the latter case, in order to go back to (0, 0), a non-singular

vertex, the particle must hit another non-singular vertex, reverse velocity and run along

the same trajectory in the opposite sense (Fig. 3.4 might help to clarify this point). In

so doing, it will necessarily come back to the point (n1, pn1), with a negative slope.
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According to our conventions, this time it will pass through. In both cases, the particle

has left P (n1), having bounced at least once on a vertical wall. We can now repeat the

same procedure to find some n2 > n1 and to fix pn1+1, . . . , pn2−1, and then pn2 . In the

same way, after passing x = n1, the particle will bounce at least once—at the singular

vertex (n2, pn2)—and, after some time, move on to the right. This can be repeated

indefinitely. What we end up having is a billiard with an unbounded non-escape orbit.

In the general case the previous proposition reads

Proposition 2.3 In an infinite step billiard P , for almost all α’s, all semi-orbits are

unbounded, whereas periodic and unbounded trajectories can coexist for a zero-measure

set of directions.

Proof. This is just a generalization of the previous proof, although we are not

dealing here with almost integrable tables.

For a given α ∈ R+ and n > 1, call φ
(n)
α,t the flow on SP (n)

α , and let Mn := {α | φ(n)
α,t

is minimal}. From Proposition 1.1,(ii) we get |Mc
n| = 0. (The superscript c denotes

here the complementary set w.r.t. to R+. In general, though, we will use the same

symbol for the complement in other contexts as well.) Let M∞ = ∩n>1Mn. Clearly

|Mc
∞| = 0. It is easy to see that, for all α ∈ M∞, every semi-orbit is unbounded.

As regards the last remark, it is not hard to think of a billiard which has at least a

periodic and an escape orbit. (The skeptical reader can consider the exponential step

billiard of Chapter 4, with α = 1—for which it is trivial to see periodic orbits—and

then apply Proposition 4.11.) Actually, playing with the arguments outlined before

Proposition 2.3, one can easily produce step billiards that have both periodic and

unbounded non-escape orbits. Q.E.D.
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Chapter 3

Topological dynamics

It turns out that if the “infinite cusp” of a step billiard narrows down very quickly, there

is a unique escape orbit for almost every direction. This is shown in Section 3.1. The

behavior of this trajectory is studied in Section 3.2. This analysis is interesting in its

own right and, more importantly, provides information about the topological behavior

of all other orbits, which is presented in Section 3.3.

3.1 Uniqueness of the escape orbit

Theorem 3.1 If the heights {pn} of an infinite step billiard P verify pn+1 ≤ λpn, with

0 < λ < λ0 :=

√
6 − 1

5
≃ 0.290 . . . ,

then, for a.e. α, there exists a subsequence {nj} such that n.i.(E
(nj)
α ) = 1.

The main corollary of this theorem is the following.

Corollary 3.2 For almost all directions there is exactly one escape orbit.

It might seem that Theorem 3.1 is just a technical lemma to ensure the validity of

the above notable result. But this is not really so. It will be explained in Section 3.3

that Corollary 3.2 is not enough to prove the statements about the topological dynamics

presented there. Furthermore, Lemma 4.10 in the next chapter will show that there are

cases in which Corollary 3.2 holds but Theorem 3.1 does not.

For the rest of this chapter, all surfaces SP
α will be identified with the set SP of

Fig. 2.1 on which we use the coordinates (X, Y ). For instance, γk(α) will denote the
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semi-orbit on SP
α starting at point the (k,−pk) = Vk; this is the same as the semi-orbit

on SP starting at (k,−pk) with slope α.

We move on to the proofs of our claims.

Proof of Theorem 3.1. We say that a trajectory reaches directly aperture Gn

when this happens monotonically in the X-coordinate, that is, without intersecting any

vertical walls.

Let k < m be two natural numbers. We introduce the following sets:

Ak,m := {α | γk(α) reaches directly Gm}; (3.1)

Bm :=
m−1⋃

k=1

Ak,m. (3.2)

Therefore,

Bc
m = {α | no γk(α), with 1 ≤ k ≤ m− 1, reaches directly Gm}. (3.3)

Also, let us define

C :=
⋂

n∈N ⋃m≥n

Bc
m (3.4)

= {α | ∃ {nj} s.t. Gnj
is not reached by any γk(α), k ≤ nj}.

When such a subsequence exists, the backward evolution of Gnj
does not split at any of

the vertices Vk, 1 ≤ k ≤ nj . Hence n.i.(E
(nj)
α ) = 1. Therefore establishing the theorem

amounts to proving that |Cc| = 0. This is implied by the following:

∀n ∈ N,

∣∣∣∣∣∣

⋂

m≥n

Bm

∣∣∣∣∣∣
= 0. (3.5)

In order to obtain (3.5), we introduce some notation, and a lemma. Given two sets

A, I , with I bounded, denote |A|I := |A ∩ I |/|I |.

Lemma 3.3 Assumptions and notations as in Theorem 3.1. There exists a δ ∈]0, 1[

such that, for every (bounded) interval I ⊂ R+, lim supm→∞ |Bm|I ≤ δ.

The proof of this lemma will be given later. Now, proceeding by contradiction, let

us suppose that
∣∣∣
⋂

m≥nBm

∣∣∣ 6= 0, for some n. By the Lebesgue’s Density Theorem,
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almost all points of this set are points of density. Pick one: this means that there exists

an interval I , around that point, such that

∣∣∣∣∣∣

⋂

m≥n

Bm

∣∣∣∣∣∣
I

≥ σ > δ. (3.6)

Hence, ∀m ≥ n, |Bm|I ≥ σ, which contradicts the lemma. This proves (3.5) and

Theorem 3.1. Q.E.D.

Proof of Corollary 3.2. The previous theorem implies that, for a.a. α’s,

#Eα = 0 or 1. As already mentioned, the former case (no escape orbits), occurs if,

and only if, the intervals E
(nj)
α share their right extremes, for j large. This implies the

existence of generalized diagonals (see Fig. 3.1). Excluding those cases only amounts

to removing a null-measure set of directions. Q.E.D.

(n )
E 1

(n )
E 2

α

α

L

2 ,p(n n2

 nG 2

G n1

(n ,-pn1 )1

)

Figure 3.1: The fact that E
(n1)
α and E

(n2)
α have upper (equiv-

alently right) extremes in common implies the existence of a

generalized diagonal.

Proof of Lemma 3.3. In this proof we will heavily use the technique of billiard-

unfolding; that is, in order to draw an orbit as a straight line in the plane, we reflect

the billiard around one of its sides every time the orbit hits it, as shown in Fig. 3.2.
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k+1cone D

b
c

a

a

a

b

b

b

c

c

c

k

cone I

V

Figure 3.2: Unfolding of the billiard. Trajectories departing

from a given singular vertex Vk are drawn as straight lines on

the plane. Every time one of these hits a side of the billiard, a

new copy of the billiard, reflected around that side, is drawn.

Cones I and Dk+1 are used in the proof of Lemma 3.3.

Fix k, and view I as a conical beam of trajectories departing from Vk (Fig. 3.2):

this makes sense since these trajectories are in a one-to-one correspondence with their

slopes. The goal is to exploit the geometry of the unfolded billiard to set up a recursive

argument that will yield exponential bounds for |Ak,m|I (in m).

Here is how this works. In the unfolded-billiard plane, sketched in Fig. 3.3, let lk(α)

be the straight line of slope α passing through Vk. Take an n > k and consider one copy

ofGn, indicated as an “opening” in Fig. 3.3: G̃n := {n}×[r−pn, r+pn[, for some r ∈ R+.

The straight lines (departing from Vk) that cross G̃n encounter a 2pn-periodic array of

copies of Gn+1. We call them G̃
(j)
n+1 := {n+ 1}× [r− pn+1 + j · 2pn, r+ pn+1 + j · 2pn[;

j assumes a finite number (say ℓ) of integer values. Define the interval

Dn := {α | lk(α) ∩ G̃n 6= ∅}. (3.7)

Remark. It might be convenient to think of the elements of Dn as lines sharing

the common point Vk: specifically the lines in Dn are those that cross G̃n. So it makes
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G
~

~

~

Figure 3.3: Proof of Lemma 3.3: Construction of the cones

Dn and En in a roughly sketched unfolded-billiard plane.

sense to refer to Dn (and similar sets) as a cone. (Incidentally, |Dn| = 2pn/(n − k).)

On the other hand, the one-to-one correspondence between α ∈ R+ and γk(α), on one

side, and lk(α), on the other, should not lead one to think that the latter is the “lifting”

of the former by means of the unfolding procedure. This is only the case when γk(α)

reaches Gn. As a matter of fact, the inclusion Ak,n ∩Dn ⊆ Dn is expected to be strict

for general choices of Dn, n > k + 1.

The cone Dn cuts a segment on the vertical line x = n+ 1. This segment includes

some G̃
(j)
n+1 and only intersects some other G̃

(i)
n+1 (at most two, of course). Now expand

Dn in such a way that the segment includes ℓ “full” copies of G
(j)
n+1; the resulting cone

will be denoted by En. Fig. 3.3 shows that in this operation we might have to attach,

on top and on bottom of Dn two cones of measure up to 2pn+1/(n+1− k). Therefore:

|En|
|Dn|

≤ 1 +
4pn+1

(n+ 1 − k)|Dn|
≤ 2pn+1 + pn

pn
. (3.8)

We further define the set

Dn+1 := {α ∈ En | lk(α) ∩ G̃(j)
n+1 6= ∅, for some j} =

ℓ⋃

i=1

D
(i)
n+1, (3.9)
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where the D
(i)
n+1 are cones of measure 2pn+1/(n+ 1 − k). One has

|Dn+1|
|En|

≤ 2 · 2pn+1

2 · 2pn+1 + 2(pn − pn+1)
=

2pn+1

pn+1 + pn
. (3.10)

In fact it is not hard to realize that the l.h.s. of (3.10) is largest when ℓ = 2 and En is

the juxtaposition of D
(1)
n+1, a beam of orbits that do not cross x = n, and D

(2)
n+1. This is

the situation depicted in Fig. 3.3. In this case the central interval, En \Dn+1, measures

2(pn−pn+1)/(n+1−k), whence the second term of (3.10). Combining (3.8) and (3.10)

we obtain

|Dn+1|
|Dn|

≤ 2pn+1(2pn+1 + pn)

pn(pn+1 + pn)
=: βn. (3.11)

At this point we notice that each D
(i)
n+1 as introduced in (3.9) is again a set of the type

(3.7), with n + 1 replacing n. Hence estimate (3.11) holds and |D(i)
n+2| ≤ βn+1|D(i)

n+1|

with D
(i)
n+2 suitably defined as in the above construction. Defining Dn+2 := ∪ℓ

i=1D
(i)
n+2,

one has

|Dn+2|
|Dn+1|

≤
∑ℓ

i=1 |D
(i)
n+2|

ℓ |D(i)
n+1|

≤ βn+1, (3.12)

and the trick can continue.

We are now ready to implement the recursive argument: assume that some of the

orbits of the cone I (based in Vk) cross Gk+1, that is, Ak,k+1 ∩ I 6= ∅ (if not, everything

becomes trivial as we will see later). In the unfolded-billiard plane, enlarge Ak,k+1 ∩ I

until it fits the minimal number of copies of Gk+1, as in Fig. 3.2; call this new set

Dk+1. This is by definition a finite union of intervals of the type (3.7), of fixed size.

Hence inequality (3.11) applies and the definition/estimate algorithm can be carried

on until we define, say, Dm. The only thing we need to know about this set is that

(Ak,m∩I) ⊆ Dm, which should be clear by construction (see also the previous remark).

This fact and the repeated use of (3.11) yield

|Ak,m ∩ I | ≤ |Dk+1|
m−1∏

i=k+1

βi. (3.13)

Let us consider our specific case: pn+1 ≤ λpn. From definition (3.11), one verifies

that:

βn =
2(2(pn+1/pn) + 1)

((pn/pn+1) + 1)
≤ 2(2λ+ 1)

λ−1 + 1
=: β. (3.14)
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It is going to be crucial later that β be less than 1. For λ positive, this amounts to

4λ2 + λ− 1 < 0, which is easily solved by

0 < λ < λ1 :=

√
17 − 1

8
≃ 0.390 . . . (3.15)

Going back to the definition of Dk+1, and to (3.13), we see that it is possible to give an

estimate of the measure of Dk+1 in I , for large k. In fact, when |I | is much bigger than

2pk, then it is clear (from Fig. 3.2, say) that I includes very many cones of size 2pk+1,

placed on a 2pk-periodic array. As k grows, the density of these cones in I can be made

arbitrarily close to pk+1/pk ≤ λ. The precise statement then is: given any ε > 0, there

exists a q = q(ε) ∈ N such that

∀k ≥ q, |Dk+1| < (λ+ ε) |I |. (3.16)

Plugging this into (3.13), we obtain

∀m > k ≥ q |Ak,m|I ≤ (λ+ ε) βm−k−1, (3.17)

having used (3.14) as well. For the other values of k, we have no control over Ck :=

|Dk+1|/|I | and we just write

∀m, q > k |Ak,m|I ≤ Ck β
m−k−1 . (3.18)

In the case Ak,k+1 ∩ I = ∅, which we did not consider before, (3.17)-(3.18) are trivial

consequences of the fact that Ak,m ∩ I = ∅, for all m > k.

We move on to the final estimation. Take m > q: from definition (3.2) we have,

using (3.17) and (3.18),

|Bm|I ≤
q−1∑

k=1

|Ak,m|I +
m−1∑

k=q

|Ak,m|I

≤
q−1∑

k=1

Ck β
m−k−1 +

m−1∑

k=q

(λ+ ε) βm−k−1 (3.19)

≤ o(1) +
λ+ ε

1 − β
,

as m→ ∞. In the last inequality we have used twice the fact that β < 1. We impose

the condition

λ

1− β
=

λ(λ+ 1)

−4λ2 − λ+ 1
< 1. (3.20)
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For λ as in (3.15), the denominator is positive, hence (3.20) can be rewritten as 5λ2 +

2λ− 1 < 0, whose solutions are

0 < λ <

√
6 − 1

5
= λ0 < λ1, (3.21)

as in the statement of the lemma. For these values of λ, by virtue of (3.15), 1−β keeps

away from 0. Therefore (3.20) implies that, for ε small enough, the last term in (3.19)

can be taken less than a certain δ < 1, whence the proof of Lemma 3.3. Q.E.D.

3.2 The backward part of the escape orbit

In this section, we explore the behavior of the escape orbits for t→ −∞. This question

happens to be crucial for the understanding of the dynamics on the billiard, as we shall

see in the next section. All the claims we will make in the rest of Chapter 3 apply to

billiards as in the statement of Theorem 3.1.

Let D1 be the set of directions that satisfy Theorem 3.1 and Corollary 3.2, and let

ηα denote the unique escape orbit, for α ∈ D1. As trivial as it is, we point out that

the backward part of ηα cannot be periodic. Also, by Proposition 2.3, it cannot be

bounded, for a.e. α: we call this set D2. What about the possibility for ηα to escape

to ∞ in the past, with a constant negative x-velocity?

Lemma 3.4 For a.a. α, ηα does not intersect any vertex.

Proof. Consider a vertex V of S and let γV (α) be its forward semi-orbit. For a

fixed finite sequence of sides, Λ := (Λ1,Λ2, . . . ,Λℓ), we define

AV,m(Λ) := {α | γV (α) hits Λ1, . . . ,Λℓ and then reaches directly Gm}. (3.22)

This means that these trajectories do not hit any vertical wall after leaving Λℓ and

before reaching Gm. Notice the similarities with definition (3.1). As a matter of fact,

if V = Vk for some k, then AVk,m(∅) = Ak,m. However, for most sequences Λ, (3.22)

defines the empty set. For example, Λ can be incompatible in the sense that no orbit

can go from Λi to Λi+1 without crossing other sides in the meantime. But, even for
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compatible sequences, if Gm does not lie to the right of Λℓ, obviously AV,m(Λ) = ∅. To

avoid this latter case, we fix mo = mo(V,Λ) bigger than the largest Y -coordinate in Λℓ.

For m ≥ mo, AV,m+1(Λ) ⊂ AV,m(Λ). Let us then define

BV (Λ) := {α | γV (α) hits Λ1, . . . ,Λℓ and then escapes to ∞}

:=
∞⋂

m=mo

AV,m(Λ), (3.23)

Working in the unfolded-billiard plane and identifying directions with orbits, it is not

hard to realize that AV,mo(Λ) is made up of a finite number of intervals/cones, each

of which reaches a copy of Gmo after hitting a certain sequence of sides (Λ1, . . . ,Λℓ,

Λℓ+1, . . . ,Λn) (the first ℓ sides are common to all cones and the others can only be

horizontal). It is possible that some of these beams of trajectories intersect the cor-

responding copy of Gmo only in a proper sub-segment. Let us fix this situation by

enlarging any such beam until it covers the whole segment. We call D ⊇ AV,mo(Λ) the

union of these new cones.

Proceeding exactly as in the proof of Lemma 3.3 (see in particular (3.13) and (3.18))

we get, for m > mo,

|AV,m(Λ)| ≤ |D| βm−mo,

with β < 1. Hence, for m→ ∞, |AV,m(Λ)| → 0. By (3.23), |BV (Λ)| = 0, and the set

⋃

V
vertex

⋃

Λ finite
sequence

BV (Λ)

has measure zero. This is the complement of set of directions as in the statement of

Lemma 3.3. Q.E.D.

Let D3 denote the set mentioned above. With a certain lack of originality, we call

typical any α ∈ D := D1 ∩D2 ∩D3, that is, any direction that has all the properties

we have analyzed so far.

Corollary 3.5 For a.a. α’s, the billiard flow φα,t around the escape orbit is a local

isometry. This means that, fixed a z0 ∈ ηα, then ∀T > 0, ∃ε > 0 s.t.

|z − z0| ≤ ε =⇒ |φα,t(z) − φα,t(z0)| = |z − z0| ∀t ∈ [−T/2, T/2].
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Proof. Easy consequence of Lemma 3.4, since φα,t is isometric far from the singular

vertices, for α ∈ D1 ∩D3. Q.E.D.

We borrow some notation from [L] and call oscillating all unbounded non-escape

(semi-)orbits.

Theorem 3.6 For a typical α, the unique escape orbit is oscillating in the past.

Proof of Theorem 3.6. Since α ∈ D3, ηα is non-singular, by Lemma 3.4.

Thus the symmetry arguments outlined at the end of Section 2.2 apply. Moreover ηα

is unbounded in the past, because α ∈ D2. Suppose now that η−α , some past semi-

orbit, escapes: this corresponds, by reflection, to a forward escape semi-orbit. Then

the uniqueness hypothesis shows that the reflected image of η−α must coincide with some

η+
α . In other words, ηα is symmetric around the origin in SP

α , which means that in P

it is run over twice, once for each direction. The situation is illustrated, for both P

and SP
α , in Fig. 3.4. One gets easily convinced that the only way to realize this case

is that the trajectory has a point in which the velocity is inverted. This can only be a

non-singular vertex. But α ∈ D3 and Lemma 3.4 claims that this is impossible. Q.E.D.

3.3 The escape orbit as an “attractor”

In the remainder we fix a direction α ∈ D and, for simplicity, we drop the subscript

α and the superscript P from all the notation. Remember that we are considering a

billiard P verifying the hypothesis of Theorem 3.1.

We show here how it is possible to use the statements of Section 3.2 on the special

orbit η to derive a certain amount of information about the topology of all the other

trajectories.

On η we fix the standard initial condition z0 = (0, Y0) as the last intersection point

with L, before the orbit escapes towards ∞.

The crucial fact, as will be noted, is Theorem 3.1, which roughly states that not

only is there just one initial point that takes a trajectory to infinity, but also there
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P

Sα

Figure 3.4: A trajectory can be run over twice only if it

contains a non-singular vertex. For a.a. α’s this is the only

possibility to have an orbit which escapes both in the past

and in the future.

is just one neighborhood—necessarily around that point—that takes a trajectory far

enough. This is the idea behind the next result.

Lemma 3.7 Let α ∈ D. Fixed an orbit γ and two numbers ε, T > 0, there exists a

w ∈ γ ∩ L, such that

|φα,t(w)− φα,t(z0)| = |w− z0| ≤ ε ∀t ∈ [−T/2, T/2],

where z0 is the standard initial condition on η.

Furthermore, call η̃ the image of η through a symmetry around the origin. If γ 6=

η, η̃, w can be chosen arbitrarily far in the past or in the future of γ. For γ = η, resp.

η̃, w can be chosen arbitrarily far in the past, resp. future.

Proof. Since α is typical, we can apply Corollary 3.5 with z0 fixed as above. This

will return an ε′ (depending on T ) such that all points as close to z0 as ε′ remain such

under the flow, within a time T . Assume ε′ ≤ ε (if not, ε′ := ε will do). We need to

find a point of γ in the interval [Y0 − ε′, Y0 + ε′] ⊆ L. Recalling Theorem 3.1, consider

the subsequence {Gnj
} of apertures whose backward beam of trajectories does not split
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at any vertex before reaching L. Take a j such that 2pnj
≤ ε′. Since γ is unbounded,

we can find a point u ∈ γ ∩Gnj
. Call w the last intersection point of γ with L, before u

is reached. From the non-splitting property of Gnj
, |w− z0| ≤ ε′. Corollary 3.5 shows

that this is the sought w.

If γ 6= η, η̃, Proposition 2.3 states that each semi-trajectory of γ is oscillating (for

α ∈ D2): therefore u (and so w) can be chosen with as much freedom as claimed in

the last statement of the lemma. As for η, only the backward part oscillates, whereas

η̃ oscillates in the future, being the escape orbit in the past. Q.E.D.

Remark. We stress once again that the above is more than an easy corollary of

Proposition 2.3: not only do γ and η get close near infinity, being both squeezed inside

the narrow “cusp”, but, to be so, they must have been as close for a long time.

A number of trivially checkable consequences of Lemma 3.7 are listed in the sequel.

Recall the definitions of ω-limit and α-limit of an orbit as the sets of its accumulation

points in the future and in the past, respectively [W, Def. 5.4].

Corollary 3.8 With the same assumptions and notation as above,

(i) The escape orbit η is contained in the ω-limit and in the α-limit of every orbit,

other than η and η̃.

(ii) The escape orbit η is contained in its own α-limit and in the ω-limit of η̃.

(iii) Every invariant continuous function is constant.

(iv) The flow is minimal if, and only if, the escape orbit is dense.

Of course, one would like to prove one definite topological property of the flow φt,

such as minimality or at least topological transitivity. Our techniques do not seem to

accomplish this. However, they do furnish a picture of how chaotic the motion on the

billiard can be. In fact, the “attractor” that η has been proven to be is certainly far

from simple. Either it densely fills the whole invariant surface Sα, or it is a fractal set.
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Theorem 3.9 For a typical direction consider the corresponding flow on Sα. Denote

Lη := η ∩ L, the “trace” of the escape orbit on the usual Poincaré section. Then its

closure in L (denoted by Lη) is either the entire L or a Cantor set.

Proof of Theorem 3.9. Assume Lη 6= L. This set is closed. We are going

to show it also has empty interior and no isolated points, that is, it is Cantor. In the

remainder, by interval we will always mean a segment of L.

Suppose the interior of our set is not empty. Then there exists an open interval

I ⊆ Lη containing a point z of η. Now, in the complementary set of Lη, select a point

w whose orbit is non-singular. Let w evolve, e.g., in the future. By Corollary 3.8,(i)

applied to z, there is a t > 0 such that φt(w) ∈ I . By the choice of w, we can find an

open interval J, such that w ∈ J, J ∩Lη = ∅ and so small that φt maps J isometrically

into I . This implies that J ⊂ Lη, which is a contradiction.

To show that there are no isolated points: if z ∈ Lη \Lη, there is nothing to prove;

if z ∈ Lη, then Corollary 3.8,(ii) will do. Q.E.D.
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Chapter 4

The exponential step billiard

Infinite step billiards were first introduced in [DDL1]. Treated in detail there was the

case pn = 2−n which was christened the exponential step billiard.

We report the outcomes of that work in this chapter to show how the topological

properties we have analyzed in Chapter 3 work in a specific case. Actually, the expo-

nential billiard does not satisfy the assumptions of Section 3.1. Nevertheless the same

kinds of results as in Sections 3.1-3.2 can be shown, due to the evident scaling symmetry

that the exponential table possesses. This symmetry enables one to use rather elemen-

tary techniques to complete a thorough analysis of the escape orbits for the model at

hand. Section 4.1 covers this.

Understandably, the exponential billiard is just one of the very many infinite step ta-

bles that validate the claims of Section 3.3 without verifying the hypothesis of Theorem

3.1.

Let us start with the following construction: suppose that a trajectory γ on Sα

starts from L and reaches directly the opening Gn = {n} × [−2−n, 2−n[ (cf. proof of

Theorem 3.1). Let us denote with Yn ∈ [−2−n, 2−n[ the ordinate of the point at which

γ crosses Gn. Within the box ]n, n+1[×[−2−n, 2−n[, the motion is a simple translation.

Hence

Yn+1 = Yn + α (mod 2−n+1), (4.1)

with (mod r) meaning the unique point in [−r/2, r/2[ representing the class of equiv-

alence in R/rZ, rather than the class of equivalence itself. The trajectory γ will cross

Gn+1 if, and only if,

Yn+1 ∈ [−2−(n+1), 2−(n+1)[. (4.2)
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Setting yn := 2n−1Yn, relation (4.1) becomes

yn+1 = 2yn + 2nα (mod 2), (4.3)

and the trajectory will cross Gn+1 if, and only if,

yn+1 ∈
[
−1

2
,
1

2

[
. (4.4)

The recursion relation (4.3) can be easily proven by induction to yield

yn+1 = 2n+1y0 + (n+ 1)2nα (mod 2), (4.5)

where the numbers yk ∈ [−1/2, 1/2[ now represent the (rescaled) intersections of the

trajectory with the vertical openings Gk.

The transformation Tn,α : [−1/2, 1/2[−→ [−1, 1[,

Tn,α(y) := 2y + 2nα (mod 2) (4.6)

is called the rescaled transfer map.

4.1 Escape orbits for the exponential billiard

The definition of Tn,α shows that, due to the symmetry of our table, what really matters

(as far as the escape orbits are concerned) is not the “constant of motion” α, but rather

α (mod 2), the difference resulting only in the orbits winding more times around the

boxes ]n, n+ 1[×[−2−n, 2−n[. As a matter of fact, we will see later that virtually all

the information we need is stored in the binary expansion of α (mod 2).

We start out with some easy statements, using the rescaled coordinates yk, unless

otherwise specified.

Lemma 4.1 If α = 2k, k ∈ Z, only one escape orbit exists and its initial condition is

y0 = 0.

Proof. Tn,2k = Tn,0 ∀n ∈ N. The sequence {yn}, in this case, is given by yn =

2ny0 (mod 2). If y0 = 0, all yn are null and the corresponding trajectory escapes,

according to (4.4). If y0 6= 0, there exists a k such that |yk| > 1/2. Q.E.D.
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Corollary 4.2 If α = k 2−j , with k odd, j a non-negative integer, only one escape orbit

occurs. This orbit intercepts Vj.

Proof. The portion of the manifold Sα to the right of the (j+1)-th aperture looks

like Sα itself, modulo a scale factor equal to 2−(j+1). Furthermore, in that region, and

subject to the above rescaling, the transfer map is equivalent to the one we have seen

in the previous lemma. In fact, for n ≥ j+1, Tn,α = Tn,0. So, to the part of the escape

orbit after Gj+1, we can apply that lemma and conclude that the escape trajectory

is unique and yj+1 = 0 holds. Now, we know that α is indeed equal to (2k′ + 1)2−j.

Inverting (4.3) with yj+1 = 0, we get yj = −k′ − 1/2− p, for some integer p. By (4.4)

yj ∈ [−1/2, 1/2[. Hence yj = −1/2, which proves the second part of the lemma. Q.E.D.

In Lemma 4.1 we have encountered the case in which {Tn,α} is a sequence of identical

maps. Considering the more general case of a periodic sequence of maps will yield a

useful tool to detect the presence of more than one escape orbit.

Observe that, when α = 2k/(2m − 1) with k,m positive integers, one gets 2mα =

α (mod 2). In this case we have a periodic sequence of transfer maps of period m, that

is, Tpm,α = T0,α for all integers p > 0. For such directions, then, one method for finding

escape orbits may be the following: Set Mm,α := Tm−1,α ◦ · · · ◦T0,α. As in (4.5) it turns

out that Mm,α(y) = 2my +m2m−1α (mod 2). Let us now find the fixed points of this

map. Consider a trajectory having one of these points as initial datum. If it crosses all

openings between G1 and Gm, then the sequence of crossing points y0, . . . , ym−1 will be

indefinitely repeated and the trajectory will escape.

Let us apply this technique to the case k = 1 and m = 2, that is, α = 2/3. The fixed

points of the map M2,2/3 are the points y ∈ [−1, 1[ such that y = 4y+ 8/3 + 2p, p ∈ Z.

They are

y(0) = −8

9
; y(1) = −2

9
; y(2) =

4

9
. (4.7)

Since |y(0)| = |M2,2/3 y
(0)| > 1/2, that solution has to be discarded. Instead, y(1) =: y

(1)
0

is accepted since

y
(1)
1 = 2y

(1)
0 +

2

3
(mod 2) =

2

9
∈
[
−1

2
,
1

2

[
(4.8)
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y
(1)
2 = y

(1)
0 ∈

[
−1

2
,
1

2

[
. (4.9)

It turns out that the same holds for y(2).

Thus, for α = 2/3 there are at least two escape orbits whose initial conditions in

the non-rescaled coordinates are Y0 = −4/9 and Y0 = 8/9. As orbits of Sα they are

distinct, but is this still true if we consider the corresponding orbits in the billiard P?

Lemma 4.3 For α = 2/3, the two escape orbits with initial conditions Y0 = −4/9 and

Y0 = 8/9 have distinct projections on P .

Proof. Suppose that the two escape orbits coincide in P . Then the backward part

of the orbit that starts at Y = −4/9 must get to Y = 8/9, after several oscillations.

That is, one trajectory turns into the other, by time reversal. According to the fact

that a backward semi-orbit having initial condition (0, Y0) is associated to the forward

semi-orbit of (0,−Y0) (see Section 2.2), the geometry of Sα implies that

8

9
= −4

9
+

j∑

i=1

(
2

3
− mi

2qi

)
, (4.10)

where mi, qi are non-negative integers and j is the number of rectangular boxes visited

by the backward semi-orbit before reaching the point with coordinate Y = 8/9. (Recall

that in each box the variation of the Y -coordinate is α (mod 2−qi).) Rearranging this

formula we obtain

4

9
=

2

3
j − m

2q
, (4.11)

for some non-negative integers m and q. For any choice of m, q and j, the two sides are

distinct. This contradicts our initial assumption. Q.E.D.

We will see later (Corollary 4.9) that there are no more than two escape orbits in Sα,

for any α. We summarize everything about the case α = 2/3 in the following assertion.

Proposition 4.4 Along the direction α = 2/3 there are two distinct escape orbits.

We now turn to the study of the generic case. In view of the arguments of Section

2.2 (see in particular Fig. 2.3), and especially recalling the proof of Theorem 3.1, we
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naturally resolve to analyze the trajectories γp, i.e., the forward semi-orbits starting

from the singular vertices Vp = (p,−2−p).

First of all, we consider those α’s for which γ0 reaches directly Gn: We look at

Fig. 4.1, which displays the unfolding of P . A direct evaluation with a ruler furnishes

the answer, that runs as follows:

n = 1)
1

2
≤ α (mod 2) <

3

2
(4.12)

n ≥ 2)





1

2
≤ α (mod 2) <

1

2
+

1

n2n
;

1 − 1

n2n
≤ α (mod 2) < 1 +

1

n2n
;

3

2
− 1

n2n
≤ α (mod 2) <

3

2
.

(4.13)

Due to the self-similarity of our table, we can write down the analogous inequali-

ties for every other vertex Vp, p ≥ 1, by rescaling (4.12) and (4.13). Thus γp crosses

Gm, m > p, if, and only if,

m = p+ 1)
1

2p+1
≤ α (mod 2−p+1) <

3

2p+1
(4.14)

m ≥ p+ 2)





1

2p+1
≤ α (mod 2−p+1) <

1

2p+1
+

1

(m−p)2m
;

1

2p
− 1

(m−p)2m
≤ α (mod 2−p+1) <

1

2p
+

1

(m−p)2m
;

3

2p+1
− 1

(m−p)2m
≤ α (mod 2−p+1) <

3

2p+1
.

(4.15)

Working out these relations is essentially all we need to do for the rest of this section.

From now on, when we say that γp reaches or crosses aperture Gm, we will always mean

directly.

Lemma 4.5 If γp is an escape orbit then it is the only escape orbit.
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Figure 4.1: Range of directions for which the orbit starting

from the leftmost bottom vertex reaches directly aperture Gn

(case n = 2 is displayed). The exponential step billiard has

been unfolded on the plane.

Proof of Lemma 4.5. It follows from (4.14)-(4.15) that γp is an escape orbit if,

and only if, α ∈ {2−p, 2−p−1} (mod 2−p+1).

In fact, fix for simplicity p = 0, and consider Fig. 4.1 and (4.13): restricting to

α (mod 2), three cones occur, for n ≥ 2. Fixing one cone relative to a copy of Gn,

the geometry of the billiard implies that one, and only one, sub-cone will also reach a

copy of Gn+1. Eventually, for n → +∞, these three cones narrow down to the values

α = 1/2, 1, 3/2, the last of which is rejected for our convention on the continuation of

singular orbits.

Now, for α ∈ {2−p, 2−p−1} (mod 2−p+1), Corollary 4.2 states that there is only one

escape orbit. Q.E.D.

Lemma 4.6 Let m, p be two non-negative integers with m ≥ p+ 2. If γp crosses Gm,
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then either γp+1 does not reach Gp+2 or it crosses Gm, as well.

Proof. It suffices to prove the statement for p = 0 and the reader can easily get

convinced that the actual result follows by a rescaling. Set

I(1)
m :=

⋃

j∈N[1

2
+ 2j,

1

2
+

1

m2m
+ 2j

[
,

I(2)
m :=

⋃

j∈N[1 − 1

m2m
+ 2j, 1 +

1

m2m
+ 2j

[
, (4.16)

I(3)
m :=

⋃

j∈N[3

2
− 1

m2m
+ 2j,

3

2
+ 2j

[
.

From (4.13), γ0 crosses Gm if, and only if, α ∈ Im := I
(1)
m ∪ I

(2)
m ∪ I

(3)
m . If α ∈ I

(2)
m

then γ1 does not cross G2. In fact, (4.14) states that γ1 crosses G2 if, and only if,

α ∈ B :=
⋃

k∈N[1/4 + k, 3/4 + k[. So we have to prove that the sets I
(2)
m and B have

empty intersection. This is the case, because I
(2)
m is made up of intervals of center 2j+1

and radius 1/(m2m), and B is made up of intervals of center 1/2 + k and radius 1/4,

so that

dist(I(2)
m , B) ≥ 1

2
−
(

1

m2m
+

1

4

)
> 0 for m ≥ 2. (4.17)

It remains to analyze the case α ∈ C := I
(1)
m ∪ I(3)

m . Relations (4.15) tell us that γ1

crosses Gm if, and only if,

α ∈ D :=
⋃

k∈N ( [
1

4
+ k,

1

4
+

1

(m− 1)2m
+ k

[

∪
[
1

2
− 1

(m− 1)2m
+ k,

1

2
+

1

(m− 1)2m
+ k

[
(4.18)

∪
[
3

4
− 1

(m− 1)2m
+ k,

3

4
+ k

[ )
.

We have to prove that C ⊆ D. We can visualize the sets C and D as periodic struc-

tures on the line whose fundamental patterns have, respectively, lengths 2 and 1 (with

common endpoints). Therefore, defining Ĉ := C∩ [0, 2] = [1/2, 1/2+1/(m2m)[∪ [3/2−

1/(m2m), 3/2[ and D̂ := D ∩ [0, 2], all we have to do is to show that Ĉ ⊆ D̂. Deducing

the shape of D̂ from (4.18), the result follows from the trivial relations:
[
1

2
,
1

2
+

1

m2m

[
⊂

[
1

2
− 1

(m− 1)2m
,
1

2
+

1

(m− 1)2m

[
, (4.19)

[
3

2
− 1

m2m
,
3

2

[
⊂

[
3

2
− 1

(m− 1)2m
,
3

2
+

1

(m− 1)2m

[
. (4.20)
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Q.E.D.

Lemma 4.7 Again m ≥ p+ 2. If γp crosses Gm, then for all p+ 2 ≤ n ≤ m, γn does

not reach Gn+1.

Proof. As before, we give the proof only for the case p = 0. The orbit γ0 crosses

Gm if, and only if, α ∈ Im, defined in the proof of the previous lemma, whereas γn

crosses Gn+1 if, and only if,

α ∈ Jn :=
⋃

k∈N[ 1

2n+1
+

k

2n−1
,

3

2n+1
+

k

2n−1

[
. (4.21)

If Im and Jn have empty intersection, for all 2 ≤ n ≤ m, then the lemma is proven.

Proceeding as in the first part of Lemma 4.6, we see that Im is strictly contained in the

union of all intervals of center q/2 and radius 1/(m2m), while the intervals constituting

Jn have center 2−n + k2−n+1 and radius 2−n−1. Thus, for 3 ≤ n ≤ m,

dist(Im, Jn) ≥ 1

2n
−
(

1

m2m
+

1

2n+1

)
> 0. (4.22)

If n = 2, (4.22) becomes an equality, but the fact that our intervals are right-open

ensures nevertheless that Im ∩ J2 = ∅. Q.E.D.

One way to memorize the previous technical lemmas may be as follows. The fact

that γp crosses Gm influences all γn’s, for n between p+1 and m: if γp+1 wants to “take

off” (that is, reach some apertures), then it is forced to follow, and possibly pass, γp;

while the γn’s with n ≥ p+ 2 cannot even take off.

We now enter the core of the arguments: recall the notation n.i. to designate the

number of disjoint intervals that constitute a set.

Lemma 4.8 Fix α > 0. Either there exists an integer q such that n.i.(E
(n)
α ) = 2 for

all n ≥ q, or there is a sequence {nj} such that n.i.(E
(nj)
α ) = 1.

Proof. The set of α’s with the property that n.i.(E
(n)
α ) = 2 for n ≥ q is not empty.

In fact, by direct computation, it is easy to verify that for α = 2/3 every γn crosses

Gn+1 but not Gn+2, so that n.i.(E
(n)
α ) = 2 for all n > 0.
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Now, suppose there exists a sequence {mj} with n.i.(E
(mj)
α ) 6= 2. We can as-

sume n.i.(E
(mj)
α ) ≥ 3, otherwise, maybe passing to a subsequence, we would have

n.i.(E
(mj)
α ) = 1 and we would be done. If we fix an mj, there are at least two singu-

lar orbits that cross Gmj
. Let 0 < pj ≤ mj − 2 be the smallest integer such that γp

crosses Gmj
. It follows from Lemma 4.7 that only γpj

and γpj+1 cross Gmj
. Therefore

n.i.(E
(mj)
α ) = 3.

At this point we have three cases: γpj
and γpj+1 are both escape orbits; one of them

escapes and the other is reflected; they are both reflected.

In the first case Lemma 4.5 ensures that γpj
and γpj+1 coincide and Lemma 4.7

implies that no γn with n > pj + 1 can “take off”. Hence n.i.(E
(m)
α ) = 2 for all

n ≥ pj +1, contradicting our assumption. The second case is hardly different: call Gnj

the first aperture that γpj
cannot reach (in fact Lemma 4.6 implies that, of the two, γpj+1

must be the escaping trajectory). Therefore, using again Lemma 4.7, n.i.(E
(m)
α ) = 2

for all n ≥ nj , a contradiction as before. In the last case, call Gnj
the first aperture

which is not reached by γpj+1, and thus not even by γpj
. (Lemma 4.6 claims that γpj+1

goes farther than γpj
.) Another application of Lemma 4.7 proves that n.i.(E

(nj)
α ) = 1.

Proceeding inductively we find a sequence of integers nj > mj with the desired property.

Q.E.D.

Corollary 4.9 For all α’s, #Eα ≤ 2.

Lemma 4.10 Notation as in the above lemma. In the case n.i.(E
(n)
α ) = 2 for n ≥ q,

suppose q ≥ 1 is the minimum integer enjoying that property. Then there are only two

possibilities:

(a) γq−1 is the only escape orbit and α = 21−q (mod 22−q).

(b) γn crosses Gn+1 but not Gn+2 for all n ≥ q−1 so that there are two escape orbits

and either α = 22−q/3 (mod 22−q) or α = 23−q/3 (mod 22−q).

Proof. First, let us see that γq−1 is the only singular orbit crossing Gq. In fact Gq,

by hypothesis, is intersected by only one γk (k ≤ q − 1). (Actually, the case may occur
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that both γp and γk cross that aperture, but only if they coincide. Nothing changes in

the argument if we take k to be the largest integer of the two.) If k ≤ q − 2 then, by

Lemma 4.7, no singular orbit γn, with n ≥ k + 2, can “take off”. Neither can γk+1,

which would be forced by Lemma 4.6 to pass Gq, against the hypotheses. The net result

is that n.i.(E
(n)
α ) = 2, ∀n ≥ k + 1, which contradicts the minimality of q.

Now suppose that γq−1 reaches Gq+1. We want to prove that it is also an escape

orbit and we are in case (a). In fact, if it stops somewhere after Gq+1 (say right before

Gk, k > q + 1), then γq either passes it (and n.i.(E
(q+1)
α ) = 3) or γq does not “take

off” (and n.i.(E
(k)
α ) = 1). Let us see for which directions this case occurs: from (4.15),

α ∈ {2−q, 21−q} (mod 22−q); if α = 2−q (mod 22−q), then n.i.(E
(q)
α ) = 1, so that it must

be α = 21−q (mod 22−q). Considering {E(n)
α }, it is easy to see that it consists of two

nested sequences of right-open intervals. One of the sequences collapses into the empty

set, since all of the intervals share their right endpoint.

So the remaining case is: γq−1 reaches Gq but not Gq+1. We would like to prove

that this also occurs for all n > q−1, i.e., we are in case (b). With the same arguments

as above, one checks that either γq reaches Gq+1, but not Gq+2, or it escapes to ∞.

The latter cannot be the case, since we already know the only direction for which this

can happen, namely α = 2−q (mod 21−q): this is the direction for which γq−1 and γq

coincide, contrary to our present assumption. Reasoning inductively, we obtain the

assertion.

Here, as before, we see that {E(n)
α } consists of two nested sequences of right-open

intervals. But now the two intervals, for a given n, share alternatively (in n) the right

and the left endpoint, so that each sequence shrinks to one point. It remains to find

the directions corresponding to this case. In the sequel, without loss of generality, we

assume q = 1.

Let An be the set of directions along which γn crosses Gn+1. According to (4.14),

An =
⋃

k∈N([2−n−1, 3 2−n−1[+k 21−n). We claim that A =
⋂

n≥0 An is the set of α’s

we are looking for. In fact, if α ∈ A then γn crosses Gn+1 for all n ≥ 0, by definition

of A. Moreover, γn does not cross Gn+2 because, if it did, then, by Lemma 4.7, γn+2

would not cross Gn+3, which is a contradiction. We note that every An has a periodic
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structure whose fundamental pattern has length 21−n. The least common multiple of

these numbers is 2. Thus, as in the proof of Lemma 4.6, we only need to look at Â :=

A∩[0, 2]. This set consists of two points: α1 and α2. In fact, let Âp := [0, 2]∩(
⋂p

n=0 An).

Then, referring to Fig. 4.2, it is clear that {Âp} is made of two sequences of nested

intervals, both having a limit αi. Furthermore, by the symmetry of the An’s, α2 =

2−α1. As indicated by Fig. 4.2, one way to find α1, and therefore α2, is to compute the

limit of the oscillating sequence 2−1, 2−1+2−2, 2−1+2−2−2−3, 2−1+2−2−2−3+2−4, . . . In

other words, α1 =
∑∞

j=0 2−1−2j = 2/3 so that α2 = 4/3. Hence, for q = 1, the directions

that generate the behavior described in (b) are α = 2/3 (mod 2) and α = 4/3 (mod 2).

Q.E.D.
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Figure 4.2: The structure of the sets An, as in the proof of

Lemma 4.10: A =
⋂

n≥0 An consists of two points, both limit

of a sequence of nested intervals.

Lemma 4.10 states in particular that, of the two possible cases encountered in

Lemma 4.8, the latter occurs for countably many directions. In other words, we have

derived for the exponential billiard an even stronger assertion than Theorem 3.1.

We give now our last result concerning #Eα.

Proposition 4.11 There are no α’s without escape orbits.

Proof. From the previous lemmas, there may be zero escape orbits only for those

α’s such that there is a sequence {nj} with n.i.(E
(nj)
α ) = 1. Moreover, in order to have
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no escape orbits, the intervals E
(nj)
α must eventually share their right extremes. This

implies that γnj
connects the vertex Vnj

to the “upper copy” of Vnj+1 , as illustrated

in Fig. 3.1. Note that if nj+1 − nj = 1 for some j ≥ 0, then γj is an escape orbit

(essentially the case (a) of Lemma 4.10). We can assume that n0 = 0, otherwise can

always rescale the billiard. Thus γ0 connects the vertices V0 to Vn1. By looking at

(4.12)-(4.13), this happens if, and only if,

α =
1

2
+

1

n12n1
+ 2k1 or α = 1 +

1

n12n1
+ 2k1, (4.23)

for some integer k1. Now, let us consider γ1. If we rescale vertically the billiard by a

factor 2n1 , we get the same setting we had for γ0. Since γ1 connects Vn1 to Vn2, we

must have, for some k2,

2n1α =
1

2
+

1

(n2 − n1)2n2
+ 2k2 or 2n1α = 1 +

1

(n2 − n1)2n2
+ 2k2. (4.24)

Since n2 −n1 > 1 and n1 > 1, a comparison between (4.23) and (4.24) shows that 1/n1

must equal 1/2 + 1/((n1 − n2)2
n2) or 1 + 1/((n1 − n2)2

n2). It is not hard to see that

this cannot be the case. Therefore there are no α’s such that γ0 intersects Vn1 and Vn2

at the same time. This proves the statement. Q.E.D.

Lemma 4.8, Lemma 4.10 and Proposition 4.11, can be summarized into the following

theorem.

Theorem 4.12 With reference to the exponential step billiard P : If there exists a

non-negative integer m such that 2mα = 4/3 (mod 2), then there are two escape orbits;

otherwise there is only one escape orbit.

We observe that, if there are two escape orbits, they are distinct even in P , by using

the same considerations as in the proof of Lemma 4.3.

Remark. The techniques presented in this section to study the escape orbits of the

billiard pn = 2−n can also be applied to the more general case pn = 2−kn, where k is

any positive integer. Indeed, for k > 1, the analysis of the directions (4.14)-(4.15) along

which the semi-orbit γp reaches aperture Gm, gives the same qualitative answers as for
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k = 1. Also, Lemma 4.8, Lemma 4.10 and Proposition 4.11 still hold true, yielding

Theorem 4.12.

We finish this chapter by proving the analogue of Lemma 3.4 for the model at hand.

Lemma 4.13 In the exponential billiard, for a.e. α, ηα does not intersect any vertex.

Proof. Suppose there is an α for which the assertion does not hold. If a vertex is

contained in the forward semi-orbit, that is, after the material point has crossed L for

the last time, then this can only be a singular vertex; hence ηα must contain γp, for

some p > 0. This implies that n.i.(E
(n)
α ) = 2, for n large (see proofs of Lemma 4.5 and

4.2). This case occurs for a null-measure set of directions.

Then assume that some vertex V is contained in the past semi-orbit: V can be (0, 0)

or a point of the form (p,±2−q) (in particular, Fig. 2.1 shows that q = |p| or |p| + 1).

Let us call (0, Y0) the last (in time) intersection point between the orbit and L. Let

j be the number of rectangular boxes visited by the orbit after leaving V and before

reaching (0, Y0). Then, in complete analogy with (4.10),

Y0 = m02
−q +

j∑

i=1

(α−mi2
−qi); (4.25)

with mi, qi ≥ 0 some integers (m0 = 0 or ±1 depending on V being the origin or not).

We turn now to the rescaled coordinates: y0 = Y0/2. Rearranging the previous

equality yields, for some integers m, k,

y0 = m2−k +
j

2
α. (4.26)

Since the orbit is supposed to escape after leaving (0, Y0), we can apply (4.4), (4.5) with

y0 as in (4.26). If n ≥ k the first term in (4.26) gets canceled. Therefore one must have

yn+1 = (n+ j + 1)2nα (mod 2) ∈
[
−1

2
,
1

2

[
∀n ≥ k. (4.27)

Define the increasing sequence {ni}i≥p by ni +j+1 = 2i with np ≥ k. Condition (4.27)

implies in particular that

yni+1 = 2i+niα (mod 2) ∈
[
−1

2
,
1

2

[
∀i ≥ p. (4.28)
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One verifies that—except for countably many α’s whose binary expansion in not uniquely

defined—(4.28) is equivalent to saying that the −(i+ ni + 1)-th digit of the binary ex-

pansion of α is a zero for every i ≥ p (cf. Appendix of [DDL1]). The Lebesgue measure

makes these events independent and equally likely with probability 1/2. Hence (4.28)

can only occur for a null-measure set of directions. This proves that for almost no α’s,

ηα can start from vertex V and pass through j boxes before taking off to infinity. Since

events like this are countably many, we have shown that an escape orbit can almost

never contain a vertex in its backward part. Q.E.D.
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Chapter 5

Ergodic properties

One would like to know about the ergodic properties of the infinite step billiards.

The statements of Chapter 3, although fairly interesting from a topological point of

view, do not address at all the measure-theoretic features of these dynamical systems.

(For example, one should not be misled by Corollary 3.8,(iii), which is a much weaker

statement than ergodicity.)

Something can be done in this direction, starting from the available results for finite

polygonal tables. Since the typical truncated billiard is ergodic (Proposition 1.1), one

can approximate an infinite step polygon P by means of a suitable P (n) (recall the

definition from Chapter 2). If the approximation is so good that the dynamics on the

two billiards are very similar for most initial points and for long times, then one can

use the ergodicity of the truncated table to obtain the same result for P .

This is certainly not a new idea, being essentially the argument behind the main

statements of Proposition 1.3 [KMS]. Recently Troubetzkoy [Tr] revived it to prove

that, in a certain space of generic infinite polygons, the typical element is ergodic for

almost every direction θ. In Section 5.2 we do the same for our more modest class of

tables. (The curious reader will find in [DDL2] more comments about the analogies

and differences between our Theorem 5.2 and [Tr, Thm. 5.1].)

Before moving on to that, we present in Section 5.1 a somewhat weaker theorem

which shows that there are infinite step billiards ergodic in one given direction. The

purpose of this is to give a more readable and constructive proof than that of Theorem

5.2.

Completing the chapter is a section regarding the entropy of the billiard w.r.t.

certain ergodic measures.
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5.1 Ergodicity in one direction

Theorem 5.1 Fix α 6∈ Q. For every positive, decreasing, vanishing sequence {p̄n} ⊂

Q, and every integer k, there exists a decreasing sequence {pn} ⊂ Q, with

pn = p̄n, for 0 ≤ n ≤ k;

0 < pn ≤ p̄n, for n > k;

∑

n

pn <∞.

such that the billiard flow φα,t on SP
α , for P ≃ {pn}, is ergodic (hence almost all orbits

are dense).

Proof of Theorem 5.1. We will construct Sα in such a way that almost every

point in L has a typical trajectory, in the sense that the time average w.r.t. φt of a

function in a dense subspace of L1(Sα) equals its spatial average. Since L is a Poincaré

section, the same property will hold for a.e. point in Sα, thus proving that φt is ergodic.

For the sake of notation, we will drop the subscript α in the sequel. It may be useful

to remark that the Lebesgue measure, that we use here, is not normalized.

Take a positive sequence εn ց 0. Then set pi := p̄i ∀i ≤ k. We are going to build

the rest of our billiard by induction: suppose we have fixed pi for 1 ≤ i ≤ n, (n ≥ k)

and we have to determine a suitable pn+1. Consider S(n), generated by the pi’s found

so far. The flow φ
(n)
t on it is ergodic by Proposition 1.1,(i) and (iii). For f ∈ L1(S(n))

and z ∈ L define

(
ΞT

(n)f
)

(z) :=
1

T

∫ T

0
f ◦ φ(n)

t (z) dt− 1

|S(n)|

∫

S(n)
f dXdY. (5.1)

Let {f (n)
j }j∈N be a separable basis of L1(S(n)). For the rest of the proof S(n) will be

naturally identified with an open subset of S(m), m > n (see Fig. 2.2). As a consequence,

a function defined on the former set will be implicitly extended to the latter by setting

it null on the difference set. With this in mind, let

A
(n)
T :=

{
z ∈ L | ∀ 1 ≤ i, j ≤ n,

∣∣∣ΞT
(n)f

(j)
i (z)

∣∣∣ ≤ εn
}
. (5.2)

By ergodicity, since only a finite number of functions are involved in the above set, we

have |A(n)
T | → |L| = 2 as T → ∞. Take Tn such that |A(n)

Tn
| ≥ 2 − εn/2. We are now in
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position to determine pn+1. Choose some

pn+1 ∈ Q; 0 < pn+1 ≤ min

{
p̄n+1,

εn
2Tn

}
(5.3)

(this can be done in such a way that eventually
∑

n pn < ∞). Now imagine to open a

hole of width 2pn+1 in the middle of {n+ 1}× [−pn, pn[ (same as {−n− 1}× [−pn, pn[

since they are identified at the moment). The motion on S(n) is not affected very much

by this change, during the time Tn. If we denote by φt the flow on the infinite billiard

table (when we are done constructing it), we can already assert that, taken a point

z ∈ L, φ
(n)
t (z) = φt(z) ∀t ∈ [0, Tn] unless the particle departing form z hits the hole in a

time less than Tn. We can estimate the measure of these “unlucky” initial points: they

constitute the set

Bn := L ∩




⋃

t∈[−Tn,0]

φ
(n)
t ({n+ 1} × [−pn+1, pn+1[ )


 . (5.4)

The backward beam (up to time −Tn) originating from the hole cannot hit L more

than Tn/2 times, since between each two successive crossings of L, the beam has to

cover a distance which is at least 2 (see Fig. 2.2), but the velocity of the particles was

conventionally fixed to 1. Every intersection of the beam with L is a set of measure

2pn+1, so, from (5.3), |Bn| ≤ εn/2.

Set Cn := A
(n)
Tn

\Bn, thus |Cn| ≥ 2−εn. So Cn is the set of points which keep enjoying

the properties as in (5.2), even after the cut has been made in S(n). Suppose one recur-

sively defines pn∀n, thus determining an infinite manifold S. Let C :=
⋂

n∈N⋃m≥nCm.

Then |C| = limn→∞ ∪m≥nCm = 2 = |L|. This is the “good” set since, fixed z ∈ C,

there exist a subsequence {nk} such that z ∈ ⋂
k Cnk

. This means that, taken two

integers i, j, ∀nk ≥ max{i, j},
∣∣∣∣

1

Tnk

∫ Tnk

0
f

(j)
i ◦ φt(z) dt−

1

|S(nk)|

∫

S
f

(j)
i dXdY

∣∣∣∣ ≤ εnk
. (5.5)

Comparing this with (5.1) we notice two differences. First, the flow that appears here

is φt because of the remark after (5.3). Second, the manifold integral is taken over all of

S: this is so because of the initial convention to extend with zero all functions defined

on subsets of S.
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Define ΞT in analogy with (5.1). Since |S(n)| ր |S|, (5.5) shows that (ΞTnkf
(j)
i )(z) →

0, as k → ∞, with Tn in general going to ∞ (this is not guaranteed by the definition of

Tn, but one can easily arrange to make this happen). We now invoke Birkhoff’s Theo-

rem, which states that, for the function f
(j)
i ∈ L1(R), the time average is well-defined

a.e. (in R, hence in L). Therefore, for every f ∈ span{f (j)
i }i,j∈N, there exists a set

Cf ⊆ L, |Cf | = 2 such that

lim
T→+∞

(ΞTf)(z) = 0. (5.6)

This proves the claim we made at the beginning, since span{f (j)
i } is by construction

dense in L1(S).

As concerns the assertion about the density, that immediately follows from standard

arguments as in [W, Thm. 5.15] (which can be checked to hold under our hypotheses,

as well). Q.E.D.

Remark. The fact that the above result provides ergodic billiards with rational

heights only is merely technical. Had we decided not to use almost integrable billiards,

we could not have exploited Proposition 1.1,(iii), but the result would have followed

anyway, in a slightly more complicated fashion.

5.2 Generic ergodicity

Let S be the space of all step polygons with unit area. (This means that, in this section,

we drop the unsubstantial requirement p0 = 1.) Since each step polygon P is uniquely

determined by the sequence {pn}n∈N, we apply to S the metric of the space ℓ1: given

P ≃ {pn}, Q ≃ {qj}, let

d(P,Q) :=
∞∑

n=0

|pn − qn|. (5.7)

The metric space (S, d) is complete and separable. Note that d(P,Q) = A(P△Q).

Also, denote by S0 the collection of all finite P ∈ S with rational heights.

The following statements are the highlight of this section:

Theorem 5.2 For a typical step polygon P , the flow on SP
α is ergodic for a.e. α ∈ R+.
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Corollary 5.3 There are infinite step billiards P ergodic on SP
α for a.e. α.

In view of the proofs, we turn to the notation θ = arctanα to denote directions.

More specifically, we use the normalized Lebesgue measure on θ ∈]0, π/2[. Although this

is equivalent (in the sense of reciprocal absolute continuity) to the Lebesgue measure

on α ∈ R+, the former will simplify the arguments quite a bit.

We need some definitions and a technical lemma. In R2, let ρ be the Euclidean metric

and A the area. Also, denote by V := {Vk} the set of non-removable singularities of

SP
θ , as defined at the beginning of Chapter 2.

Definition 5.4 Given P,Q ∈ S, θ ∈]0, π/2[, x ∈ SP
θ ∩ SQ

θ and ε > 0, let

I(P,Q, x, ε) := {t ∈ [0, 1/ε] | ρ(φP
θ,t(x), φ

Q
θ,t(x)) > ε}, (5.8)

G(P,Q, θ, ε) := {x ∈ SP
θ ∩ SQ

θ | |I(P,Q, x, ε)|< ε}, (5.9)

E(P,Q, ε) :=
{
θ ∈]0, π/2[ | A(G(P,Q, θ, ε)) ≥ A(SP,Q

θ ) − ε
}
. (5.10)

Lemma 5.5 For any P ∈ S and ε > 0, we have

lim
Q→P

|E(P,Q, ε)|= 1.

Proof of Lemma 5.5. It is enough to prove the statement for any sequence

converging to P . Let {Pn} be such a sequence. Fix θ ∈]0, π/2[ and ε > 0. Only

countably many orbits of SP
θ contain a singular vertex V . Let x ∈ SP be a point

that does not belong to any of these orbits. In a finite interval of time its trajectory

can get close only to a finite number of singular vertices. Therefore δε, the distance

between the ∪0≤t≤1/ε φ
P
θ,t(x) and V , is positive. Let Nε be the number of collisions of

∪0≤t≤1/ε φ
P
θ,t(x) with the horizontal sides of SP

θ .

The two surfaces SP
θ and SPn

θ overlap (as subsets of R2). If x ∈ SPn as well,

then the set ∪0≤t≤1/ε φ
Pn

θ,t (x) represents a finite piece of the trajectory of x in the

surface SPn

θ . We want to estimate ρ(φP
t (x), φPn

t (x)) for 0 ≤ t ≤ 1/ε. Since there is

a natural correspondence between the sides of the two surfaces, when we say that the

two trajectories hit the same sequence of sides, we mean corresponding sides. Notice

that ρ(φP
t (x), φPn

t (x)) stays constant when neither orbit crosses any sides. Also, as long
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as φP
t (x) and φPn

t (x) hit the same sequence of sides, every time that there is collision

at a horizontal side, the distance ρ(φP
t (x), φPn

t (x)) increases by a term h ≤ 2d(P, Pn).

Hence the maximum distance between the two trajectories in the interval t ∈ [0, 1/ε] is

≤ 2d(P, Pn)Nε. Therefore, by definition of δε, if d(P, Pn) < δε/(2Nε), the trajectories

encounter the same sequence of sides for 0 ≤ t ≤ 1/ε.

Since d(P, Pn) → 0 as n → ∞, we can find an m(x, ε) > 0 such that the previous

inequality is satisfied for all n > m(x, ε). It is clear now that, as n grows larger, the

distance between the two trajectories decreases. We conclude that, for points x ∈ SP
θ

with a non-singular positive semi-trajectory,

lim
n→∞

max
0≤t≤1/ε

ρ(φP
t (x), φPn

t (x)) = 0. (5.11)

As a consequence, we have that a.e. x ∈ SP
θ belongs to G(P, Pn, θ, ε) if n, which depends

on x, is sufficiently large. Therefore A(G(P, Pn, θ, ε)) → A(SP
θ ) as n → ∞. Being this

true for all θ ∈]0, π/2[, we finally obtain |E(P, Pn, ε)| → 1 as n → ∞, for any ε > 0.

Q.E.D.

We are now in position to attack the main proof of this section:

Proof of Theorem 5.2. Choose εn > 0 such that limn→∞ εn = 0. Let {fi}i∈N
be a countable collection of continuous functions with compact support and let it be

dense in L1(R2). For each step polygon P , fP
i denotes the restriction of fi to SP

θ ,

corrected to obey the identifications on SP
θ . These corrections occur on a set of zero

Lebesgue measure in R2, therefore {fP
i }i∈N is dense in L1(SP

θ ) for each θ ∈]0, π/2[.

Given P ∈ S, x ∈ SP
θ and i ∈ N, let us introduce

BP
T (θ, i, x) :=

∣∣∣∣∣
1

T

∫ T

0
fP
i ◦ φP

t (x)dt− 1

A(SP
θ )

∫

SP
θ

fP
i dA

∣∣∣∣∣ (5.12)

and

CP
T (θ, n) :=

{
x ∈ SP

θ |BP
T (θ, i, x) ≤ εn, i = 1, . . . , n

}
. (5.13)

If P ∈ S0, the billiard flow φP
θ,t is uniquely ergodic for all irrational θ (i.e., α = tan θ 6∈

Q). Thus, for every n > 0 and such θ, we have that limT→+∞A(CP
T (θ, n)) = A(SP

θ ).

Let

DP
T (n) :=

{
θ ∈]0, π/2[ | A(CP

T (θ, n)) ≥ A(SP
θ ) − εn

}
. (5.14)
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Then we can choose a Tn(P ) ≥ n such that |DP
T (n)| > 1− εn for any T ≥ Tn(P ). Since

f1, f2, . . . , fn are uniformly continuous on R2, there is an rn > 0 for which |fi(x) −

fi(y)| ≤ εn whenever ρ(x, y) ≤ rn and i = 1, . . . , n. Let

δn(P ) := min

{
1

Tn(P )
, εn,

εn
max1≤i≤n ‖fi‖∞

, rn

}
(5.15)

and τn := 1/δn. By Lemma 5.5, there exists 0 < σn(P ) ≤ δn(P ) such that, if Q ∈

Uσn(P ) := {R ∈ S | d(P,R) ≤ σn}, then |E(P,Q, δn)| > 1 − δn ≥ 1− εn.

Let En := E(P,Q, δn) and In(x), Gn(θ) be the sets (5.8), (5.9) used in the definition

of E(P,Q, δn). These sets depend on P . For θ ∈ En and x ∈ Gn(θ), A(Gn(θ)) ≥

A(SP,Q
θ ) − δn ≥ A(SP,Q

θ ) − εn, |In(x)| < δn and ρ(φP
t (x), φQ

t (x)) ≤ δn ≤ rn for t ∈

[0, τn] \ In(x). Notice that Tn ≤ τn. For i = 1, . . . , n, we have:

∣∣∣∣
1

A(SP )

∫

SP

fP
i dA− 1

A(SQ)

∫

SQ

fQ
i dA

∣∣∣∣

=
1

A(SP )

∣∣∣∣
∫

SP

fP
i dA−

∫

SQ

fQ
i dA

∣∣∣∣ (5.16)

≤ 1

4

∫

SP △SQ

|fi| dA ≤ 1

4
‖fi‖∞A(SP△SQ)

≤ σn‖fi‖∞ ≤ δn‖fi‖∞ ≤ εn.

Let θ ∈ DP
τn

(n) ∩En and x ∈ CP
τn

(θ, n) ∩Gn(θ). Then

∣∣∣∣
1

τn

∫ τn

0

fQ
i ◦ φQ

t (x)dt− 1

A(SQ)

∫

SQ

fQ
i dA

∣∣∣∣

≤ 1

τn

∫ τn

0

∣∣∣fQ
i ◦ φQ

t (x) − fP
i ◦ φP

t (x)
∣∣∣dt

+

∣∣∣∣
1

τn

∫ τn

0
fP
i ◦ φP

t (x)dt− 1

A(SP )

∫

SP

fP
i dA

∣∣∣∣ (5.17)

+

∣∣∣∣
1

A(SP )

∫

SP

fP
i dA− 1

A(SQ)

∫

SQ

fQ
i dA

∣∣∣∣

=: I + II + III.

We have I ≤ 2 δ2n‖fi‖∞ + εn ≤ 3εn—say—for n large enough. Moreover, x ∈ CP
τn

(θ, n)

implies II ≤ εn. Finally, III ≤ εn by (5.16). We conclude that I + II + III ≤ 5εn for

θ ∈ DP
τn

(n) ∩ En, x ∈ CP
τn

(θ, n) ∩Gn(θ) and i = 1, . . . , n. By definition of DP
τn

(n) and

En, we have

|DP
τn

(n) ∩En| > 1− 2εn. (5.18)
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From A(CP
τn

(θ, n)) ≥ A(SP
θ ) − εn and A(Gn(θ)) ≥ A(SP

θ ) − εn it follows that

A(CP
τn

(θ, n) ∩Gn(θ)) ≥ A(SP
θ ) − 2εn = A(SQ

θ ) − 2εn. (5.19)

Let {Pj}j∈N be an enumeration of S0 and

H :=
∞⋂

n=1

∞⋃

j=n

Uσn(Pj )(Pj). (5.20)

It is easy to see thatH is a dense Gδ of S. If Q ∈ H , then for every n > 0 there is a jn for

which Q ∈ Uσn(Pjn)(Pjn). Define D :=
⋂∞

m=1

⋃
n≥m D

Pjn
τn (n) ∩ En. By (5.18), |D| = 1.

This means that, for each θ ∈ D, there is a subsequence {nk} such that θ ∈ D
Pjnk
τnk

(nk)

for all k. In order to avoid heavy notation, let us denote such a sequence by {n}. Now

call C(θ) :=
⋂∞

m=1

⋃
n≥m C

Pjn
τn (θ, n) ∩Gn(θ). From (5.19), A(C(θ)) = A(SQ

θ ).

So, for each θ ∈ D and x ∈ C(θ) (i.e., a.e. θ and a.e. x ∈ SQ
θ ) there exists a

subsequence {nk} such that limk→∞ τnk
= +∞ and

lim
k→∞

1

τnk

∫ τnk

0
fQ
i ◦ φQ

t (x)dt =
1

A(SQ)

∫

SQ

fQ
i dA, (5.21)

for all i ∈ N. Since {fQ
i }i∈N is dense in L1(SQ

θ ), using a standard approximation

argument, and Birkhoff’s Theorem, we conclude that φQ
θ,t is ergodic for a.e. θ ∈]0, π/2[.

Q.E.D.

Proof of Corollary 5.3. Let FN ⊂ S be the collection of finite step polygons

with N sides. Each FN is a nowhere dense set, so the family of all truncated step

polygons F :=
⋃

N≥4 F
N is a subset of first Baire’s category (sometimes this is referred

to as a meager set) in S. By Baire’s Theorem, H is a set of second category, therefore it

intersects the complement of F . In other words, H contains truly infinite step polygons.

Q.E.D.

5.3 Metric entropy

Let us go back to our usual notation α for the directions. We prove the following

property of non-periodic orbits, which turns out to be very useful in certain entropy

estimates, later in this section.
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Proposition 5.6 The closure of the forward and backward semi-orbit of every non-

periodic point intersects V ∪ {∞}.

Remark. This result can be considered an adaptation of Proposition 1.2,(ii). No-

tice that in our case the billiard is always rational (or weakly rational according to [Tr,

Def. 4.3]) and V is only a subset of all vertices.

Proof of Proposition 5.6. If a (past or future) semi-orbit γ of a non-periodic

point is bounded, then it is entirely contained in a finite step billiard P (n), for n large

enough. According to [GKT], the closure of γ must contain a singular vertex of P (n),

which clearly is in V . If instead γ is unbounded, then the set of its limiting points

contains {∞}. Q.E.D.

Take n ≥ 1. In Fig. 2.1, let Ln := {n} × [pn, pn−1[ and L−n := {n} × [−pn−1,−pn[

be the two copies of the n-th vertical side. We identify them with dn := [pn, pn−1[ and

d−n := [−pn−1,−pn[. The family of these intervals partitions I := [−1, 0[∪]0, 1[. Thus

it makes sense to define fα as the i.e.t. induced by φα,t on I .

For any fα-invariant Borel probability measure ν, we set

Hν(P ) := −
∑

n6=0

ν(dn) log ν(dn). (5.22)

Call X̃α := L \ ⋂∞
n=0 P−n

α Eα the set of the points in L whose forward orbits keep

returning there; and denote by Xα the corresponding set in I . More precisely,

Xα := gα

(
X̃α

)
, (5.23)

where gα : X̃α −→ I is given by gα(x) = φα,t1(x) and t1 is the first collision time at a

vertical wall. For any x ∈ X̃α, let

π̃α(x) := {. . . , Lω−1, L, Lω0, L, Lω1, L, . . . , L, Lωk
, . . .}, (5.24)

be the sequence of vertical sides that the orbit of x crosses (adopting the convention

that Lω0 is the first vertical side encountered in the past). Then we define the coding

πα : X̃α −→ (Z∗)Zby

πα(x) := {. . . , ω−1, ω0, ω1, . . .} (5.25)
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We equip Cα := πα(Xα) with the product topology and we denote by σ the left shift.

The following diagram commutes:

fα : Xα −→ Xα

↑ gα ↑

Pα : X̃α −→ X̃α

↓ πα ↓

σ : Cα −→ Cα

(5.26)

Proposition 5.7 Let ν be any fα-invariant, Borel, ergodic probability measure on Xα.

If Hν(P ) <∞, then hν = 0.

Remark. For example, if pn decays exponentially or faster, as for the tables in

Chapter 3 and 4, then Hℓ(P ) is finite for the Lebesgue measure ℓ.

Proof of Proposition 5.7. First of all, notice that the assertion is obvious if ν

is atomic. We claim that the partition {A1, A2, . . .} given by

Aj := {ω ∈ Cα | ω1 = j} (5.27)

is a one-side generator. This implies by standard results [R, 11.3] that hλ = 0 for any

σ-invariant Borel probability measure λ on Cα. Now, gα is bijective by construction,

therefore the pull-back gα∗ν is also non-atomic and ergodic. Hence, there is a Y ⊆ X̃α

such that πα|Y is injective and gα∗ν(Y ) = 1. We conclude that hν(fα) = hπ∗
αgα∗ν(σ) = 0.

It remains to prove the initial claim. This is done if we show that the sequence of

sides an orbit visits in the future determines the sequence of sides visited in the past.

Clearly, if the orbit is periodic, there is nothing to prove. In the non-periodic case we

can use Proposition 5.6 to conclude that any parallel strip of orbits must eventually

“split” at some vertex Vk and this of course implies that two distinct orbits cannot hit

the same vertical sides in the future. Q.E.D.

The topological entropy, too, is probably zero (at least for many of these systems)

but, due to the non-compactness of the table, the usual variational principle cannot be

applied directly and one must check some additional conditions [PP].



Part II

Large deviations for ideal

quantum systems

53



54

Chapter 6

Introduction

Statistical mechanics is the bridge between the microscopic world of atoms and the

macroscopic world of bulk matter. In particular it provides a prescription for obtain-

ing macroscopic properties of systems in thermal equilibrium from a knowledge of the

microscopic Hamiltonian. This prescription becomes mathematically precise and ele-

gant in the limit in which the size of the system becomes very large on the microscopic

scale (but not large enough for gravitational interactions between the particles to be

relevant). Formally this corresponds to considering neutral or charged particles with

effective translation invariant interactions inside a container and taking the infinite-

volume or thermodynamic limit (TL). This is the limit in which the volume |V | of the

container V grows to infinity along some specified regular sequences of domains, say

cubes or balls, while the particle and energy density approach some finite limiting value

[R, F, G, T]. This limit provides a precise way for eliminating “finite size” effects.

It is then an important result (a theorem, under suitable assumptions) of statistical

mechanics that the bulk properties of a physical system, computed from the thermo-

dynamic potentials via any of the commonly used Gibbs ensembles (microcanonical,

canonical, grand canonical, etc.), have well defined “equivalent” TL’s [R, F, G]. These

free energy densities are furthermore proven to be the same for a suitable class of

“boundary conditions” (b.c.), describing the interaction of the system with the walls

and the “outside” of its container. When this independence of b.c. is “strong enough”,

the bulk free energies also yield information about normal fluctuations and large devi-

ations (LD), in particle number and energy, inside regions Λ that are macroscopically

large but significantly smaller than V . The restriction to |Λ| ≪ |V | means that we deal

here with semi-local rather than global LD.
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Part II of this dissertation investigates LD in the particle number, for possibly the

simplest quantum systems, free fermions and bosons. This seems interesting since the

real world is quantum mechanical, with the classical description being an essentially

uncontrolled approximation, albeit a very good one in many circumstances.

The theory of LD for quantum systems is at the present time much less developed

than for classical ones [R, G, vFS]. In particular the very interesting works of Lewis and

collaborators on Bose systems (e.g., [vLP2, LZP, DLP]) only deal with LD in the full

macroscopic box V , i.e., with global fluctuations. There is also a theory of normal and

anomalous small fluctuations for semi-local observables, again for some Bose systems:

see [GVV, BMV, ABV] and references there.

6.1 Classical systems

We begin by considering a classical system of N particles of mass m in a domain, say a

cubical box V ⊂ Rd, interacting with each other through a sufficiently rapidly decaying

pair potential φ(r), e.g., a Lennard-Jones potential. The Hamiltonian of the system is

then given by

H(N, V ; b) :=
1

2m

N∑

i=1

p2
i +

1

2

∑

1≤i6=j≤N

φ(rij) +
N∑

i=1

ub(ri), (6.1)

where pi ∈ Rd, ri ∈ V , rij := |ri − rj|, and ub(ri) represents the interaction of the

i-th particle with the world outside of the boundary of V . This boundary interaction

(indicated here and in the sequel by b) is in addition to the action of the implicitly

assumed “hard wall” which keeps the particles confined to V . The dynamic effect of

the latter is to reflect the normal component of the particle’s momentum when it hits

the wall. However, sometimes it is convenient to replace it with periodic boundary

conditions [FL], dropping the boundary term ub in (6.1).

For a macroscopic system in equilibrium at reciprocal temperature β and chemical

potential µ, the grand canonical Gibbs ensemble then gives the probability density for

finding exactlyN particles inside V ⊂ Rd at the phase pointXN := (r1,p1, . . . , rN ,pN) =:
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(RN ,PN) ∈ ΓN := V N × RdN as

ν(XN | β, µ, V, b) :=
(N !)−1h−Nd exp[−β(H(N, V ; b)− µN )]

Ξ(β, µ | V, b) . (6.2)

Here Ξ is the grand canonical partition function

Ξ :=
∞∑

N=0

(N !)−1λ−dN
B eβµN

∫

V N

dr1 · · ·drN e−β/2
P

φ(rij)−β
P

ub(ri)

=:
∞∑

N=0

eβµN Q(β,N | V, b), (6.3)

and Q(β,N | V, b) is the canonical partition function. We use hdN , h being Planck’s

constant, as the unit of volume in the phase space ΓN , so λB := h
√
β/(2πm) is the de

Broglie wave length. The finite-volume, boundary condition dependent, grand canonical

pressure is

p(β, µ | V, b) := (β|V |)−1 logΞ(β, µ | V, b). (6.4)

Taking now the TL, V ր Rd, we obtain, for a suitable class of b.c., an intrinsic

(b.c. independent) grand canonical pressure p(β, µ). This is related to the Helmholtz

free energy density a(β, ρ) in the canonical ensemble, obtained when Ξ is replaced by

Q−1(β,N | V, b) in (6.4) and the limit is taken in such a way that N/|V | → ρ, a specified

particle density. The relation between p and a is given by the usual thermodynamic

formula involving the Legendre transform

p(β, µ) = sup
ρ

[ρµ− a(β, ρ)] = π(β, ρ̄), (6.5)

where π(β, ρ) is the TL of the canonical pressure

π(β, ρ) := −ρ2∂(a/ρ)

∂ρ
(6.6)

and

ρ̄(β, µ) :=
∂p

∂µ
(β, µ) (6.7)

is the average density in the grand canonical ensemble.

At a first order phase transition µ 7→ ρ̄(β, µ) is discontinuous and the left/right limits

of the derivative on the r.h.s. of (6.7) give the density in the coexisting phases. In our

discussion we shall restrict ourselves to values of the parameters β and µ for which the
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system is in a unique phase. We can of course also go from the grand canonical pressure

to the Helmholtz free energy density by the inverse of (6.5),

a(β, ρ) = sup
µ

[ρµ− p(β, µ)]. (6.8)

Let P (NV ∈ ∆|V | | β, µ, V, b) be the probability of finding a total particle density in

V (i.e., NV /|V |) in the interval ∆ := [n1, n2]. Then, for b in the right class of b.c., we

have (almost by definition) that

lim
V րRd

(β|V |)−1 logP (NV ∈ ∆|V | | β, µ, V, b) = sup
n∈∆

[a(β, ρ̄) − a(β, n) + µ(ρ̄− n)], (6.9)

were ρ̄ is given by (6.7). In probabilistic language, this means that, up to a vertical

translation,−a(β, n)−µn is the LD functional, or rate function, for density fluctuations.

(Note that a(β, ρ) may be infinite for some values of ρ, i.e., when φ(r) = ∞, for r < D,

and ρ is above the close-packing density of balls with diameter D).

On the other hand, the fluctuations in all of V are clearly b.c. and ensemble depen-

dent (they are non-existent in the canonical ensemble) and therefore not an intrinsic

property of the system. Physically more relevant are the fluctuations not in the whole

volume V but in a region Λ inside V . Of particular interest is the case when Λ is very

large on the microscopic scale but still very small compared to V . The proper ideal-

ization of this situation is to first take the TL, V ր Rd, and then let Λ itself become

very large. We are thus interested in the probability P (NΛ ∈ ∆|Λ| | β, µ), for Λ a large

region in an infinite system obtained by taking the TL. This probability should now be

an intrinsic property of a uniform single-phase macroscopic system characterized either

by a chemical potential µ or by a density ρ.

A little thought shows that this probability corresponds to considering the grand

canonical ensemble of a system of particles in a domain Λ with boundary interactions

of the type

ub(ri) =
∞∑

k=1

φ(|ri − xk|), ri ∈ Λ, xk ∈ Λc, (6.10)

i.e., we imagine that the boundary interactions come from particles of the same type as

those inside Λ, specified to be at positions x1, x2, . . . outside Λ. These positions must

then be averaged over according to the infinite-volume Gibbs measure. It follows then,
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from the independence of the bulk properties of the system of the boundary conditions,

that equation (6.9) is still correct, that is

lim
ΛրRd

(β|Λ|)−1 logP (NΛ ∈ ∆|Λ| | β, µ) = sup
n∈∆

[a(β, ρ̄) − a(β, n) + µ(ρ̄− n)]. (6.11)

This relation is indeed a theorem for classical systems, under fairly general conditions

[G, vFS, O].

6.2 Quantum systems

It is equation (6.11) and similar formulas for fluctuations in the energy density which

we want to generalize to quantum systems. To do this, we begin by considering the

boundary conditions imposed on the N -particle wave functions Ψ(r1, . . . , rN | V ) for a

quantum system in the domain V . Usually this is done by requiring that whenever any

ri is at the boundary of V , ri ∈ ∂V , then Ψ is equal to α times its normal derivative

Ψ(r1, . . . , rN | V ) = α ni ·
∂

∂ri
Ψ(r1, . . . , rN | V ) (6.12)

with α = 0 corresponding to Dirichlet and α = +∞ to Neumann boundary conditions.

Denote by bα the elastic boundary condition (6.12). The existence of the TL of

the grand canonical pressure p(β, µ | V, b0) has been proven for quantum systems with

stable potentials [R], and for positive potentials it is established that the pressure does

not depend on α [Ro]. But, as far as we are aware, the dependence on ub(ri) has not

been studied systematically, with the exception of the regime covered by the low-density

expansion of Ginibre [Gi, BR]. This only shows that the dependence on the boundary

is not so well understood for continuous quantum systems.

To investigate the density fluctuations in quantum systems we note that the mo-

mentum variables did not play any role in the derivation of (6.9) and (6.11) for classical

systems. The only thing relevant, when considering particle number fluctuations, is

the probability density in the configuration space. This is given for a classical system

by integrating ν in (6.2) over the momentum variables, whose distribution is always a

product of Gaussians (Maxwellians). For a quantum system, where the analog of (6.2)

is the density matrix ν̂, the configuration probability density is given by the diagonal
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elements of ν̂ in the position representation. For the grand canonical ensemble this can

be written as

Ŵ (RN | β, µ, V, bα) :=
eβµN

∑
γ |Ψγ(RN | V, bα)|2 e−βEγ

Ξ̂
, (6.13)

where Ψγ and Eγ are the eigenstates and eigenvalues of HN with the suitable statistics

and bα b.c. [R, B].

It is clear from the derivation of the TL [R, F] that, when φ(r) is super-stable,

the TL for the canonical ensemble exists for all ρ ∈ [n1, n2] with b.c. bα. Then (6.9)

carries over to quantum systems. The real problem is how to prove (6.11) for these

systems. Ŵ is no longer a Gibbs measure with a pair potential as interaction and there

is no good reason to expect it to be a Gibbs measure for any other “reasonable” many-

body potential [vFS]. (Even if the latter were the case, this potential would almost

certainly depend on the density and temperature of the system and would therefore

not carry directly any information on (6.11).) It might in fact appear that there is no

strong reason why (6.11) should hold for quantum systems. The reason for expecting

it to be true is that it is a thermodynamic type relation and such relations are in

general unaffected by the transition from the classical to the quantum formalism. More

explicitly, we see the difference between (6.9) and (6.11) as involving only boundary

type quantities which should become irrelevant when Λ is of macroscopic size. The

proof of such a statement seems far from obvious. In [LLS] this is achieved in the

(technically) simplest case, where there are no interactions between the particles, i.e.,

the ideal gas with either Bose-Einstein or Fermi-Dirac statistics. We devote the rest of

Part II to describe that work. In Chapter 7 we lay down the mathematical framework

and state the main results, and in Chapter 8 we give the proofs. It turns out that

even for these simple systems this project requires a certain amount of work. The more

technical lemmas are proven in Appendix B.

To finish this introduction, we note that the same reasoning which leads to (6.11) also

gives the well known result that, for |Λ| ր ∞, the variance of NΛ divided by |Λ| tends

to the compressibility, i.e.,
〈
(NΛ − ρ|Λ|)2

〉
/|Λ| → β−1(∂2p/∂µ2)(β, µ). Furthermore

the random variable ξ := lim|Λ|ր∞(NΛ − ρ|Λ|)/
√
ρ|Λ| satisfies a central limit theorem.
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These results are also expected to remain valid for quantum systems and have been

verified for certain classes of bosons [GVV, BMV, ABV], using algebraic methods.

Here they are derived as a corollary of the LD result, and are presented in Section 8.1.
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Chapter 7

Non-interacting quantum systems

We consider a d-dimensional square box V := [−ℓ/2, ℓ/2]d. For computational conve-

nience we choose periodic boundary conditions, but we do not expect our results to

depend on this particular choice. (In fact we will restrict the thermodynamic param-

eters to the one-phase region.) In V there is an ideal fluid (either Fermi or Bose) in

thermal equilibrium, as described by the grand canonical ensemble. We label the Bose

fluid, shorthand BE, with the index + and the Fermi fluid, shorthand FD, with the

index − and introduce the Fock space

FV
± := C ⊕

∞⊕

n=1

L2
±(V n) , (7.1)

where L2
±(V n) is the n-particle space of all symmetric, resp. antisymmetric, square-

integrable functions on V n. Of course, for n = 1, L2
±(V ) = L2(V ). In the sequel, in

order to keep the notation light, we will often drop sub- or superscripts whenever there

is no ambiguity.

Particles do not interact. Therefore the many-particle Hamiltonian in the box V

can be written conveniently in the form

HV :=
∞⊕

n=0

n∑

i=1

1 ⊗ · · · ⊗ hV ⊗ · · · ⊗ 1︸ ︷︷ ︸
ith position out of n

, (7.2)

where hV , the one-particle Hamiltonian on L2(V ), is defined through the one-particle

energy ǫ(k) in momentum space. This means that, if |k〉 denotes the momentum

eigenvector (represented in L2(V ) as ψ
(k)
V (x) := eik·x), then hV |k〉 = ǫ(k)|k〉 with

k ∈ V ′ := (2πZ/ℓ)d, the dual of V .

We assume ǫ(k) to be continuous, ǫ(0) = 0 as a normalization, and ǫ(k) > 0 for

k 6= 0. Also ǫ(k) ≈ |k|γ for small k and ǫ(k) ≥ |k|α for large k, with α, γ > 0.
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Furthermore we require

∫
ddx

∣∣∣∣
∫
ddk eik·x

1

eβǫ(k)−βµ − ε

∣∣∣∣ <∞ (7.3)

for ε = ±1, β > 0, and suitable µ. (One might note the similarities between (7.3) and

the space-clustering condition of [GVV, BMV], which ensures that generic observables

there have normal fluctuations.)

The standard example of a non-relativistic, resp. relativistic, kinetic energy for a

particle of mass m is ǫ(k) = k2/(2m), resp. ǫ(k) =
√
m2c4 + k2c2 − mc2 (having set

Planck’s constant ~ = 1). Both functions satisfy the above conditions. The relativistic

case includes m = 0, although this is not immediately obvious—cf. Appendix B.1 for

details.

We observe that HV may be rewritten as a quadratic form in the creation and

annihilation operators on the Fock space F . Let a∗k be the operator that creates a

particle in the state |k〉 and ak the corresponding annihilator. Then

HV =
∑

k

ǫ(k)a∗kak =
∑

j,k

〈j|hV |k〉a∗jak =: 〈a|hV |a〉 . (7.4)

We fix β > 0 and µ ∈ R for FD, resp., µ < 0 for BE. The grand canonical state in

the volume V is defined by

〈A〉V±,µ :=
TrFV

±

(
A e−βHV +βµN

)

ΞV
±(µ)

(7.5)

for every bounded operator A on FV
± . N = NV is the operator for the number of

particles in the box V , N |L2
±

(V n) := n1L2
±

(V n), and ΞV
±(µ) := TrFV

±
(e−βHV +βµN ) denotes

the partition function. As is well known (see, for example, [B]) we have

ΞV
+(µ) =

∏

k

(
1 − e−βǫ(k)+βµ

)−1
, (7.6)

ΞV
−(µ) =

∏

k

(
1 + e−βǫ(k)+βµ

)
. (7.7)

The infinite-volume thermal state is defined through the limit

〈 · 〉 := lim
V րRd

〈 · 〉V , (7.8)

when taking averages of local observables [BR, Sec. 2.6].
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Taking the infinite volume limit of (7.6) and (7.7) one obtains the grand canonical

pressure

pε(µ) := lim
V րRd

logΞV
ε (µ)

β|V | = − ε

β(2π)d

∫
ddk log

(
1 − ε e−βǫ(k)+βµ

)
(7.9)

and the average density

ρε(µ) :=
dpε

dµ
(µ) =

1

(2π)d

∫
ddk

1

eβǫ(k)−βµ − ε
. (7.10)

p− is real analytic on the whole axis, whereas p+ is real analytic only for µ < 0 and has

a finite limit as µ → 0−. For convenience, we define p+(µ) := ∞ for µ > 0. The slope

of p+ at 0− is related to the Bose-Einstein condensation. We set

ρc := ρ(0−) =
1

(2π)d

∫
ddk

1

eβǫ(k) − 1
. (7.11)

By the properties of ǫ(k), ρc = ∞ for d ≤ γ, and is finite otherwise. ρc is the maximal

density of the normal fluid and any surplus density is condensed into the k = 0 ground

state. To simplify the notation we use ρc also in the case of an ideal Fermi fluid, setting

it equal to ∞.

The infinite system is assumed to be in a pure thermal state, obtained through the

limit (7.8) at the reference chemical potential µ. In this state the average density is

ρ̄ := ρ(µ) < ρc. We define the translated pressure by

gε,µ(λ) = gε(λ) := pε(µ+ λ)− pε(µ) . (7.12)

gε is convex up, increasing, g(0) = 0, and g′ε(0) = ρ̄. For large negative values we have

lim
λ→−∞

gε(λ) = −pε(µ) , lim
λ→−∞

g′ε(λ) = 0, (7.13)

whereas for positive values

lim
λ→∞

g−(λ) = ∞ , lim
λ→∞

g′−(λ) = ∞ (7.14)

in the case of fermions and

lim
λ→−µ

g+(λ) = p+(0) − p+(µ) , lim
λ→−µ

g′+(λ) = ρc (7.15)

for bosons, with g+(λ) = ∞ for λ > −µ.



64

We define the rate function fε as the Legendre transform of gε, i.e.,

fε,µ(x) = fε(x) := inf
λ∈R(gε(λ)− λx) = gε(λo) − λox. (7.16)

Here λo = λo(x) is the minimizer of g(λ) − λx, which is unique by convexity. For

x ≤ 0 we have λo = −∞. For 0 < x < ρc, it is determined by g′(λo) = x, while for

x ≥ ρc we have λo = −µ. This shows that f(x) = −∞ on the half-line {x < 0} and

finite elsewhere. In particular, f is convex down, strictly convex for 0 < x < ρc, and

f+(x) = p(0)− p(µ) + µx, for x ≥ ρc, as a trace of the Bose-Einstein condensation.

Let us now consider a small subvolume Λ of our (already infinite) container V . The

precise shape of Λ plays no role, only the “surface area” should be small compared to

its volume |Λ|. Thus, by Λ ր Rd we mean a sequence of subdomains such that for each

Λ there exists a subset Λ′ of Λ with |Λ′|/|Λ| → 1 and dist(Λ′,Rd \ Λ) → ∞.

Let NΛ be the number operator for the particles in Λ. With respect to 〈 · 〉, NΛ has

some probability distribution. We follow the usual practice and use the same symbol

NΛ to denote also the corresponding random variable. Its distribution is indicated by

P, averages again by 〈 · 〉.

We are now in a position to state the main result.

Theorem 7.1 Let β > 0 and µ < 0 for BE, resp. µ ∈ R for FD. Then, for any interval

I := [a, b],

lim
ΛրRd

1

β|Λ| log P({NΛ ∈ |Λ|I}) = sup
x∈I

fε,µ(x).
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Chapter 8

Large deviations in the density

This chapter is devoted to establishing Theorem 7.1. A way to gain the complete

information about a random variable is to know its generating function. In the case

at hand we want to obtain the asymptotic distribution of the “variable” NΛ. Hence

we need to study the asymptotic behavior of
〈
eβλNΛ

〉
ε
. This will be accomplished in

Sections 8.2 and 8.3. In the case of bosons in high dimension, ρc < ∞ and one needs

more detailed data to study the probability of supercritical densities. The necessary

results are proven in Section 8.4.

For now, we start by showing how Theorem 7.1 follows from such an analysis via

a standard LD technique. As a by-product, we also obtain a central limit theorem for

ξΛ := (NΛ − 〈NΛ〉)/|Λ|1/2.

8.1 The modified state

The following results are proved in the next sections.

Lemma 8.1 There exists a λmax(Λ) such that
〈
eβλNΛ

〉
ε
<∞ for all λ < λmax(Λ) and

〈
eβλNΛ

〉
ε

= ∞ for all λ ≥ λmax(Λ). For FD we have λmax(Λ) = ∞, whereas for BE

λmax(Λ) <∞ with λmax(Λ) ց −µ, as Λ ր Rd.

Theorem 8.2 The limit

lim
ΛրRd

log
〈
eβλNΛ

〉
ε

β|Λ| = gµ(λ) ,

including any finite number of derivatives, exists uniformly on compacts of R for FD,

resp. of (−∞,−µ) for BE.
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Inferring Theorem 7.1 from our information on the generating function is a standard

argument from the theory of LD [E, O] (at least for subcritical densities a < ρc; the

case a ≥ ρc requires more effort). Very roughly, the idea it to introduce a new state for

which a certain event is typical.

Let us look at the statement of Theorem 7.1. The probability of the event in question

can be rewritten as

QΛ :=
〈
χ|Λ|I(NΛ)

〉
, (8.1)

where χA is the indicator function of the set A ⊆ R. To make this event typical we

introduce the modified average

〈 · 〉λ :=
1

Zλ

〈
· eβλNΛ

〉
, (8.2)

where λ < λmax and the partition function Zλ :=
〈
eβλNΛ

〉
. With respect to this new

state, (8.1) can be expressed as

QΛ = Zλ

〈
e−βλNΛχ|Λ|I (NΛ)

〉
λ
. (8.3)

The upper bound for QΛ comes from the exponential Chebychev inequality,

QΛ ≤
〈
eβλ(NΛ−a|Λ|)

〉
= Zλ e

−βλa|Λ| (8.4)

for any 0 < λ < λmax. As regards the lower bound we have to distinguish between two

cases.

Case 1: a < ρc. One uses (7.13)-(7.15) to show that there exists a λo < λmax such

that g′(λo) = a. Differentiating twice w.r.t. λ the equality in the statement of Theorem

8.2, we obtain

lim
ΛրRd

〈NΛ〉λo

|Λ| = g′(λo) = ρ(µ+ λo) = a , (8.5)

lim
ΛրRd

β

|Λ|
[〈
N 2

Λ

〉
λo

−
(
〈NΛ〉λo

)2]
=
dρ

dµ
(µ+ λo) , (8.6)

which is finite. This means that the event {NΛ ≈ |Λ|a} is typical for the new state and

a law of large numbers holds. Notice that λo > 0, since ρ is strictly increasing in µ.
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From (8.3), ∀c ∈ (a, b),

QΛ ≥ Zλo

〈
e−βλoNΛχ|Λ|[a,c](NΛ)

〉
λo

≥ Zλo e
−βλoc|Λ|

〈
χ|Λ|[a,c](NΛ)

〉
λo

(8.7)

≥ αZλo e
−βλoc|Λ|

for some α ∈ (0, 1) and |Λ| large. In fact,
〈
χ|Λ|[a,c](NΛ)

〉
λo

→ 1/2, as Λ ր Rd. Therefore

we obtain from (8.4), (8.7) and Theorem 8.2:

g(λo) − λoc+ o(1) ≤ logQΛ

β|Λ| ≤ g(λo)− λoa+ o(1) . (8.8)

Since c ∈ (a, b) is arbitrary, we conclude that

lim
ΛրRd

logQΛ

β|Λ| = g(λo) − λoa = f(a) = sup
x∈[a,b]

f(x) , (8.9)

where f is the rate function defined in (7.16). λo is the same as in the definition of the

Legendre transform (7.16), because of (8.5). The last equality comes from the convexity

of f .

Case 2: a ≥ ρc. In this case the problem is that one cannot find a fixed λo that

verifies (8.5). As we will show later, it is nevertheless possible, for each finite Λ, to

choose a λΛ such that the average density is a, i.e., 〈NΛ〉λΛ
= a|Λ|. However, a might

not correspond to the typical density in the limit Λ ր Rd, in the sense that no law of

large numbers like (8.6) is guaranteed. Therefore establishing a lower bound for QΛ is

not so immediate in this case, and we need the following lemma.

Lemma 8.3 For every subdomain Λ ⊂ Rd and every a > 0, there exists a unique

λΛ = λΛ(a) such that 〈NΛ〉λΛ
= a|Λ|. If a ≥ ρc, then

lim
ΛրRd

λΛ = −µ; (8.10)

lim
ΛրRd

logZλΛ

β|Λ| = g(−µ); (8.11)

lim inf
ΛրRd

1

|Λ| ln
〈
χ[a|Λ|,a|Λ|+1) (NΛ)

〉
λΛ

= 0. (8.12)
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The above is proven in Section 8.4.

Now, the first two lines of (8.7) are still valid, with λΛ replacing λ0. Taking the log

and dividing by |Λ|, one obtains, via (8.12), the first inequality in (8.8), again for λΛ.

The second inequality comes for free from Case 1. Finally, (8.10) and (8.11) are used

to show that

lim
ΛրRd

logQΛ

β|Λ| = g(−µ) + µa = f(a) = sup
x∈[a,b]

f(x) , (8.13)

yielding the linear part of the BE rate function. Q.E.D.

As anticipated, Theorem 8.2 also implies the central limit theorem for the density

in Λ.

Corollary 8.4 Under the assumptions of Theorem 7.1, the moments of the variable

ξΛ = (NΛ − 〈NΛ〉)/|Λ|1/2 converge, as Λ ր Rd, to those of a Gaussian with variance

β−1(dρ/dµ)(µ).

Proof. The k-th cumulant of ξΛ is given by

CΛ(k) =
1

βk|Λ|k/2

[
dk

dλk
log
〈
eβλNΛ

〉]

λ=0

, (8.14)

k ≥ 2. From Theorem 8.2, CΛ(2) → β−1g′′(0) = β−1(dρ/dµ)(µ), whereas, for k > 2,

CΛ(k) → 0. Also CΛ(1) = 0. These limits are the cumulants of a centered Gaussian

variable with the specified variance. Q.E.D.

8.2 Generating function

We derive a determinant formula for the generating function
〈
eβλNΛ

〉
ε
. With its help

we prove the claims of Lemma 8.1. We will see in the next section that it is convenient

to introduce the variables ζ := eβλ and ζ̃ := ζ − 1.

By (7.4), we have

−βHV + βµNV = 〈a|(−βhV + βµ1V )|a〉 =: 〈a|AV |a〉, (8.15)

βλNΛ = 〈a|βλχΛ|a〉 =: 〈a|BΛ|a〉, (8.16)

which define AV and BΛ as linear operators on L2(V ). We will use the following identity.
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Lemma 8.5 Let two linear operators A,B on L2(V ) be self-adjoint and bounded from

above. Then there exists a self-adjoint operator C on L2(V ) such that eAeBeA = eC

and the relation

e〈a|A|a〉e〈a|B|a〉e〈a|A|a〉 = e〈a|C|a〉

holds for operators acting on FV
+ or FV

− .

Proof. See Appendix B.2.

We apply Lemma 8.5 with A = AV /2 and B = BΛ, after a symmetrization of the

density matrix in (7.5). Then, using also definition (7.8),

〈
eβλNΛ

〉
= lim

V րRd

TrFV (e〈a|C|a〉)

TrFV (e〈a|AV |a〉)
. (8.17)

Evaluating the trace of a quadratic form in a∗i , aj is a standard calculation for both BE

and FD. Let us consider first the case of fermions. For a self-adjoint operator A on

L2(V ) such that eA is trace-class, we have

TrFV
−

(e〈a|A|a〉) = detV (1V + eA) = det(1 + χV e
AχV ), (8.18)

where detV is the determinant on L2(V ) and det the determinant on L2(Rd). Here

and in the sequel we refer to the theory of infinite determinants, as found, e.g., in [RS,

Sec. XIII.17]. eAV is obviously trace-class, and so is eC , since eBΛ is bounded. Using

the definition of C, we obtain

detV (1V + eC)

detV (1V + eAV )
= detV

[
(1V + eAV )−1(1V + eAV /2eBΛeAV /2)

]

= detV

[
1V + (1V + eAV )−1eAV /2(eBΛ − 1V )eAV /2

]

= det
[
1 + ζ̃ χΛDV,−χΛ

]
, (8.19)

where DV,− := (1+eAV )−1eAV . We used the fact that eBΛ = (eβλ−1)χΛ +1 = ζ̃χΛ +1

and the cyclicity of the trace in the definition of the determinant. Finally, from (8.17)

and (8.19),
〈
eβλNΛ

〉
−

= lim
V րRd

det
[
1 + ζ̃ χΛ DV,−χΛ

]
. (8.20)
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One would like to take the limit on V inside the determinant by replacing DV,−

with the corresponding operator on L2(Rd) defined as

(̂D−ψ)(k) := d̂−(k)ψ̂(k), (D−ψ)(x) =

∫
dy d−(y − x)ψ(y), (8.21)

where ̂ denotes the Fourier transform and

d̂−(k) :=
1

1 + eβ(ǫ(k)−µ)
. (8.22)

Notice that d̂− ∈ L1(Rd) by our assumptions on ǫ(k) and so d− ∈ L∞(Rd). Moreover,

(7.3) ensures that d− ∈ L1(Rd).

By [RS, Sec. XIII.17, Lemma 4(d)] one has to establish that χΛDV,−χΛ tends to

χΛ D−χΛ in the trace norm.

Lemma 8.6 Let d̂ be a continuous integrable function on Rd. We define D through

(8.21) as a linear operator acting on L2(Rd). Furthermore we define DV by DV |k〉 :=

d̂(k)|k〉 on L2(V ) and by DV := 0 on the orthogonal complement L2(Rd \V ). Then, for

Λ ⊂ V , χΛDV χΛ and χΛDχΛ are trace-class, and

lim
V րRd

Tr|χΛ(DV −D)χΛ| = 0.

Proof. See Appendix B.3.

We conclude that
〈
ζNΛ

〉
−

= det(1 + ζ̃ χΛD− χΛ), (8.23)

with ζ̃ = ζ − 1.

For bosons we proceed in the same way, except that (8.18) is replaced by

TrFV
+

(e〈a|A|a〉) = detV (1V − eA)−1, (8.24)

requiring in addition ‖eA‖ < 1. In fact, for ‖eA‖ ≥ 1, the l.h.s. of (8.24) is ∞, whereas

the r.h.s. might be finite if 1 is not an eigenvalue of the trace-class operator eA. In our

case, by assumption ‖eAV ‖ < 1. As for eC , the function

λ 7→ ‖eC‖ = ‖(eβλ − 1)eAV /2χΛe
AV /2 + eAV ‖ (8.25)
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is increasing and λmax(Λ) is defined to be that λ which makes it equal to 1. Since the

r.h.s. of (8.25) is increasing in Λ and its sup is eβλ‖eAV ‖ = eβ(λ+µ), then one checks

that λmax(Λ) ց −µ, as Λ ր Rd. Therefore, following the computation for FD, we have

〈
ζNΛ

〉
+

= lim
V րRd

det(1 − eC)−1

det(1 − eAV )−1
= det(1 + ζ̃ χΛ D+χΛ)−1, (8.26)

for λ < λmax and ∞ otherwise. Here D+, the limit of DV,+ := (eAV − 1)−1eAV , is

defined as in (8.21) with

d̂+(k) :=
1

1 − eβ(ǫ(k)−µ)
. (8.27)

Equation (8.26) is the analogue of (8.23) and proves Lemma 8.1.

8.3 Infinite volume limit

Instead of the chemical potential, in this section we use the fugacity z := eβµ, regarding

it as a complex variable. This will come out handy for the proof of Theorem 8.2. The

variables ζ and ζ̃, defined at the beginning of the previous section, will also be extended

to the complex plane. In this setup the translated pressure (7.12) becomes

gz(ζ) = p(zζ)− p(z), (8.28)

where, with a slight abuse of notation, we keep the same name for the pressure as a

function of the fugacity.

Expressions (7.9)-(7.10) for the pressure and the average density define two analytic

functions of µ in

E+ := {Reµ < 0} ∪ {Reµ ≥ 0, Imµ 6= 2πj/β, ∀j ∈ Z}, (8.29)

E− := {Reµ < 0} ∪ {Reµ ≥ 0, Imµ 6= (2j + 1)π/β, ∀j ∈ Z}. (8.30)

Hence gε(ζ) is analytic in

G+ := C \ [z−1,+∞); G− := C \ (−∞,−z−1]. (8.31)

We proceed to give the proof of Theorem 8.2. Let K ⊂ Gε be a compact set in the

complex plane. We choose K such that L := K ∩ R+ is also compact, since its image
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through the function ζ 7→ λ verifies the hypotheses of the theorem. Our argument,

however, is valid for any K. Without loss of generality, we can assume that 1 ∈ K.

For ζ̃ restricted to Gε ∩ R+, let us define

φΛ
ε,z(ζ) :=

1

|Λ| log
〈
ζNΛ

〉
ε,z

= − ε

|Λ|Tr log(1 + ζ̃χΛDεχΛ) (8.32)

according to (8.23) and (8.26). The proof of Theorem 8.2 will be subdivided into three

steps.

1. φΛ
ε can be analytically continued to Gε.

2. There is a positive r such that φΛ(ζ) converges uniformly to βgz(ζ) for |ζ−1| ≤ r.

3. |φΛ| is uniformly bounded on K. Therefore by Vitali’s Lemma [Ti, Sec. 5.21] |φΛ|

and any finite number of its derivatives converge uniformly on K.

Step 1. We leave the proof of the following lemma to Appendix B.

Lemma 8.7 The function φΛ
ε (ζ), as defined by the trace in (8.32), is analytic in Gε.

Step 2. Expanding the log in (8.32) one has, for |ζ̃| < ‖Dε‖−1,

φΛ
ε (ζ̃ + 1) = − ε

|Λ|Tr
∞∑

m=1

(−1)m−1

m
(ζ̃χΛDεχΛ)m. (8.33)

We would like to interchange the summation with the trace. To do so, we need domi-

nated convergence for the series:

|ζ̃χΛDεχΛ|m ≤ |ζ̃|m‖Dε‖m−1(χΛDεχΛ). (8.34)

Since |Λ|−1Tr(χΛDεχΛ) = dε(0) (see proof of Lemma 8.6 in the Appendix), each term

of (8.33) is bounded by a term of an integrable series independent of Λ. Therefore, for

the same ζ̃’s as above,

φΛ
ε (ζ̃ + 1) = −ε

∞∑

m=1

(−1)m−1ζ̃m

m

1

|Λ| Tr(χΛDεχΛ)m. (8.35)

Suppose that we are able to prove that

lim
ΛրRd

1

|Λ| Tr(χΛDεχΛ)m =

∫
dk[d̂ε(k)]

m, (8.36)
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with a rest bounded above by mRm for some positive constant R. Then, using (8.22)

and (8.27), we would have that, for any r < min{‖Dε‖−1, R−1}, uniformly for |ζ̃| ≤ r,

lim
ΛրRd

φΛ
ε (ζ̃ + 1) = −ε

∞∑

m=1

(−1)m−1ζ̃m

m

∫
dk

(
1

1 − εz−1eβǫ(k)

)m

= −ε
∫
dk log

(
1 +

ζ − 1

1 − εz−1eβǫ(k)

)
(8.37)

= −ε
∫
dk log

(
1 − εzζe−βǫ(k)

1− εze−βǫ(k)

)
= β gz(ζ̃ + 1),

the last equality coming from (7.9). This would complete Step 2.

Let us pursue this project. One sees that

∫
dk[d̂ε(k)]

m = (dε ∗ dε ∗ · · · ∗ dε)︸ ︷︷ ︸
m times

(0) (8.38)

=
1

|Λ|

∫

Λ

dx1

∫Rd

dx2 dε(x1 − x2) · · ·
∫Rd

dxm dε(xm−1 − xm) dε(xm − x1).

The normalized integration over x1 is harmless since, by translation invariance, the

integrand does not depend on that variable. On the other hand, it is not hard to verify

that

1

|Λ|Tr(χΛDεχΛ)m =
1

|Λ|

∫

Λ
dx1 〈x1|(χΛDεχΛ)m|x1〉 (8.39)

=
1

|Λ|

∫

Λ
dx1

∫

Λ
dx2 dε(x1 − x2) · · ·

∫

Λ
dxm dε(xm−1 − xm) dε(xm − x1).

In view of (8.36), we want to compare (8.38) with (8.39). We observe that

∫Rd

∫Rd

· · ·
∫Rd︸ ︷︷ ︸

m−1 times

−
∫

Λ

∫

Λ
· · ·
∫

Λ︸ ︷︷ ︸
m−1 times

=
m−1∑

i=1

∫

Λ
· · ·
∫

Λ︸ ︷︷ ︸
i−1 times

∫

Λc

∫Rd

· · ·
∫Rd︸ ︷︷ ︸

m−1−i times

. (8.40)

Subtracting (8.38) from (8.39) leads then to m− 1 terms of the form

1

|Λ|

∫

Λ
dx1

∫

Λc

dx2 dε(x1 − x2) · · ·
∫

Am

dxm dε(xm−1 − xm) dε(xm − x1), (8.41)

where the sets A3, . . . , Am can be either Rd or Λ. (8.41) holds because, due to the

cyclicity of the integration variables, one can cyclically permute the order of integration

without touching the integrand. We overestimate by switching to absolute values and

integrating x3, . . . , xm over Rd,

1

|Λ|

∫

Λ

dx1 (χΛc−x1 |dε|) ∗ |dε| ∗ · · · ∗ |dε|)(x1) =:
1

|Λ|

∫

Λ

dx1uΛ(x1), (8.42)
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which defines uΛ(x1). To estimate this function, we use recursively the relation ‖f ∗

g‖∞ ≤ ‖f‖∞‖g‖1 and obtain

uΛ(x1) ≤ ‖dε‖m−1
1 sup

Λc−x1

|dε|. (8.43)

Recalling now the definition of Λ′ given before the statement of Theorem 7.1, one sees

that, if x1 ∈ Λ′ and y ∈ Λc − x1, then |y| → ∞ as Λ ր Rd. Hence, from (8.43),

sup
x1∈Λ′

sup
m≥1

‖dε‖−m+1
1 uΛ(x1) → 0. (8.44)

Also from (8.43), pointwise in x1,

sup
m≥1

‖dε‖−m+1
1 uΛ(x1) ≤ ‖dε‖∞. (8.45)

When we average over x1 ∈ Λ, the last two relations and the properties of Λ′ prove that

lim
ΛրRd

sup
m≥1

‖dε‖−m+1
1

1

|Λ|

∫

Λ

dx1uΛ(x1) = 0. (8.46)

This takes care of each term as in (8.41), and we have m − 1 of these terms. Hence

(8.36) holds with R = ‖dε‖1. This ends Step 2.

Step 3. Again we expand (8.32) in powers of ζ̃, but this time about a generic ζ̃0 6∈ Gε−1

(see (8.31)). We obtain

1

|Λ|Tr log(1 + ζ̃χΛDεχΛ) =
1

|Λ|Tr log(1 + ζ̃0χΛDεχΛ) (8.47)

+
1

|Λ|Tr
∞∑

m=1

(−1)m−1

m

(
(1 + ζ̃0χΛDεχΛ)−1χΛDεχΛ

)m
(ζ̃ − ζ̃0)

m.

Let us estimate this series. First of all, using some spectral theory [W, Sec. 7.4],

‖(1 + ζ̃0χΛDεχΛ)−1‖ ≤
[
dist(1, σ(−ζ̃0χΛDεχΛ))

]−1

≤
[
dist(1, σ(−ζ̃0Dε))

]−1
, (8.48)

since we know from definitions (8.21), (8.22) and (8.27) that

σ(χΛD−χΛ) ⊂ [0, ‖χΛD−χΛ‖ ] ⊂ [0, ‖D−‖ ]

= σ(D−) = [0, 1/(1+ z−1)], (8.49)

σ(χΛD+χΛ) ⊂ [−‖χΛD+χΛ‖, 0] ⊂ [−‖D+‖, 0]

= σ(D+) = [1/(1− z−1), 0]. (8.50)
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Repeating the same reasoning as in Step 2, we use the above to exchange the trace with

the summation in (8.47)—which is legal for small |ζ̃ − ζ̃0| as to be determined shortly.

This yields a new series, whose m-th term is bounded above by

[
dist(1, σ(−ζ̃0Dε))

]−m
‖Dε‖m−1dε(0) |ζ̃ − ζ̃0|m =: a

(
b(ζ̃0) |ζ̃ − ζ̃0|

)m
, (8.51)

where dε(0) = |Λ|−1Tr(χΛDεχΛ). Hence, in view of (8.32), (8.47) implies

|φΛ
ε (ζ̃ + 1)| ≤ |φΛ

ε (ζ̃0 + 1)|+ a
b(ζ̃0) |ζ̃ − ζ̃0|

1 − b(ζ̃0) |ζ̃ − ζ̃0|
≤ |φΛ

ε (ζ̃0 + 1)| + a, (8.52)

for |ζ̃ − ζ̃0| ≤ (2b(ζ̃0))
−1.

The crucial fact is that b(ζ̃)−1 stays away from zero when ζ̃ is away from the bound-

ary of Gε − 1. This can be seen via the following argument, exploiting (8.51) and

(8.49)-(8.50). In the FD case σ(−ζ̃0D−) is a segment that has one endpoint at the ori-

gin and the phase of −ζ̃0 is the angle it forms with the positive semi-axis. This means

that, as long as ζ̃0 does not go anywhere near the negative semi-axis, we are safe. For

ζ̃0 ∈ (−z−1− 1, 0) (see (8.31)), σ(−ζ̃0D−) is contained in R+
o . However, notice from

(8.49) that the other endpoint is located at −ζ̃0/(1 + z−1) < 1. For BE the reasoning

is analogous, except that in this case the phase of ζ̃0 is the angle between σ(−ζ̃0D+)

and R+
o . Therefore the “safe” span is the complement of the positive semi-axis. Also,

if ζ̃0 ∈ (0, z−1− 1) (again see (8.31)), the “floating” endpoint of σ(−ζ̃0D+) is found at

ζ̃0/(z
−1− 1) < 1.

With the above estimate we can use (8.52) recursively. If |ζ̃0| ≤ r, from Step

2, |φΛ
ε (ζ̃0 + 1)| ≤ M , for some M , since φΛ

ε converges uniformly there. Then, from

(8.52), we have that |φΛ
ε (ζ̃1 + 1)| ≤ M + a, for any ζ̃1 such that |ζ̃1 − ζ̃0| < (2b(ζ̃0))

−1.

Proceeding, we see that |φΛ
ε (ζ̃k + 1)| ≤ M + ka, whenever |ζ̃k − ζ̃k−1| < (2b(ζ̃k−1))

−1.

In this way we will cover K in finitely many steps since it keeps at a certain distance

from the boundary of Gε and the (b(ζ̃k))
−1 are bounded below. This completes Step 3,

i.e., φΛ
ε (ζ) is bounded on K and Vitali’s Lemma can be applied. Q.E.D.
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8.4 Supercritical densities

For bosons in high dimension, Theorem 8.2 is not enough to establish the LD result for

supercritical densities. In this section we prove Lemma 8.3. In particular, we derive

a useful property of the distribution of NΛ, w.r.t. the state 〈 · 〉λΛ
, with λΛ chosen as

stated in the lemma. ε = +1 will be understood in the reminder.

Letting the chemical potential go to zero in such a way that the average density

remains constant (and bigger than ρc) is the usual way to proceed in the theory of

Bose-Einstein condensation [B, ZUK, vLP1]. The limiting distribution of the global

density NV /|V | is called the Kac distribution, and has been derived for several choices

of V , ǫ(k) and d [ZUK, C, vLP1, vLL, LZP]. We do not go as far in this thesis. It

is safe to say, however, that there is no reason to expect the distribution of NΛ/|Λ| to

become degenerate (which would make (8.12) trivial).

Proof of Lemma 8.3. Using a sloppy notation, let us write φΛ(λ) for φΛ(eβNΛ)

(see definition (8.32)). Differentiating this function, we get the mean density in the

modified state: For λ < λmax,

ρΛ(λ) :=
dφΛ

dλ
(λ) =

1

|Λ|

〈
NΛ e

βλNΛ
〉

〈eβλNΛ〉 =
〈NΛ〉λ
|Λ| , (8.53)

since, by virtue of Lemma 8.1, we can use dominated convergence to differentiate inside

the average. Likewise,

vΛ(λ) :=
dρΛ

dλ
(λ) =

1

|Λ|
[〈
N 2

Λ

〉
λ
− (〈NΛ〉λ)2

]
. (8.54)

Thus, ρΛ(λ) is increasing. The proof of Lemma 8.1 gives that limλ→λmax ρ
Λ(λ) = +∞.

It is also clear that limλ→−∞ ρΛ(λ) = 0. The above implies the existence and uniqueness

of λΛ such that ρΛ(λΛ) = a.

Let us fix a ≥ ρc. Theorem 8.2 states in particular that, if Λ ր Rd, then ρΛ(λ) →

ρ(λ) < ρc, for λ < −µ. This and Lemma 8.1 yield (8.10).

Continuing, let us choose some λ1 < −µ. From (8.10), λ1 ≤ λΛ, for Λ big enough.

Using the monotonicity of φΛ and ρΛ,

φΛ(λΛ) − φΛ(λ1) = ρΛ(λ̄) (λΛ − λ1) ≤ a (λΛ − λ1) , (8.55)
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where λ̄ ∈ (λ1, λΛ) is given by Lagrange’s Mean Value Theorem. Due to λ1 being

arbitrary, Theorem 8.2 and (8.55) imply

lim
ΛրRd

φΛ(λΛ) = lim
λ1→−µ

β g(λ1) = β g(−µ). (8.56)

This is precisely (8.11).

The proof of (8.12) is more elaborate. Looking at (8.26) and the immediately

following definition of DV,+, we can write

χΛD+χΛ =: (e−β(h′
Λ−µ1Λ) − 1Λ)−1 e−β(h′

Λ−µ1Λ), (8.57)

which introduces a new one-particle Hamiltonian h′Λ on L2(Λ). By Lemma 8.6, χΛDχΛ

is trace-class, hence it has discrete spectrum. With the help of (8.50), we see that (8.57)

can be solved for h′Λ. Thus, h′Λ is well defined and has the same spectral decomposition

as χΛDχΛ. In particular σ(h′Λ) is discrete. The eigenvalues of h′Λ are indicated by

ǫ′j = ǫ′j(Λ), and are assumed to be in increasing order.

The idea behind this definition is to eliminate the two cut-offs χΛ in equation (8.26).

These are responsible for all the complications in the proof of Theorem 8.2, and are

the only manifestation that we are dealing with LD in Λ. (After all, the analogue

of Theorem 8.2 for the global density NV /|V | is a trivial identity.) Definition (8.57)

circumvents the problem in the sense that it incorporates the effect of the external

volume V in the “local Hamiltonian” h′Λ. One can then think of a system of free bosons

in the container Λ and apply the available results for global fluctuations [ZUK, vLP2,

LZP].

The drawback is that in general we have no precise information about σ(h′Λ). Even

so, it is possible to determine the ground state of h′Λ. In fact, by (8.57),

1Λ + (eβλ − 1Λ)χΛDχΛ = (1Λ − e−β(h′
Λ−µ1Λ))−1 (1Λ − e−β(h′

Λ−(µ+λ)1Λ)) (8.58)

(cf. Step 2 in Section 8.3). Since χΛDχΛ is negative, the inf of the l.h.s. of (8.58) (in

the sense of the quadratic form) is a decreasing function of λ, and attains zero at λmax.

This is so by the very definition of λmax—see (8.25)-(8.26). On the other hand, the inf

of the r.h.s. of (8.58) is zero if, and only if, e−β(ǫ′0−µ−λ) = 1, whence

ǫ′0(Λ) = λmax(Λ) + µ > 0. (8.59)
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Let ϕj denote the eigenfunction relative to ǫ′j , Pj the corresponding projector in

L2(Λ), and a∗j the creation operator on FV . We introduce N
(j)
Λ := a∗jaj, the operator

for the number of particles in the state ϕj. {N (j)
Λ } is a commuting family and NΛ =

∑∞
j=0N

(j)
Λ . We want to verify that these operators behave like independent random

variables w.r.t. 〈 · 〉λ. We can study their joint generating function, employing the same

techniques as in Section 8.2. In fact, for ηj bounded, define B′
Λ :=

∑
j ηjPj +βλχΛ and

replace (8.16) with

〈a|B′
Λ|a〉 =

∞∑

j=0

ηjN
(j)
Λ + βλNΛ. (8.60)

One verifies that, in L2(V ) or in L2(Rd), eB
′
Λ =

∑
j e

ηj+βλPj + 1 − χΛ. In particular

eB
′
Λ − 1 = χΛ(eB

′
Λ − 1)χΛ. This allows us to proceed as in (8.26), and write

Zλ

〈
e
P

j ηjN
(j)
Λ

〉
λ

=
〈
e〈a|B

′
Λ|a〉
〉

= lim
V րRd

det
[
1 + (eB

′
Λ − 1)χΛDV χΛ

]−1
. (8.61)

Taking the above limit is slightly more complicated than the corresponding computation

in Section 8.2. Since eB
′
Λ − 1 is bounded,

Tr|(eB′
Λ − 1)χΛ(DV −D)χΛ| ≤ ‖eB′

Λ − 1‖ Tr|χΛ(DV −D)χΛ|. (8.62)

One then applies Lemma 8.6 and [RS, Sec. XIII.17, Lemma 4(d)], so that (8.61) gives

〈
e
P

j ηjN
(j)
Λ

〉
λ

= Z−1
λ det

[
1 + (eB

′
Λ − 1)χΛDχΛ

]−1

= Z−1
λ detΛ

[
1Λ+(eB

′
Λ−1Λ)(e−β(h′

Λ−µ1Λ)−1Λ)−1e−β(h′
Λ−µ1Λ)

]−1

=
∞∏

j=0

1 − e−β(ǫ′j−µ−λ)

1 − e−β(ǫ′j−µ−λ)+ηj
, (8.63)

having used (8.26) and (8.58) to express Zλ.

This shows that the N
(j)
Λ ’s represent a set of independent, geometrically distributed

random variables, with averages 〈N (j)
Λ 〉λ = (eβ(ǫ′j−µ−λ) − 1)−1. At this point we can

apply [vLP2, Lemma 2] to N
(0)
Λ and NΛ −N

(0)
Λ . We obtain

〈
χ[a|Λ|,a|Λ|+1)(NΛ)

〉
λΛ

≥ 1

a|Λ| e
−β(ǫ′0(Λ)−µ−λΛ)(a|Λ|+2). (8.64)

Assertion (8.12) is derived from (8.64) via (8.10), (8.59) and Lemma 8.1. Q.E.D.
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Appendix A

Escape orbits for smooth non-compact billiards

Let f be a smooth function from R+
o to R+, bounded, vanishing when x → +∞.

No integrability assumptions are given. Now consider the billiard flow in the table

Ω := {(x, y) ∈ R+
o × R+

o | 0 ≤ y ≤ f(x)}, as shown in Fig. A.1.

The analogies between these types of non-compact billiards and the infinite step

billiards of Part I are evident. So it is sound to ask ourselves similar questions: in

particular, how many escape orbits can we have in Ω? (In this case the obvious notion

of escape orbit, which we give nonetheless for the sake of completeness, corresponds to

a trajectory that has a positive x-velocity for—say—all positive times.) Of course there

is always one of these: it is the orbit that lies on the horizontal semi-axis. We call it

the trivial orbit.

θn θ θn+1 n+1

n

xxxn n+1

f(x)δ

nα

Figure A.1: Sketch of an escape orbit in the billiard Ω.

We report here the conclusions of [Le], which shows that, in great generality, there

is no other escape orbit than the trivial one.
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Apparently, the question was first touched on in [L, Thm. 2], where the above result

is obtained for eventually convex f ’s, i.e., convex in a neighborhood of ∞. The same

statement is found in the more recent review article [Ki]. It can be explained easily, at

least for tables with finite area. In that case the cusp has an asymptotically vanishing

measure. If we had an escape orbit, then, due to the hyperbolicity of the flow in that

region of the phase space, we could also find a non-zero measure set of escape orbits—

which fall into the cusp—with an obvious contradiction. (This argument is described

in [Ki] as “A gallon of water won’t fit inside a pint-sized cusp”.) In fact, let us suppose

there is an escape orbit, whose initial point we can always fix at (x0, y0) = (x0, f(x0)),

on the upper boundary of Ω, far enough to lie in the region where f is convex. The

initial velocity has an x-component vx > 0. Now it is easily seen that every other set

of initial conditions x′0 ≥ x0 and v′x ≥ vx (provided v and v′ have the same modulus)

leads to a new escape orbit, due to the dispersing effect of the convex upper wall.

The same argument may be used to deduce that an infinite cusp on the Poincaré’s

disc does not allow non-trivial trajectories to collapse into it, which is implicitly stated

in [GiU].

We are going to relax the hypothesis for the non-existence result to hold: asymptotic

hyperbolicity is not a necessary condition at all. We may allow f to have flex points and

abrupt negative variations (see, for instance, Fig. A.2,(c)). The proofs are presented in

the next section, while examples (and counter-examples) are discussed in Section A.2.

A.1 The result

Theorem A.1 Consider the plane billiard table generated as above by the function f

defined on R+
o , twice differentiable, positive, bounded, such that

f(x) ց 0 as x→ +∞. (A.1)

Also, for x sufficiently large,

f ′(x) < 0, (A.2)
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Then, under either one of these assumptions:

lim sup
f ′(x)

f(x)
< 0; (A.3)

or

lim
x→+∞

f ′(x) = 0 and lim sup
x→+∞

f ′′f

f ′
(x) < +∞; (A.4)

no orbits but the trivial one are escape orbits.

Remark. The assumption about the convexity of f is contained in (A.4): in fact,

if f ′′ ≥ 0 then necessarily f ′ ր 0 and f ′′f/f ′ ≤ 0.

Proof of Theorem A.1. Suppose that we have a non-trivial escape orbit. Let

us fix, without loss of generality, an initial point in a neighborhood of +∞ where all

the asymptotic hypotheses hold. For instance, (A.2) would do, and (A.4), if this is the

case, would be read as

f ′(x) ≥ −ε and
f ′′f

f ′
(x) < k1, (A.5)

for some ε > 0. Also, for some consistency in the notation, let us suppose the initial

point to be a bouncing point on the upper wall, i.e., (x0, y0) = (x0, f(x0)).

Using the notations of Fig. A.1 we have the fundamental relation:

tan θn+1(xn+1 − xn) = f(xn) + f(xn+1). (A.6)

With a bit of geometry, looking at the same picture, we get

θn+1 = θn + π − 2αn = θn + 2δn, (A.7)

where δn := − arctan(f ′(xn)) > 0. This summarizes to

θn = θ1 + 2
n−1∑

k=1

δk. (A.8)

Thus, {θn}n≥1 is an increasing sequence. Since we have assumed the particle to never

travel backwards, then θn < π/2 for all n ≥ 1, so θn ր θ∞ ∈ [θ1, π/2]. Hence tan θn ≥

tan θ1 =: k2 > 0. From this, the monotonicity of f , and (A.6) we have

xn+1 − xn ≤ 2

k2
f(xn). (A.9)
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What is stated above implies that
∑

k δk < +∞. Therefore δk → 0. As a consequence,

we see that ∃k3 ∈]0, 1[ such that δk ≥ k3 tan δk = k3|f ′(xk)|. If we can prove that

−
∞∑

k=0

f ′(xk) = +∞, (A.10)

then
∑

k δk cannot converge, creating a contradiction which finishes the proof.

Defining g := −f ′/f > 0 will greatly simplify our notation. From (A.9) we obtain,

for some constant k4,

−
∑

n

f ′(xn) ≥ k4

∑

n

g(xn)(xn+1 − xn). (A.11)

Case (A.3). Obviously (A.3) reads g ≥ k5 > 0. Hence (A.11) gives (A.10), since by

hypothesis xn → ∞. It may be worth recalling that (A.3) means we have exponential

decay for f . In fact, after an integration, we see that ∀x2 > x1 ≥ 0,

f(x2) ≤ f(x1) e
−k5(x2−x1). (A.12)

Case (A.4). The proof is a little more involved here. We use our assumption on

the limit of f ′ to prove the following.

Lemma A.2 There exists a constant k6 such that ∀n ∈ N

f(xn)

f(xn+1)
≤ k6.

Proof. Let us call x̄n the point provided by Lagrange’s Mean Value Theorem

applied to f in [xn, xn+1]. We can write

f(xn)

f(xn+1)
= 1 − f ′(x̄n)(xn+1 − xn)

f(xn+1)
. (A.13)

Using (A.9), this is turned into

f(xn)

f(xn+1)

(
1 +

2f ′(x̄n)

k2

)
≤ 1, (A.14)

which yields the lemma, since the term in the brackets is positive for n large enough,

because of the assumption about the vanishing of f ′. Q.E.D.

This enables us to derive a further lemma.
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Lemma A.3 There exists a constant k7 ∈]0, 1[ such that, for n sufficiently large,

g(xn) ≥ k7 max[xn,xn+1] g.

Proof. Proving the statement is equivalent to finding a k8 > 0 for which

log g(x̃n)− log g(xn) ≤ k8, (A.15)

where x̃n maximizes g in [xn, xn+1]. Using again Lagrange’s Mean Value Theorem, the

fact that x̃n−xn ≤ (2/k2)f(xn)—a consequence of (A.9)—and the previous lemma, we

obtain

log g(x̃n)− log g(xn) =
g′

g
(x̂n)(x̃n − xn)

≤ 2

k2

(
f ′′

f ′
− f ′

f

)
(x̂n) f(xn) (A.16)

≤ k9

(
f ′′

f ′
− f ′

f

)
(x̂n) f(xn+1)

≤ k9

(
f ′′f

f ′
− f ′

)
(x̂n) ≤ k9(k1 + ε),

having used (A.5) in the last step. Q.E.D.

We are now prompted to get (A.10) in this case, too. Looking at (A.11) we can

write:

∑

n

g(xn)(xn+1 − xn) ≥ k7

∑

n

( max
[xn,xn+1]

g)(xn+1 − xn)

≥ k7

∫ +∞

x0

g(x)dx= +∞, (A.17)

since −
∫∞

(f ′/f) = − limx→∞(log f(x) + const) = +∞. Q.E.D.

A.2 Discussion

The evident news the theorem puts forth, compared to the mentioned condition f ′′ > 0,

is the possibility for f ′ to oscillate, to a certain extent. Dynamically speaking, the

change in direction our particle gets every time it bounces against the upper wall

(δk = − arctan(f ′(xk)), that is) need not be a monotonic sequence. As a matter of fact,

(A.4) precisely controls the amount of such an oscillation. An example will illustrate
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the case: for α > 1, β > 0, c > 1 define f ′1(x) := −x−α(sin(xβ) + c) < 0. This means

that we define f1(x) := −
∫∞
x f ′1(z)dz, which makes sense as a convergent integral.

Therefore f ′′1 (x) = −βx−α+β−1 cos(xβ) + O(x−α−1), showing that f1 is not convex.

Now the asymptotic behavior of f1 and its derivatives is easily derived:

f ′′1 f1
f ′1

(x) ≈ x−α+β . (A.18)

Thus, (A.4) holds if, and only if, α ≥ β, meaning that the faster f1 vanishes the more

violent the oscillation of f ′1 is allowed to be.

Figure A.2: Construction of a billiard table satisfying (A.3)

but not (A.4).

Another example may be interesting to present, to show that there are cases where

(A.3) holds but (A.4) does not. Pick a φ ∈ C∞(R) supported in ] − 1/2, 1/2[, with
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∫
φ = 1− e−1. Then call, for k ∈ N,

φk(x) := φ((x− k − 1/2) ek), (A.19)

which is therefore supported in ]k + 1/2 − e−k/2, k + 1/2 + e−k/2[. Let us define

h(x) :=
∑∞

k=0 φk(x). The result is shown in Fig. A.2,(a). We see that

∫ k+1

k

h(x)dx =

∫ k+1

k

φk(x)dx = (1 − e−1)e−k. (A.20)

Also denote by H(x) :=
∫∞
x h(z)dz. Finally, let us introduce f ′2(x) := −e−x − h(x),

corresponding to f2(x) = e−x +H(x). Their graphs are displayed in Fig. A.2, (b) and

(c), respectively. Certainly f ′2 6→ 0 and (A.4) is not verified. We can estimate f2 from

above. In fact e−[x]−1 ≤ H(x) ≤ e−[x], giving H(x) ≤ e−x+1. Therefore

|f ′2|
f2

(x) =
e−x + h(x)

e−x +H(x)
≥ e−x

e−x + e−x+1
=

1

1 + e
≥ 0. (A.21)

That is: (A.3) holds as well as the result, in this case.

Is it difficult to say to what extent our theorem is inclusive of the general case or

how it can be refined. The point here is that finding a sufficient condition for the non-

existence of an escape orbit is much more direct than finding a necessary condition. The

shape of f can be pathological enough but not in a suitable way that allows a trajectory

to go directly to infinity. Of one thing we can be assured, though: hypotheses (A.1)-

(A.2) do not suffice and one needs some extra assumption to control a possible wild

behavior of f ′. To show this point, we proceed to construct a billiard table verifying

those hypotheses and having one escape orbit. We will start by first drawing the orbit

and then a compatible f .

Consider the polyline shown in Fig. A.3,(a) with θ1 ∈]0, π/2[ and {yn}, any non-

integrable sequence such that yn ց 0. If this were an escape orbit then we would have

f(xn) = yn, f
′(xn) = 0 and θn = θ1 ∀n. Furthermore xn+1 − xn = (yn+1 + yn)/ tan θ1

so that limn→∞ xn = ∞, because of our assumption on {yn}. Of course any f giving

rise to such an orbit cannot satisfy (A.2), because of the flat tangent at the bouncing

points, but we can slightly modify our picture in order to fit it. Take an integrable
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(a)
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Figure A.3: Construction of a billiard, verifying neither (A.3)

nor (A.4), in which a non-trivial escape orbit os found.

sequence {δn}, δn > 0 such that θ∞ := θ1 +2
∑

n δn < π/2. Now modify the trajectory

in Fig. A.3,(a), “shrinking” it in order to have θn := θ1 + 2
∑n−1

k=1 δk; keep yn fixed.

The result is drawn in Fig. A.3,(b). This is again an escape orbit since, due to our

choice of θ∞, the contraction of the little triangles has a lower bound, i.e. xn+1 − xn ≥

(yn+1 + yn)/ tanθ∞. One can now very easily construct an f which satisfies (A.1) and

(A.2) and whose graph is an upper wall for this trajectory.

This proves our remark.
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Appendix B

Technical lemmas for Part II

We collect here the proofs of the more technical lemmas of Part II.

B.1 Relativistic massless particles

We prove that the energy dispersion ǫ(k) = c|k| satisfies our assumptions. The only

condition to be checked is (7.3), that is, the Fourier transform of k 7→ (eβ(c|k|−µ) − ε)−1

is in L1(Rd). This is a consequence of the following

Lemma B.1 Let f : [0,+∞) −→ C be of Schwartz class. With the common abuse of

notation, denote by f̂ (|ξ|) the Fourier transform of f(|x|), for x, ξ ∈ Rd. Then, for

some positive C,

f̂(|ξ|) ≤ C

|ξ|d+1
.

Proof. For simplicity let us write ξ = |ξ|. The Fourier transform of a radial function

is

f̂(ξ) =
(2π)d/2

ξd/2−1

∫ ∞

0
dr f(r) rd/2Jd/2−1(rξ) , (B.1)

cf. [SW, Chap. IV, Thm. 3.3], where Jν is the standard Bessel function of order ν [Wa].

One has

Jν(x) ≈ xν

2νΓ(ν + 1)
, (B.2)

for x→ 0, whereas

Jν(x) =

√
2

πx

[
cos

(
x− 2ν + 1

4
π

)
+ g(x)

]
, (B.3)

with g(x) → 0 for x→ ∞. Using the relation

∫ x

0
dt tνJν−1(t) = xνJν(x) (B.4)
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we integrate (B.1) by parts repeatedly, taking into account also (B.2) and the hypothesis

on f . After n integrations we get, up to constants, n terms of the form

1

ξd/2+n−1

∫ ∞

0
dr f (i)(r) rd/2−n+iJd/2+n−1(rξ), (B.5)

with i = 1, . . . , n. For our purposes it suffices to iterate up to n ≥ d/2 + 2. In fact, if

i is such that d/2 − n+ i > −d, then in (B.5) we can estimate the Bessel function by

a constant. The integral converges by the rapid decay of f (i) and the whole term is of

the order ξ−d−1 or better. For smaller values of i, the estimate uses (B.2), for x ∈ [0, a],

and (B.3) otherwise. Since |f (i)| ≤ c, (B.5) is bounded by

A

ξd/2+n−1

∫ a/ξ

0
dr rd/2−n+i(rξ)d/2+n−1 +

+
B

ξd/2+n−1

∫ ∞

a/ξ
dr rd/2−n+i(rξ)−1/2 ≈ 1

ξd+i
, (B.6)

the second integral being convergent because of the choice of i. Q.E.D.

B.2 Proof of Lemma 8.5

As before, we set ε = ±1, according to either bosons or fermions. A general f ∈ L2(V )

can be expanded in the Fourier basis as f =
∑

k fk|k〉. The corresponding creation

operator is then defined by

a(f)∗ :=
∑

k∈V ′

fk a
∗
k. (B.7)

For the sake of simplicity, we denote A := 〈a|A|a〉 =
∑

ij Aija
∗
i aj (same for B). Recall-

ing the canonical (anti)commutation relations,

[ai, a
∗
j ]−ε = aia

∗
j − ε a∗jai = δij ;

[ai, aj]−ε = aiaj − ε ajai = 0, (B.8)

one calculates that

[A, a(f)∗] = a(Af)∗, (B.9)

and in exponential form

etAa(f)∗e−tA = a(etAf)∗. (B.10)
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Now, let |0〉 be the ground state of FV . For n ∈ N, and f1, f2, . . . , fn ∈ L2(V ), the

finite linear combinations of the states

|f1, f2, . . . , fn〉 = a(f1)
∗a(f2)

∗ · · ·a(fn)∗|0〉 (B.11)

are dense in F , which is another way of stating that |0〉 is cyclic w.r.t. the algebra

generated by the creation operators. Therefore, we need only test our assertion on

vectors of the type (B.11). Using (B.10) with t = 1, and observing that A|0〉 = 0, we

obtain

eA|f1, . . . , fn〉 = eAa(f1)
∗e−A · · ·eAa(fn)∗e−A|0〉

= a(eAf1)
∗ · · ·a(eAfn)∗|0〉 (B.12)

= |eAf1, . . . , eAfn〉.

The existence of C is a consequence of the spectral theorem. We call C the corresponding

quadratic form in a∗i , aj. Through the repeated use of (B.12), one checks that applying

eAeBeA to the states (B.11) is the same as applying eC . The semiboundedness of A and

B ensures that the domain of their exponentials is the whole L2(V ) and all quantities

are well defined. Q.E.D.

B.3 Proof of Lemma 8.6

For any symmetric operator A, χΛAχΛ ≤ χΛ|A|χΛ. Hence |χΛAχΛ| ≤ χΛ|A|χΛ and

Tr|χΛAχΛ| ≤ TrΛ|A|. When A = DV , the convergence of the trace is proven by writing

the further estimate TrΛ|DV | ≤ TrV |DV | and then summing an integrable sequence of

discrete eigenvalues. For A = D, one uses the Dirac-delta representation of the trace

to find out that TrΛ|D| = |Λ| (2π)−d
∫
|d̂|. The first assertion of the lemma has been

proven.

As for the second part, let us write

Tr(|χΛ(DV −D)χΛ|) = Tr(UχΛ(DV −D)χΛ) (B.13)

= TrV (UχΛDV χΛ)− Tr(UχΛDχΛ) =: Tℓ − T,
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where U is the partial isometry L2(Λ) −→ L2(Λ) that realizes the spectral decomposi-

tion as in [RS, Thm. IV.10]. It is convenient to use the position representation for the

bases. So, ψ(k)(x) = eik·x and, as defined in Chapter 7, ψ
(k)
V = ψ(k)χV . Let us work on

Tℓ: using the cyclicity of the trace one obtains

Tℓ =
1

ℓd

∑

k∈V ′

〈ψ(k)
V |χΛUχΛDV |ψ(k)

V 〉

=
1

ℓd

∑

k∈V ′

d̂(k) 〈ψ(k)
V |χΛUχΛ|ψ(k)

V 〉 (B.14)

=
1

ℓd

∑

k∈V ′

d̂(k) 〈ψ(k)|χΛUχΛ|ψ(k)〉,

the last equality being due to the presence of the indicator functions χΛ. In complete

analogy with the above,

T =
1

(2π)d

∫
dk d̂(k) 〈ψ(k)|χΛUχΛ|ψ(k)〉. (B.15)

Since |〈ψ(k)|χΛUχΛ|ψ(k)〉| ≤ |Λ|, it is obvious that (B.14) tends to (B.15) for ℓ → ∞.

Q.E.D.

B.4 Proof of Lemma 8.7

With regard to (8.23) and (8.26), det(1 + ζ̃χΛDεχΛ) is entire in ζ̃ (hence in ζ) by [RS,

Sec. XIII.17, Lemma 4(c)]. In order to evaluate its log (on the suitable Riemann surface)

we need to avoid the zeros. Using [RS, Thm. XIII.106], we want to make sure that

σ(−ζ̃χΛDεχΛ) does not hit 1. Step 3 in Section 8.2 (see in particular formulas (8.49)-

(8.50) and the last paragraphs) shows that this is never the case if ζ̃ 6∈ (−∞,−z−1 −1],

for FD, or ζ̃ 6∈ [z−1 − 1,+∞), for BE. Q.E.D.

Actually, we can say more. Consider FD, just to fix the ideas. We see from (8.49)

that the “floating” endpoint of σ(−ζ̃χΛD−χΛ) is strictly contained in the segment

(0,−ζ̃/(1+ z−1)), which means that ζ̃ is allowed to exceed slightly G−− 1, as given by

(8.31), without any vanishing of (8.23). For bosons this is related to Lemma 8.1. In

this case the “forbidden region” is [ζ̃max,+∞), where ζ̃max := eβλmax − 1 (see also the

proof of Lemma 8.3).
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In conclusion, for each finite Λ, the domain of analyticity of φΛ
ε (ζ) is indeed strictly

bigger than Gε.
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[Ma] R. Mañé, Ergodic theory and differentiable dynamics, Springer-Verlag, Berlin,
New York, 1986.

[M] H. Masur, Closed trajectories of a quadratic differential, Duke J. Math. 53

(1986), 307-314.

[PP] Ya. Pesin and B. Pitskel, Topological pressure and the variational principle
for noncompact sets, Func. Anal. Appl. 18 (1984), 307-318.

[R] V. A. Rokhlin, Lectures on the entropy theory of measure-preserving trans-
formations, Russ. Math. Surv. 22(5) (1967), 1-52.

[S] Ya. G. Sinai (ed.), Dynamical systems II (Ergodic theory with applications to
dynamical systems and statistical mechanics), Encyclopaedia of Mathematical
Sciences, 2. Springer-Verlag, Berlin, 1989.

[T] S. Tabachnikov, Billiards, Société mathématique de France, Paris, 1995.
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