70467 - MATEMATICA APPLICATA ALL'ARCHITETTURA, A.A. 2015/16 Prove scritte, 13 luglio 2016

Cognome: Nome:					-	
quesito, scrivere riconsegnerà. S	I: Compilare i dati an e le soluzioni dell'eserc lu ciascuno dei fogli pr e e numero di matrico	izio e solo quelle. rotocollo che si rico	Lo svolgimento i	ntero va scritto ne	el foglio di bella co	pia che s
		Prova scrit	ta sulle cui	eve	Voto:	
	netrizzare per lung ,1]. Di che tipo di d		urva parametri	zzata $r(t) = (-$	$2e^t, 2e^t + 1, e^t -$	– 1), per
	coordinate del censin t, e^{-t}) nel punto		erenza osculatr	ice per la curva	parametrizzat	a $r(t) =$

Prova	scritta	sulle	superfici
IIOVA	SCIIUU	Buile	Supermen

S1. Scrivere l'equazione cartesiana del piano tangente alla superficie parametrizzata $r(s,t)=(st,st^2,s^2t)$ nel punto r(1,1).

S2. Data la superficie parametrizzata $r(\varphi,t)=(2(\ln t+1)\sin\varphi,(\ln t+1)\cos\varphi,t)$, definita per $0\leq\varphi\leq2\pi$ e t>0, determinare le curvature principali e le direzioni principali nel punto r(0,1).