MA 182, Honors Mathematical Analysis II, Fall '05. Extra Homework Sheet # 1.

- 1. For the following converging limits, find an ε -N relationship (that is, for every $\varepsilon > 0$ find a suitable $N \in \mathbb{R}$ that verifies the inequality as in the definition of limit).
 - (a) $\lim_{n \to +\infty} \frac{1}{n^3} = 0.$ (b) $\lim_{n \to +\infty} \frac{2n+1}{n} = 2.$ (c) $\lim_{n \to +\infty} \frac{n^2}{n^2+1} = 1.$ (d) $\lim_{n \to +\infty} \frac{1}{2^n} = 0.$ [Hint: Use that $\forall n \in \mathbb{N}, 2^n > n.$]
- 2. For the following diverging limits, find an R-N relationship (that is, for every $R \in \mathbb{R}$ find a suitable $N \in \mathbb{R}$ that verifies the inequality as in the definition of limit).

3. (Squeeze Theorem for sequences) Given three sequences $\{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}}, \{c_n\}_{n\in\mathbb{N}}, such that \forall n \in \mathbb{N}, a_n \leq b_n \leq c_n and$

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n = L,$$

then

$$\lim_{n \to +\infty} b_n = L,$$

[*Hint:* At some point you want to use a formula like $L - \varepsilon < a_n \leq b_n \leq c_n \leq L + \varepsilon$.]