MA 182, Honors Mathematical Analysis 1I, Fall ’05.
Extra Homework Sheet # 1.

1. For the following converging limits, find an e~N relationship (that is, for every ¢ > 0
find a suitable NV € R that verifies the inequality as in the definition of limit).
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(d) lim — =0. [Hint: Use that Vn € N, 2" > n.]
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2. For the following diverging limits, find an R—N relationship (that is, for every R € R
find a suitable V € R that verifies the inequality as in the definition of limit).

(a) lim (n®+n) = +oo.
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(b nl_lgloo 5 +oo. [Hint: n® —1 < n’.]
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(¢) lim LN [Hint: Use a trick similar to problem (b).]
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3. (Squeeze Theorem for sequences) Given three sequences {a, }nen, {0n fnen, {¢n bnen,
such that Vn € N, a,, < b, < ¢, and

lim a,= lim ¢, =1L,
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[Hint: At some point you want to use a formula like L —e < ap, < b, < ¢, < L+¢./



