MA 182, Honors Mathematical Analysis II, Fall '05. Extra Homework Sheet \# 1.

1. For the following converging limits, find an $\varepsilon-N$ relationship (that is, for every $\varepsilon>0$ find a suitable $N \in \mathbb{R}$ that verifies the inequality as in the definition of limit).
(a) $\lim _{n \rightarrow+\infty} \frac{1}{n^{3}}=0$.
(b) $\lim _{n \rightarrow+\infty} \frac{2 n+1}{n}=2$.
(c) $\lim _{n \rightarrow+\infty} \frac{n^{2}}{n^{2}+1}=1$.
(d) $\lim _{n \rightarrow+\infty} \frac{1}{2^{n}}=0 . \quad$ [Hint: Use that $\forall n \in \mathbb{N}, 2^{n}>n$.]
2. For the following diverging limits, find an $R-N$ relationship (that is, for every $R \in \mathbb{R}$ find a suitable $N \in \mathbb{R}$ that verifies the inequality as in the definition of limit).
(a) $\lim _{n \rightarrow+\infty}\left(n^{2}+n\right)=+\infty$.
(b) $\lim _{n \rightarrow+\infty} \frac{n^{5}+n^{3}}{n^{3}-1}=+\infty$. [Hint: $n^{3}-1<n^{3}$.]
(c) $\lim _{n \rightarrow+\infty} \frac{n^{2}}{1-n}=-\infty$. [Hint: Use a trick similar to problem (b).]
3. (Squeeze Theorem for sequences) Given three sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}},\left\{b_{n}\right\}_{n \in \mathbb{N}},\left\{c_{n}\right\}_{n \in \mathbb{N}}$, such that $\forall n \in \mathbb{N}, a_{n} \leq b_{n} \leq c_{n}$ and

$$
\lim _{n \rightarrow+\infty} a_{n}=\lim _{n \rightarrow+\infty} c_{n}=L
$$

then

$$
\lim _{n \rightarrow+\infty} b_{n}=L
$$

[Hint: At some point you want to use a formula like $L-\varepsilon<a_{n} \leq b_{n} \leq c_{n} \leq L+\varepsilon$.]

