MA 182, Honors Mathematical Analysis 1I, Fall ’05.
Extra Homework Sheet # 2.

1. Prove that, if a, > b, for all n € N, and b, — +o00 (as n — +00) then a, — 400 (as
n — +00).

2. Prove that any increasing unbounded (i.e., not bounded) sequence tends to +oc.

3. For the following converging limits, find an e relationship (that is, for every ¢ > 0
find a suitable 6 > 0 that verifies the inequality as in the definition of limit).
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4. (Do this only if material was covered in class.) For the following diverging limits, find
an R-) relationship (that is, for every R € R find a suitable § > 0 that verifies the
inequality as in the definition of limit).
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(c) lim = +o0.
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[You may want to be careful here. This is a bit more difficult than the previous
problem. ]



