MA 182, Honors Mathematical Analysis II, Fall '05. Extra Homework Sheet \# 2.

1. Prove that, if $a_{n} \geq b_{n}$ for all $n \in \mathbb{N}$, and $b_{n} \rightarrow+\infty$ (as $n \rightarrow+\infty$) then $a_{n} \rightarrow+\infty$ (as $n \rightarrow+\infty)$.
2. Prove that any increasing unbounded (i.e., not bounded) sequence tends to $+\infty$.
3. For the following converging limits, find an $\varepsilon-\delta$ relationship (that is, for every $\varepsilon>0$ find a suitable $\delta>0$ that verifies the inequality as in the definition of limit).
(a) $\lim _{x \rightarrow 1} 3 x=3$.
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4$.
(c) $\lim _{x \rightarrow 0}\left[(x-1)^{2}-2\right]=-1$.
(d) For $f(x):=\left\{\begin{array}{cc}2-x & \text { for } x<0 \\ 1 & \text { for } x=0 \\ -x^{2} & \text { for } x>0\end{array}, \quad \lim _{x \rightarrow 0^{+}} f(x)=0\right.$.
(e) $\lim _{x \rightarrow 0^{-}}(\sqrt{-x}+x)=0$.
4. (Do this only if material was covered in class.) For the following diverging limits, find an $R-\delta$ relationship (that is, for every $R \in \mathbb{R}$ find a suitable $\delta>0$ that verifies the inequality as in the definition of limit).
(a) $\lim _{x \rightarrow-2} \frac{1}{(x+2)^{2}}=+\infty$.
(b) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{3}+x}=-\infty$.
(c) $\lim _{x \rightarrow 0^{-}} \frac{1}{x^{3}-x}=+\infty$.
[You may want to be careful here. This is a bit more difficult than the previous problem.]
