MA 182, Honors Mathematical Analysis II, Fall '05. Extra Homework Sheet \# 4.

Sample problem. Find the (absolute) minimum and maximum for $f(x):=x^{3}-3 x^{2}+3 x-3$ in $[0,3]$.

Solution. We first look for the absolute min and max points. It is clear that an absolute min point is either an endpoint of $[0,3]$ or a relative min point. Same for an absolute max point. Since f is differentiable everywhere we know that, if x_{0} is a relative min or max point, then $f^{\prime}\left(x_{0}\right)=0$. (A point x_{0} for which $f^{\prime}\left(x_{0}\right)=0$ is sometimes called a critical point, so we can say that relative min or max points are also critical points.)
Let's then find all critical points: We calculate that $f^{\prime}(x)=3 x^{2}-6 x+3=3(x-1)^{2}$. So, the equation $f(x)=0$ has the unique solution $x_{0}=1$.
Hence, the candidates to be absolute min or max points are $x=0, x=1, x=3$ (critical points plus endpoints). We evaluate f on all of them to determine when it takes the lowest and highest values:

$$
f(0)=-3, \quad f(1)=-2, \quad f(3)=6 .
$$

Therefore

$$
\min _{[0,3]} f=-3, \quad \max _{[0,3]} f=6
$$

which is the sought solution.
The problem didn't ask for this, but we can also say that there is (only) one absolute min point at $x=0$ and (only) one absolute max point at $x=3$.

1. Find the (absolute) minimum and maximum for each of these functions in the indicated intervals:
(a) $f(x):=\sqrt{9-x^{2}}, x \in[-1,2]$
(b) $f(x):=\frac{x}{x^{2}+4}, \quad x \in[0,3]$
(c) $f(x):=\sin x+\cos x, x \in\left[0, \frac{\pi}{3}\right]$
(d) $f(x):=\frac{\ln x}{x}, x \in[1,3]$
2. Differentiate the following functions:
(a) $f(x):=a^{x} \quad$ (a is a constant)
(b) $f(x):=3^{\sin x+x^{2}}$
(c) $f(x):=\log _{10}\left(\frac{x}{x-1}\right)$
(d) $f(x):=\ln \sqrt[5]{x}$ (simplify as much as you can here)
3. (Cauchy's Theorem) Consider f, g continuous in $[a, b]$ and differentiable in (a, b). Assume that $g^{\prime}(x) \neq 0 \forall x \in(a, b)$. Prove that there is a $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

[Tip: Consider the function

$$
h(x):=f(x)[g(b)-g(a)]-g(x)[f(b)-f(a)]
$$

and evaluate it at a and b.
Note: if you need extra help, the book has this theorem, but in a slighly modified version. For our problem, at some point we need to divide by something. It's up to you to show that this is legal.]
4. Let $f(x):=1-\sqrt[3]{x^{2}}$. Clearly $f(-1)=f(1)=0$. On the other hand, $f^{\prime}(x) \neq 0$ for all $x \in(-1,1)$. This contradicts Rolle's Theorem. Or does it? Explain.

