MA 182, Honors Mathematical Analysis II, Fall '05. Extra Homework Sheet # 5.

1. Differentiate the following functions:

(a)
$$f(x) := \int_0^x \tan \alpha \, d\alpha$$

(b)
$$g(x) := \int_{x}^{2} \tan \alpha \, d\alpha$$

(c)
$$h(y) := \int_{2}^{y} \sqrt{1+t^2} dt$$

(d)
$$k(x) := \int_{\sin x}^{0} \ln(3 + t^4) dt$$

(e)
$$A(x) := \int_{-x}^{x} e^{t^2} dt$$

[Hint:
$$\int_{-x}^{x} \cdots = \int_{-x}^{0} \cdots + \int_{0}^{x} \cdots$$
]

(f)
$$G(x) := \int_{x^2}^{x^4} \log_2 t \ dt$$

[Hint: Similar trick as above. It doesn't matter that 0 is not between x^2 and x^4 . Actually, one can use any $c \in \mathbb{R}$ to split the integral.]

2. Consider the function $F: \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$F(x) := \int_{10}^{x} \frac{t}{1 + t^6} dt$$

Find the intervals of increase and decrease of F. Determine all the relative minimum and maximum points.

[Tip: Do not attempt to solve the integral.]

3. Evaluate the following definite integrals:

(a)
$$\int_0^1 \cos(\pi t) dt$$

(b)
$$\int_0^{\pi/2} e^{\sin x} \cos x \, dx$$

(c)
$$\int_{1}^{2} x\sqrt{x-1} \, dx$$

(d)
$$\int_{e}^{e^4} \frac{1}{x\sqrt{\ln x}} dx$$

4. Evaluate $\int \tan x \, dx$

[Hint: Rewrite $\tan x$ as $\frac{\sin x}{\cos x}$ and use the substitution $u = \cos x$.]