MA 281, Honors Mathematical Analysis III, Spring ’06. Extra Homework Sheet \# 4.

In this homework sheet we are going to use Newton's Second Law of Mechanics,

$$
F=m A
$$

where F is the force exherted on a material point of mass m, at a certain instant of time, and A is the resulting acceleration, at that instant.

1. In the following problems, $F(t)$ is the force applied on a point, as a function of time; m is the mass of the point; $V_{0}=R^{\prime}(0)$ is the initial velocity (at time $t=0$), and $R_{0}=R(0)$ is the initial position. Determine the trajectory $R(t)$ of the point.
(a) $F(t)=\left(1, t^{2}\right) ; m=1 ; V_{0}=(-1,2) ; R_{0}=(1,1)$.
(b) $F(t)=\left(\sin t, 0, e^{3 t}\right) ; m=2 ; V_{0}=(0,0,0) ; R_{0}=(1,0,-3)$.
(c) $F(t)=\left(1, e^{-t}, 0,(1+t)^{-3}\right) ; m=1 / 2 ; V_{0}=(1,-2,0, \sqrt{3}) ; R_{0}=(0,0,0,0)$.
(d) $F(t)=\left(\cos (2 t),(2+t)^{-2},\left[2 t^{2}+1\right] e^{t^{2}}\right) ; m=1 ; V_{0}=(-1,0,1) ; R_{0}=(0,0,0)$.
2. A point of mass 1 is moving in \mathbb{R}^{2}, being subject to a constant force field $F=(0,3)$. Prove that, no matter what the initial position $R(0)=(a, b)$ and the initial velocity $R^{\prime}(0)=(c, d)$ are, the trajectory is always a parabola.
[Hint: First determine the trajectory $R(t)=(x(t), y(t))$. Then use the equation of $x(t)$ to find t as a function of x and plug this into $y(t)$.]
3. A material point in the plane is subject to a force field that depends on the position of the point in the following way: If the point is at $R=(x, y)$, the force applied to it is $F=F(x, y)=-k(x, y)$, where $k>0$ is a constant. Therefore, Newton's Second Law in this case reads

$$
-k R(t)=m R^{\prime \prime}(t)
$$

Prove that, setting $\omega:=\sqrt{k / m}$, the curve $R(t)=(2 \cos (\omega t-3), 2 \sin (\omega t-3)$ is a possible trajectory.

