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Definition. A linear transformation T : Rn −→ Rm is a function from Rn to Rm

such that, for all a, b ∈ R and X, Y ∈ Rn,

T (aX + bY ) = aT (X) + bT (Y ). (1)

Linear transformations are also called linear functions. An equivalent way of char-
acterizing linear transformations is the following.

Proposition 1. A function T : Rn −→ Rm is linear if, and only if, for every a ∈ R
and X, Y ∈ Rn,

T (aX) = aT (X) and (2)

T (X + Y ) = T (X) + T (Y ). (3)

Proof. Let us prove the “only if” part, that is, (1) =⇒ (2) & (3). Take b = 0 in (1)
and (2) is proved. Take a = b = 1 in (1) and (3) is proved.

Now for the the “if” part, that is, (2) & (3) =⇒ (1). In (3), plug aX in place of
X and bY in place of Y . You will read

T (aX + bY ) = T (aX) + T (bY ). (4)

By virtue of (2), T (aX) = aT (X) and, analogously, T (bY ) = bT (Y ). Using these
equalities in the right hand side of (4) will give us (1). q.e.d.

Exercise 1. Show that, if T is a linear transformation, T (0, 0, . . . , 0) = (0, . . . , 0)
(the first vector being the origin of Rn and the second the origin of Rm).

Exercise 2. Show that, if c ∈ R, the function f : R −→ R defined as f(x) = cx is
linear.

Exercise 3. Show that, if V ∈ Rn, the scalar field g : Rn −→ R defined by
g(X) := V ·X is a linear transformation.

Exercise 4. Fix a number c ∈ R and define the scalar field h : Rn −→ R via
h(X) := c. For what values of c, if any, is g a linear tranformation?

Property (1) is called the linearity property. It involves the sum of two vectors.
There is nothing special about the number two, and the property can be extended
to any (finite) sum of vectors.
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Proposition 2. For k a positive integer, let a1, a2, . . . , ak be scalars and X1,
X2, . . . , Xk be n-dimensional vectors. If T : Rn −→ Rm is a linear transformation,
then

T (a1X1 + · · ·+ akXk) = a1T (X1) + · · ·+ akT (Xk). (5)

Proof. We’ll prove (5) by induction on k ≥ 1. When k = 1, the sum is on one
vector only, and (5) reduces to (2), which holds true for linear transformations.

For the second step of the induction, suppose that (5) has been proved for any
sum of k vectors. We want to prove it for any sum of k + 1 vectors (involving the
scalars a1, a2, . . . , ak+1 and the vectors X1, X2, . . . , Xk+1). We have

T (a1X1 + · · ·+ akXk + ak+1Xk+1) =

= T (a1X1 + · · ·+ akXk) + ak+1T (Xk+1) = (6)

= a1T (X1) + · · ·+ akT (Xk) + ak+1T (Xk+1),

where in the first equality we have used (1) with a = 1, X = a1X1 + · · · + akXk,
b = ak+1, and Y = Xk+1; while in the second equality we have used the induction
hypothesis on the sum of k vectors. q.e.d.

Linear transformations are among the easiest functions to deal with, second only
to the constant functions. In fact, while for a general function F : D −→ Rm, one
gets complete knowledge of F only when they know the values F (X) for all X ∈ D,
for a linear transformation T : Rn −→ Rm, it is enough to know the value of T
on n inputs, namely, the canonical basis vectors E1, E2, . . . , En. (Remember that
Ei ∈ Rn is defined as the vector that contains zeroes in all components, except for
the ith component, where it contains 1.)

In other words, if one knows T (E1), T (E2), . . . , T (En), they can (more or less
easily) calculate T (X), ∀X ∈ Rn. That is, they know the function T in its entirety!
The next proposition precisely addresses this point:

Proposition 3. If T : Rn −→ Rm is a linear transformation, then, ∀X =
(x1, x2, . . . , xn) ∈ Rn,

T (X) = T (x1, x2, . . . , xn) =
n∑

i=1

xiT (Ei). (7)

Proof. Remember that any vector X = (x1, x2, . . . , xn) ∈ Rn can be rewritten as

X =
n∑

i=1

xiEi. (8)

(This is indeed the most notable property of the canonical vectors Ei.) If we evaluate
T on both sides of (8), we get, by the extended linearity property (5).

T (X) = T

(
n∑

i=1

xiEi

)
=

n∑
i=1

xiT (Ei), (9)
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which is what we wanted to prove. q.e.d.

A particularly easy type of linear transformation are the scalar linear transforma-
tions, that is, linear transformations t : Rn −→ R. Each such function can be
expressed as a dot product. In fact,

Proposition 4. Given a scalar linear transformation t : Rn −→ R, there exists a
vector V ∈ Rn such that, ∀X ∈ Rn,

t(X) = V ·X. (10)

Proof. Set V := (t(E1), t(E2), . . . , t(En)). (Each t(Ei) is a number so it makes sense
to define V as an n-dimensional vector.) We apply (7) to our linear function t. We
obtain

t(X) =
n∑

i=1

xit(Ei), (11)

which is precisely V ·X, whence (10). q.e.d.

We already know (from Exercise 3) that any function g(X) = V · X is linear.
From this consideration and Proposition 4 we conclude that the scalar linear trans-
formations are those, and only those, that can be expressed as a scalar (dot) product
of the type V ·X.
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