NOTES ON ORDERED PAIRS Marco Lenci March 2006

In what follows, A and B will denote two generic sets, not necessarily sets of numbers.

Definition. Given $a \in A$ and $b \in B$, the *ordered pair* formed by a and b is defined as

$$(a,b) := \{ \{a\}, \{a,b\} \}; \tag{1}$$

that is, the set whose elements are $\{a\}$ and $\{a, b\}$ (which are themselves sets).

The motivation for this bizarre definition is that we want to create a mathematical object that is composed of two elements in a given order, for which it makes a difference how we list the two elements. Using two-element sets will not do, for we know that $\{a, b\} = \{b, a\}$ (it is indeed a fundamental property of sets that it doesn't matter how elements are listed).

With ordered pairs (usually called simply *pairs*) we'll see that, in general, $(a, b) \neq (b, a)$. The next proposition precisely addresses this point.

Theorem. $(a, b) = (a', b') \iff a = a' \text{ and } b = b'.$

Proof. The " \Leftarrow " direction is trivial. If a and a' are the same object, and b and b' are the same object, then writing (a, b) or writing (a', b') is *exactly* the same thing.

As for the " \Longrightarrow " direction, we assume that (a, b) = (a', b') and set out to prove that a = a and b = b'. We give two proofs for the two different cases, a = b and $a \neq b$.

First case (a = b). In this case the pair (a, b) is equal to $(a, a) = \{\{a\}, \{a, a\}\}$. But we know by the properties of sets that $\{a, a\} = \{a\}$. Hence $(a, b) = (a, a) = \{\{a\}, \{a\}\} = \{\{a\}\}\}$ (again by the properties of sets). Therefore (a, b) is a set which contains one, and only one, element (indeed, a set).

Since (a, b) = (a', b'), then also (a', b') must be a set which contains only one element. But the definition of (a', b') is $\{\{a'\}, \{a', b'\}\}$. Thus, it must be $\{a'\} = \{a', b'\}$, which forces b' to be equal to a'. So, then, $(a', b') = \{\{a'\}\}$.

The hypothesis (a, b) = (a', b') then reads $\{ \{a\} \} = \{ \{a'\} \}$, which implies a = a'. But we know from before that a = b and a' = b'. So, finally, a = a' = b = b', which is the end of the proof in the first case.

Second case $(a \neq b)$. Since $a \neq b$, $\{a\} \neq \{a, b\}$ (the former is a one-element set, the latter is a two-element set). So (a, b) is a set that contains exactly two elements (namely, the sets $\{a\}$ and $\{a, b\}$). By hypothesis, (a, b) = (a', b'), so (a', b') too contains exactly two elements, the sets $\{a'\}$ and $\{a', b'\}$, which must therefore be unequal. This implies that $a' \neq b'$.

The hypothesis (a, b) = (a', b') reads

$$\{\{a\},\{a,b\}\} = \{\{a'\},\{a',b'\}\},\tag{2}$$

which simply means that the two elements in the left-hand set are the same as the two in the right-hand set. Thus, there are only two prossibilities: either

$$\{a\} = \{a', b'\} \quad \text{and} \quad \{a, b\} = \{a'\}$$
(3)

or

$$\{a\} = \{a'\}$$
 and $\{a, b\} = \{a', b'\}$ (4)

Clearly (3) cannot be the case (two-element sets cannot equal one-element sets), so (4) holds true. The first equality of (4) implies that a = a'. Plug this in the second equality and read $\{a, b\} = \{a, b'\}$. Necessarily, b = b'. Q.E.D.

Definition. The set of all ordered pairs (a, b), with $a \in A$ and $b \in B$, is called the *cartesian product* of A and B, and is denoted by $A \times B$.

When $A = B = \mathbb{R}$, the cartesian product $\mathbb{R} \times \mathbb{R}$ is also denoted by \mathbb{R}^2 and is called the *cartesian plane* (for this is the rigorous definition of the (x, y)-plane devised by RENÉ DESCARTES (1596-1650) and still used in analytic geometry).

We also define $\mathbb{R}^3 := \mathbb{R}^2 \times \mathbb{R}$, and call this the *cartesian space*. Theoretically speaking, its elements should be denoted by ((x, y), z) (each pair is formed by a pair of reals and a real) but, for simplicity, they are usually denoted by (x, y, z) and are called *triples*. It is easy to convince oneself that

$$(x, y, z) = (x', y', z') \iff x = x', y = y', z = z'.$$
 (5)

(If it isn't so easy, think that the equality on the right-hand side actually reads ((x, y), z) = ((x', y'), z'). Then apply the previous theorem to get (x, y) = (x', y') and z = z'. Apply the theorem again, to the first of the two equalities, and get x = x' and y = y'.)

The definitions of \mathbb{R}^2 and \mathbb{R}^3 can be generalized by means of the following

Definition. If n denotes a positive integer, the n-dimensional Euclidean space \mathbb{R}^n is defined recursively by the equations

$$\mathbb{R}^1 := \mathbb{R}; \tag{6}$$

(for
$$n \ge 2$$
) $\mathbb{R}^n := \mathbb{R}^{n-1} \times \mathbb{R}$. (7)

The elements of \mathbb{R}^n are called *n*-tuples of real numbers and are denoted by (x_1, x_2, \ldots, x_n) . (If n = 4, we speak of quadruples; if n = 5, quintuples; etc.)