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In what follows, A and B will denote two generic sets, not necessarily sets of numbers.

Definition. Given a ∈ A and b ∈ B, the ordered pair formed by a and b is defined
as

(a, b) := { {a}, {a, b} }; (1)

that is, the set whose elements are {a} and {a, b} (which are themselves sets).

The motivation for this bizarre definition is that we want to create a mathematical
object that is composed of two elements in a given order, for which it makes a
difference how we list the two elements. Using two-element sets will not do, for we
know that {a, b} = {b, a} (it is indeed a fundamental property of sets that it doesn’t
matter how elements are listed).

With ordered pairs (usually called simply pairs) we’ll see that, in general, (a, b) 6=
(b, a). The next proposition precisely addresses this point.

Theorem. (a, b) = (a′, b′) ⇐⇒ a = a′ and b = b′.

Proof. The “⇐=” direction is trivial. If a and a′ are the same object, and b and b′

are the same object, then writing (a, b) or writing (a′, b′) is exactly the same thing.
As for the “=⇒” direction, we assume that (a, b) = (a′, b′) and set out to prove

that a = a and b = b′. We give two proofs for the two different cases, a = b and
a 6= b.

First case (a = b). In this case the pair (a, b) is equal to (a, a) = { {a}, {a, a} }.
But we know by the properties of sets that {a, a} = {a}. Hence (a, b) = (a, a) =
{ {a}, {a} } = { {a} } (again by the properties of sets). Therefore (a, b) is a set which
contains one, and only one, element (indeed, a set).

Since (a, b) = (a′, b′), then also (a′, b′) must be a set which contains only one
element. But the definition of (a′, b′) is { {a′}, {a′, b′} }. Thus, it must be {a′} =
{a′, b′}, which forces b′ to be equal to a′. So, then, (a′, b′) = { {a′} }.

The hypothesis (a, b) = (a′, b′) then reads { {a} } = { {a′} }, which implies a = a′.
But we know from before that a = b and a′ = b′. So, finally, a = a′ = b = b′, which
is the end of the proof in the first case.

Second case (a 6= b). Since a 6= b, {a} 6= {a, b} (the former is a one-element set,
the latter is a two-element set). So (a, b) is a set that contains exactly two elements
(namely, the sets {a} and {a, b}). By hypothesis, (a, b) = (a′, b′), so (a′, b′) too
contains exactly two elements, the sets {a′} and {a′, b′}, which must therefore be
unequal. This implies that a′ 6= b′.
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The hypothesis (a, b) = (a′, b′) reads

{ {a}, {a, b} } = { {a′}, {a′, b′} }, (2)

which simply means that the two elements in the left-hand set are the same as the
two in the right-hand set. Thus, there are only two prossibilities: either

{a} = {a′, b′} and {a, b} = {a′} (3)

or
{a} = {a′} and {a, b} = {a′, b′} (4)

Clearly (3) cannot be the case (two-element sets cannot equal one-element sets), so
(4) holds true. The first equality of (4) implies that a = a′. Plug this in the second
equality and read {a, b} = {a, b′}. Necessarily, b = b′. q.e.d.

Definition. The set of all ordered pairs (a, b), with a ∈ A and b ∈ B, is called the
cartesian product of A and B, and is denoted by A×B.

When A = B = R, the cartesian product R×R is also denoted by R2 and is called
the cartesian plane (for this is the rigorous definition of the (x, y)-plane devised by
René Descartes (1596-1650) and still used in analytic geometry).

We also define R3 := R2 × R, and call this the cartesian space. Theoretically
speaking, its elements should be denoted by ((x, y), z) (each pair is formed by a pair
of reals and a real) but, for simplicity, they are usually denoted by (x, y, z) and are
called triples. It is easy to convince oneself that

(x, y, z) = (x′, y′, z′) ⇐⇒ x = x′, y = y′, z = z′. (5)

(If it isn’t so easy, think that the equality on the right-hand side actually reads
((x, y), z) = ((x′, y′), z′). Then apply the previous theorem to get (x, y) = (x′, y′)
and z = z′. Apply the theorem again, to the first of the two equalities, and get
x = x′ and y = y′.)

The definitions of R2 and R3 can be generalized by means of the following

Definition. If n denotes a positive integer, the n-dimensional Euclidean space Rn

is defined recursively by the equations

R1 := R; (6)

(for n ≥ 2) Rn := Rn−1 × R. (7)

The elements of Rn are called n-tuples of real numbers and are denoted by
(x1, x2, . . . , xn). (If n = 4, we speak of quadruples ; if n = 5, quintuples ; etc.)
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