NOTES ON ORDERED PAIRS
 Marco Lenci
 March 2006

In what follows, A and B will denote two generic sets, not necessarily sets of numbers.
Definition. Given $a \in A$ and $b \in B$, the ordered pair formed by a and b is defined as

$$
\begin{equation*}
(a, b):=\{\{a\},\{a, b\}\} \tag{1}
\end{equation*}
$$

that is, the set whose elements are $\{a\}$ and $\{a, b\}$ (which are themselves sets).
The motivation for this bizarre definition is that we want to create a mathematical object that is composed of two elements in a given order, for which it makes a difference how we list the two elements. Using two-element sets will not do, for we know that $\{a, b\}=\{b, a\}$ (it is indeed a fundamental property of sets that it doesn't matter how elements are listed).

With ordered pairs (usually called simply pairs) we'll see that, in general, $(a, b) \neq$ (b, a). The next proposition precisely addresses this point.

Theorem. $(a, b)=\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow a=a^{\prime}$ and $b=b^{\prime}$.
Proof. The " $\Longleftarrow "$ direction is trivial. If a and a^{\prime} are the same object, and b and b^{\prime} are the same object, then writing (a, b) or writing $\left(a^{\prime}, b^{\prime}\right)$ is exactly the same thing.

As for the " \Longrightarrow " direction, we assume that $(a, b)=\left(a^{\prime}, b^{\prime}\right)$ and set out to prove that $a=a$ and $b=b^{\prime}$. We give two proofs for the two different cases, $a=b$ and $a \neq b$.

First case $(a=b)$. In this case the pair (a, b) is equal to $(a, a)=\{\{a\},\{a, a\}\}$. But we know by the properties of sets that $\{a, a\}=\{a\}$. Hence $(a, b)=(a, a)=$ $\{\{a\},\{a\}\}=\{\{a\}\}$ (again by the properties of sets). Therefore (a, b) is a set which contains one, and only one, element (indeed, a set).

Since $(a, b)=\left(a^{\prime}, b^{\prime}\right)$, then also $\left(a^{\prime}, b^{\prime}\right)$ must be a set which contains only one element. But the definition of $\left(a^{\prime}, b^{\prime}\right)$ is $\left\{\left\{a^{\prime}\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\}$. Thus, it must be $\left\{a^{\prime}\right\}=$ $\left\{a^{\prime}, b^{\prime}\right\}$, which forces b^{\prime} to be equal to a^{\prime}. So, then, $\left(a^{\prime}, b^{\prime}\right)=\left\{\left\{a^{\prime}\right\}\right\}$.

The hypothesis $(a, b)=\left(a^{\prime}, b^{\prime}\right)$ then reads $\{\{a\}\}=\left\{\left\{a^{\prime}\right\}\right\}$, which implies $a=a^{\prime}$. But we know from before that $a=b$ and $a^{\prime}=b^{\prime}$. So, finally, $a=a^{\prime}=b=b^{\prime}$, which is the end of the proof in the first case.

Second case $(a \neq b)$. Since $a \neq b,\{a\} \neq\{a, b\}$ (the former is a one-element set, the latter is a two-element set). So (a, b) is a set that contains exactly two elements (namely, the sets $\{a\}$ and $\{a, b\}$). By hypothesis, $(a, b)=\left(a^{\prime}, b^{\prime}\right)$, so $\left(a^{\prime}, b^{\prime}\right)$ too contains exactly two elements, the sets $\left\{a^{\prime}\right\}$ and $\left\{a^{\prime}, b^{\prime}\right\}$, which must therefore be unequal. This implies that $a^{\prime} \neq b^{\prime}$.

The hypothesis $(a, b)=\left(a^{\prime}, b^{\prime}\right)$ reads

$$
\begin{equation*}
\{\{a\},\{a, b\}\}=\left\{\left\{a^{\prime}\right\},\left\{a^{\prime}, b^{\prime}\right\}\right\} \tag{2}
\end{equation*}
$$

which simply means that the two elements in the left-hand set are the same as the two in the right-hand set. Thus, there are only two prossibilities: either

$$
\begin{equation*}
\{a\}=\left\{a^{\prime}, b^{\prime}\right\} \quad \text { and } \quad\{a, b\}=\left\{a^{\prime}\right\} \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\{a\}=\left\{a^{\prime}\right\} \quad \text { and } \quad\{a, b\}=\left\{a^{\prime}, b^{\prime}\right\} \tag{4}
\end{equation*}
$$

Clearly (3) cannot be the case (two-element sets cannot equal one-element sets), so (4) holds true. The first equality of (4) implies that $a=a^{\prime}$. Plug this in the second equality and read $\{a, b\}=\left\{a, b^{\prime}\right\}$. Necessarily, $b=b^{\prime}$.
Q.E.D.

Definition. The set of all ordered pairs (a, b), with $a \in A$ and $b \in B$, is called the cartesian product of A and B, and is denoted by $A \times B$.

When $A=B=\mathbb{R}$, the cartesian product $\mathbb{R} \times \mathbb{R}$ is also denoted by \mathbb{R}^{2} and is called the cartesian plane (for this is the rigorous definition of the (x, y)-plane devised by René Descartes (1596-1650) and still used in analytic geometry).

We also define $\mathbb{R}^{3}:=\mathbb{R}^{2} \times \mathbb{R}$, and call this the cartesian space. Theoretically speaking, its elements should be denoted by $((x, y), z)$ (each pair is formed by a pair of reals and a real) but, for simplicity, they are usually denoted by (x, y, z) and are called triples. It is easy to convince oneself that

$$
\begin{equation*}
(x, y, z)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \quad \Longleftrightarrow \quad x=x^{\prime}, y=y^{\prime}, z=z^{\prime} . \tag{5}
\end{equation*}
$$

(If it isn't so easy, think that the equality on the right-hand side actually reads $((x, y), z)=\left(\left(x^{\prime}, y^{\prime}\right), z^{\prime}\right)$. Then apply the previous theorem to get $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ and $z=z^{\prime}$. Apply the theorem again, to the first of the two equalities, and get $x=x^{\prime}$ and $y=y^{\prime}$.)

The definitions of \mathbb{R}^{2} and \mathbb{R}^{3} can be generalized by means of the following
Definition. If n denotes a positive integer, the n-dimensional Euclidean space \mathbb{R}^{n} is defined recursively by the equations

$$
\begin{array}{ll}
& \mathbb{R}^{1}:=\mathbb{R} \\
(\text { for } n \geq 2) & \mathbb{R}^{n}:=\mathbb{R}^{n-1} \times \mathbb{R} \tag{7}
\end{array}
$$

The elements of \mathbb{R}^{n} are called n-tuples of real numbers and are denoted by ($x_{1}, x_{2}, \ldots, x_{n}$). (If $n=4$, we speak of quadruples; if $n=5$, quintuples; etc.)

