MA 281, Honors Mathematical Analysis III, Spring '06. Some review problems for Midterm \# 3.

(Not a COMPREHENSIVE LIST!)

1. If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is the function defined by $f(X)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{k}$ (k is a fixed integer between 1 and n), prove that

$$
\lim _{X \rightarrow A} f(X)=a_{k}
$$

where $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$
[Hint: Use the formulation of limit with ε and δ. Notice that $\left|x_{k}-a_{k}\right| \leq\|X-A\|$.]
2. Use the above problem to prove that a polynomial $p: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is continuous. [You are allowed to use the result that sums and products of continuous functions are continuous functions.]
3. Guess the following limits (meaning, no proof required):
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{1}{\left(x^{2}+4 y^{2}\right)^{3 / 2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{1}{x^{2}-y^{2}}$
(c) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{\arctan \left(x^{3}-x y+3 z^{6}\right)}{x^{3}-x y+3 z^{6}}$
4. Evaluate the following limits (that is, use either the definition of limit or a theorem or a known result to justify your answer):
(a) $\lim _{(x, y) \rightarrow(1,2)}\left[x^{2} y+\cos (x y)\right]$
(b) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{\sin \left(x^{2}+y^{2}+z^{2}\right)^{3}}{\left(x^{2}+y^{2}+z^{2}\right)^{3}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{6 x^{2}+y^{2}}$
(d) $\lim _{(x, y) \rightarrow(-1,0)} \frac{e^{(x-1)^{2}+4 y^{2}}-1}{(x-1)^{2}+4 y^{2}}$

