EXAMPLES OF WELL-PRESENTED SOLUTIONS TO (VERY SIMPLE) MATH PROBLEMS

Problem 1. Find the (natural) domain of $f(x)=\sqrt{4-x^{2}}$.
Solution. For $f(x)$ to be well-defined it must be $4-x^{2} \geq 0$ (square root only accepts non-negative inputs). Therefore $x^{2} \leq 4 \Longrightarrow|x| \leq 2$. This means $-2 \leq x \leq 2$. So

$$
D(f)=[-2,2]
$$

[Note: One could have also written

$$
D(f)=\{x \text { real } \mid-2 \leq x \leq 2\}
$$

Problem 2. Solve the inequality $x^{2}-5 x+6 \geq 0$.
Solution I. I first solve the associated equation $x^{2}-5 x+6=0$. The solutions are given by

$$
x_{1,2}=\frac{5 \pm \sqrt{25-4 \cdot 1 \cdot 6}}{2}=\frac{5 \pm 1}{2},
$$

that is, $x_{1}=2, x_{2}=3$.
Since the coefficient of x^{2} is positive, I know that the values for which the quadratic polynomial is non-negative are those external to the pair of solutions above.
Hence the answer is

$$
x \leq 2 \text { or } x \geq 3
$$

Solution II. Factorizing the expression, we get

$$
(x-2)(x-3) \geq 0 .
$$

Both factors have to be non-negative, or both non-positive.
$1^{\text {st }}$ case) $x-2 \geq 0$ and $x-3 \geq 0 \Longrightarrow x \geq 3$.
$2^{\text {nd }}$ case) $x-2 \leq 0$ and $x-3 \leq 0 \Longrightarrow x \leq 2$.
The answer is

$$
x \leq 2 \text { or } x \geq 3
$$

Problem 3. Solve $\sin ^{2} x=\cos ^{2} x$, for $0 \leq x \leq \pi$.
Solution I. Taking square roots, I get $|\sin x|=|\cos x|$, that is, the first and second coordinates of the point on the unit circle must be equal in absolute value.

For $0 \leq x \leq \pi$, this only happens at

$$
x_{1}=\frac{\pi}{4}, x_{2}=\frac{3 \pi}{4}
$$

Solution II. Using the fundamental identity of trigonometry, the equation is rewritten as

$$
\sin ^{2} x=1-\sin ^{2} x \quad \Longleftrightarrow \quad 2 \sin ^{2} x=1 \quad \Longleftrightarrow \quad \sin ^{2} x=\frac{1}{2}
$$

Hence $\sin x=\frac{1}{\sqrt{2}}$ or $\sin x=-\frac{1}{\sqrt{2}}$.
But, for $0 \leq x \leq \pi, \sin x \geq 0$, so it has to be $\sin x=\frac{1}{\sqrt{2}}$. This happens at

$$
x_{1}=\frac{\pi}{4}, x_{2}=\frac{3 \pi}{4}
$$

