EXAMPLES OF WELL-PRESENTED SOLUTIONS TO (VERY SIMPLE) MATH PROBLEMS

Problem 1. Find the (natural) domain of $f(x) = \sqrt{4 - x^2}$.

Solution. For f(x) to be well-defined it must be $4 - x^2 \ge 0$ (square root only accepts non-negative inputs). Therefore $x^2 \le 4 \implies |x| \le 2$. This means $-2 \le x \le 2$. So

$$D(f) = [-2, 2]$$

[Note: One could have also written

$$D(f) = \{x \text{ real } | -2 \le x \le 2\}$$

Problem 2. Solve the inequality $x^2 - 5x + 6 \ge 0$.

Solution I. I first solve the associated equation $x^2 - 5x + 6 = 0$. The solutions are given by

$$x_{1,2} = \frac{5 \pm \sqrt{25 - 4 \cdot 1 \cdot 6}}{2} = \frac{5 \pm 1}{2},$$

that is, $x_1 = 2$, $x_2 = 3$.

Since the coefficient of x^2 is positive, I know that the values for which the quadratic polynomial is non-negative are those external to the pair of solutions above. Hence the answer is

$$x \le 2$$
 or $x \ge 3$

Solution II. Factorizing the expression, we get

$$(x-2)(x-3) \ge 0.$$

Both factors have to be non-negative, or both non-positive.

 $1^{st} \ case$) $x - 2 \ge 0$ and $x - 3 \ge 0 \implies x \ge 3$. $2^{nd} \ case$) $x - 2 \le 0$ and $x - 3 \le 0 \implies x \le 2$. The answer is

$$x \le 2$$
 or $x \ge 3$

Problem 3. Solve $\sin^2 x = \cos^2 x$, for $0 \le x \le \pi$.

Solution I. Taking square roots, I get $|\sin x| = |\cos x|$, that is, the first and second coordinates of the point on the unit circle must be equal in absolute value.

For $0 \le x \le \pi$, this only happens at

$$x_1 = \frac{\pi}{4}, \ x_2 = \frac{3\pi}{4}$$

Solution II. Using the fundamental identity of trigonometry, the equation is rewritten as

$$\sin^2 x = 1 - \sin^2 x \quad \Longleftrightarrow \quad 2\sin^2 x = 1 \quad \Longleftrightarrow \quad \sin^2 x = \frac{1}{2}$$

Hence $\sin x = \frac{1}{\sqrt{2}}$ or $\sin x = -\frac{1}{\sqrt{2}}$. But, for $0 \le x \le \pi$, $\sin x \ge 0$, so it has to be $\sin x = \frac{1}{\sqrt{2}}$. This happens at $x_1 = \frac{\pi}{4}, x_2 = \frac{3\pi}{4}$

Marco Lenci, Stevens Institute of Technology, September 2004