SOME ADVICE ON THE CORRECT USE OF MATH NOTATION

Golden Rule: As with any other language, a mathematical statement should make sense as is written.
[For example, suppose you write a line that only contains the expression

$$
2 x+4
$$

and nothing else. It would read exactly like an English sentence with a subject but no predicate. In general, it makes no sense. Sensible statements are, for example,
$2 x+4=0$.
The expression $2 x+4$ represents a linear function of x.
The term $2 x+4$ is positive for $x \geq-2$.

Common mistakes with relative corrections:

Don't Write	If you mean	Because
$\ln 0=-\infty$	$\lim _{x \rightarrow 0^{+}} \ln x=-\infty$	\ln is not defined at 0
$2 x=4=x=2$	$2 x=4 \Longrightarrow x=2$	$2 \neq 4$
$2-1 \sin x$	$2(-1) \sin x$	$2-\sin x \neq-2 \sin x$
$f=2$	$f(x)=2$	f is a function, 2 is a number
$x^{2}=2 x$	$\frac{d x^{2}}{d x}=2 x$	$x^{2} \neq 2 x$
$x^{2} \rightarrow 2 x$		you're not taking a limit in x
$\psi^{2}{ }_{2 x}$		that is not a simplification
$3 \frac{1}{2}$	$\frac{7}{2}$	$3 \frac{1}{2}=\frac{3}{2}$
1,2	$(1,2)$	1,2 are numbers, $(1,2)$ is a point in the plane
$2 \cdot-1$	$2(-1)$	a dot is easy to miss
$\ln (x=2)$	$x=2 \Longrightarrow \ln x=\ln 2$	it doesn't make any sense
$D(f) \geq 0$	$D(f)=\{$ x real $\mid x \geq 0\}$	a set can't be non-negative
$D(f)=\geq 0$		it doesn't make any sense
$D(f)=x \geq 0$		a set cannot equal a number
$2 \geq x \geq 3$	$x \leq 2$ or $x \geq 3$	$2 \geq 3$ is false

