SOME ADVICE ON THE CORRECT USE OF MATH NOTATION

Golden Rule: As with any other language, a mathematical statement should make sense as is written.

[For example, suppose you write a line that only contains the expression

2x + 4

and nothing else. It would read exactly like an English sentence with a subject but no predicate. In general, it makes no sense. Sensible statements are, for example,

2x + 4 = 0.The expression 2x + 4 represents a linear function of x. The term 2x + 4 is positive for $x \ge -2$.

Common mistakes with relative corrections:

Don't write	If you mean	BECAUSE
$\ln 0 = -\infty$	$\lim_{x \to 0^+} \ln x = -\infty$	ln is not defined at 0
2x = 4 = x = 2	$2x = 4 \implies x = 2$	$2 \neq 4$
$2-1\sin x$	$2(-1)\sin x$	$2 - \sin x \neq -2\sin x$
f = 2	f(x) = 2	f is a function, 2 is a number
$x^2 = 2x$	_	$x^2 \neq 2x$
$x^2 \rightarrow 2x$	$\frac{dx^2}{dx} = 2x$	you're not taking a limit in x
x^2_{2x}		that is not a simplification
$3\frac{1}{2}$	$\frac{7}{2}$	$3\frac{1}{2} = \frac{3}{2}$
1, 2	(1, 2)	1, 2 are numbers, $(1, 2)$ is a point in the plane
$2 \cdot -1$	2(-1)	a dot is easy to miss
$\ln(x=2)$	$x = 2 \implies \ln x = \ln 2$	it doesn't make any sense
$D(f) \ge 0$		a set can't be non-negative
$D(f) = \ge 0$	$D(f) = \{ \mathbf{x} \text{ real } \mid x \ge 0 \}$	it doesn't make any sense
$D(f) = x \ge 0$		a set cannot equal a number
$2 \ge x \ge 3$	$x \leq 2 \text{ or } x \geq 3$	$2 \ge 3$ is false

Marco Lenci, Stevens Institute of Technology, September 2004