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Toric arrangements

A toric arrangement is a set of hypersurfaces in a complex torus
T = (C∗)d (or in a real torus S1

d) such that every hypersurface is the
kernel of a homomorphism T → C∗.

In recent years, toric arrangement have been intensively studied by several
authors.
Among the reasons of this interest, the fact that they may be viewed as
periodic arrangements of hyperplanes in the universal covering of the torus.
Periodic arrangements occur for instance when studying :

affine Coxeter groups / affine Lie algebras ;

vector partition functions (via Laplace transform).
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An example of arrangements

Take V = C2 with coordinates (x , y), T = (C∗)2 with coordinates (t, s),
and

X = {(2, 0), (0, 3), (−1, 1)} ⊂ Z2.

We associate with X three objects :

a finite hyperplane arrangement given in V by the equations

2x = 0, 3y = 0,−x + y = 0;

a periodic hyperplane arrangement given in V by the conditions

2x ∈ Z, 3y ∈ Z,−x + y ∈ Z;

a toric arrangement given in T by the equations :

t2 = 1; s3 = 1; t−1s = 1

.
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Models for the toric arrangement

Many results and tools known for hyperplane arrangements admit
analogues for toric arrangements. For instance :

Salvetti complex : a CW complex homotopy equivalent to the
complement of the complex arrangement (with a combinatorial
description in terms of chambers and faces of the real arrangement).
For toric arrangements : (M. -Settepanella 2011),
(d’Antonio-Delucchi 2012).

De Concini-Procesi’s wonderful compactification : a smooth complete
variety in which the complement of the arrangement is unchanged,
while the arrangement is replaced by a normal crossing divisor
(combinatorially described by ”nested sets”).
For toric arrangements : (M. 2011), (De Concini- Gaiffi 2016).

By using these models, many invariants of the complement of a toric
arrangement can be computed. It is crucial to have a good combinatorial
parametrization of the geometric data.
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Coloring polynomial and flow polynomial of a graph

If we replace the character (0, 3) by (0, 1) or (0, 5), we get the same
hyperplane arrangements, but different toric arrangements !
In other words, let X be a list of vectors with integer coordinates. The
geometry of the corresponding toric arrangements depends on the linear
algebra and on the arithmetics of X ; so we need a combinatorial structure
keeping track of both.
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Realizabile case

Main example : X is a list of elements in a finitely generated abelian group
Λ, and for every A ⊆ X , rk(A) is the rank of the free part of 〈A〉, while
m(A) is the cardinality of the torsion part of Λ/〈A〉.
We say that a matroid is realizable if it comes from such a list.

(We need to enlarge our focus from lattices to abelian groups in order to
be able to perform two basic matroid operations called deletion and
contraction, which correspond to the intuitive idea of removing a vector
from the list and quotienting by a vector respectively : in fact, the latter
operation can create torsion).
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The monoid of arithmetic structures on a matroid.

Theorem (Delucchi- M., 2016)

If (X , rk,m1) and (X , rk,m2) are arithmetic matroids, so is (X , rk,m1m2).

Then the set of arithmetic structures on a given matroid is a commutative
monoid. We are investigating its structure, which seems quite mysterious :

αpβpγp = δpεp, so that there are no prime elements, and factorization is
not unique !
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An example with three vectors
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Arithmetic Tutte polynomial

The Tutte polyomial of a matroid (X , rk) [Tutte, 1948] is defined as

TX (x , y) =
∑
A⊆X

(x − 1)rkX−rkA(y − 1)|A|−rkA.

For exemple if X = {(2, 0), (0, 3), (−1, 1)}, then

TX (x , y) = (x − 1)2 + 3(x − 1) + 3 + (y − 1) = x2 + x + y .

The arithmetic Tutte polyomial of an arithmetic matroid (X , rk,m) [M.
2009] is :

MX (x , y) =
∑
A⊆X
|m(A)|(x − 1)rkX−rkA(y − 1)|A|−rkA.

In our example :

MX (x , y) = (x−1)2+(2+3+1)(x−1)+(6+2+3)+(y−1) = x2+4x+y+5.
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Applications to toric arrangements

If the arithmetic matroid is realized by a list of vectors X , its arithmetic
Tutte polynomial embodies information on the complement of
corresponding toric arrangement :

The number of connected components of the real toric arrangement is
equal to MX (1, 0) ;

the Poincaré polynomial of the complex toric arrangements is equal to
qnM( 2q+1

q , 0) [M. 2009].

In the previous example, those are equal to 10 and to 17q2 + 8q + 1
respectively.
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Combinatorial-geometric interpretation of the coefficients

Theorem (M. -Brändén. 2012)

MX (x , y) =
∑

B basis of X

 ∑
p∈P(B)

x ι(p)

 ∑
c∈C(B)

yη(c)

 , where :

I (B) ⊆ B and E (B) ⊆ Bc are the sets of ”internally active” and
”externally active” elements (like in Crapo’s formula for TX (x , y)) ;

P(B) is the set of integer points into the semi-open zonotope defined
by I (B) ;

given such a point p, ι(p) is the number of its zero coordinates ;

given the toric arrangement defined by (B \ I (B))∪ E (B), C(B) is the
set of connected components of the intersection of the hypersurfaces
corresponding to B \ I (B) ;

for every such component c , η(c) is the number of elements in E (B)
whose hypersurface contains c .
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Other recent developments

Several other properties of the arithmetic Tutte polynomial MX were
discovered in the last years. In fact MX :

specializes to the Hilbert series of some graded modules related to the
vector partition function, which are called periodic zonotopal spaces
[Lenz, 2014] ;

describes the Ehrhart theory of Lawrence polytopes [Dall, 2014] ;

can be recovered from the Tutte polynomials for group actions on
semimatroids [Delucchi-Riedel, 2015] ;

has been explicitly computed when X is the set of positive roots of
any crystallographic root system [Ardila-Castillo-Henley, 2013].
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Convolution product

Let (X , rk,m1) and (X , rk,m2) two arithmetic matroids. We denote by
Mm1

X (x , y) and Mm2
X (x , y) the corresponding arithmetic Tutte polynomials.

So the usual Tutte polynomial TX (x , y) is M1
X (x , y), where 1 is the trivial

multiplicity.
We define the following convolution product

(Mm1
X ∗M

m2
X )(x , y) =

∑
A⊆X

Mm1

X |A(0, y)Mm2

X/A(x , 0)

where X |A and X/A are respectively the restriction (i.e., deletion of the
complement) and the contraction by A.

Theorem (Etienne-Las Vergnas 1998, Kook-Reiner-Stanton 1999)

TX = TX ∗ TX .
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Convolution formula

Recently, [Backman-Lenz 2016] provided an analogue of this formula for
the arithmetic Tutte polynomial :

MX = MX ∗ TX = TX ∗MX .

Actually a more general fact holds :

Theorem (Backman-Fink-Lenz- M., work in progress)

Mm1·m2
X = Mm1

X ∗M
m2
X .

In other words, the arithmetic Tutte polynomial is a sort of ”discrete
Fourier transform” from the monoid of arithmetic structures on a matroid
to a suitable algebra of functions.
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From arithmetic matroids to matroids over a ring

Arithmetic matroids are matroids decorated with an extra function ; this
produces a quite long and complicated list of axioms.
Another approach is possible, by defining a structure called ”matroids over
the integers” [Fink-M. 2012], which has multiple advantages :

Simpler : A theory with only ONE axiom ;

More general : we can replace the integers with any commutative ring.

Yields new invariants : for instance the ”Tutte quasi-polynomial”.

This theory aims to generalize matroid theory in the same sense as
commutative algebra generalizes linear algebra.
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Matroids over Z: an example

Let v1, . . . , vn be a configuration of vectors in an R-module N.
Already in the case R = Z we see that it is convenient to take a system of
axioms for the quotients N/〈vi |i ∈ A〉:

Realizable example

X = {(2, 0), (0, 3), (1,−1)}
A ∅ 1 2 12
M(A) Z2 Z⊕ Z/2 Z⊕ Z/3 Z/6

A 3 13 23 123
M(A) Z Z/2 Z/3 0
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Definition

Let R be a commutative ring and E be a finite set.
A matroid over R on the ground set E is a function M
assigning to each subset A ⊆ E a finitely-generated R-module M(A)
satisfying the following axiom:
for all A ⊆ E and b, c 6∈ A, there are elements

x = x(b, c), y = y(b, c) ∈ M(A)

such that there is a diagram

M(A)

y

/x //

/y
��

M(A ∪ {b})

/y
��

M(A ∪ {c})
/x
// M(A ∪ {b, c}).

In other words, for all A ⊆ E and b 6= c 6∈ A, the diagram above is a
pushout square in which all the arrows are surjections with cyclic kernel.
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Realizability

Fundamental example: “vector configurations” in an R-module.
Given a f.g. R-module N and a list X = x1, . . . , xn of elements of N,
we have a matroid MX associating to A ⊆ X the quotient

MX (A) = N
/(∑

x∈A
Rx

)
.

For each xi ∈ X there is a quotient map

MX (A)
/xi−→ MX (A ∪ {xi})

and this system of maps obviously satisfies the axiom.
We say that a matroid M over R is realizable if it actually comes from
such a list.
Of course not all matroids over R are realizable!
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Classical matroids are matroids over fields

We can, and will, assume that the module M(E ) has no nontrivial
projective summands, since this makes many results simpler to state.

Theorem 1 (Fink-M.)

Matroids over a field K are equivalent to matroids.

A f.g. K-module is determined by its dimension ∈ Z.

If v1, . . . , vn are vectors in Kr ,
the dimension of Kr/〈vi : i ∈ N〉 is r − rk(A), the corank of A.

Example

X = {(2, 0), (0, 3), (1,−1)} A ∅ 1 2 12 3 13 23 123
M(A) R2 R R 0 R 0 0 0

Note: The definition of matroids over K is blind to which field K is,
but for realizability the choice of K matters.
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Exemples and basic operations

In the same way, we can extract an arithmetic matroid from a matroid over
Z by setting m(A) = |M(A)t |. (However here some information is lost !)

Similarly, if R is a discrete valuation ring, we obtain a structure called
valuated matroid, which was introduced by Dress and Wenzel.

Usual matroid operation such as direct sum, deletion, contraction can be
defined in the framework of matroids over R.

Moreover, one new operation can be performed...
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Tensor product. Localizations and generic matroid

Let R → S be a map of rings. Then the tensor product —⊗R S is a
functor R-Mod→ S-Mod. If M is a matroid over R, then

(M ⊗R S)(A)
.

= M(A)⊗R S .

defines a matroid over S .
Ler R be a Dedekind Two special cases will be fundamental for us:

1 For every prime ideal m of R, let Rm be the localization of R at m.
We call M ⊗R Rm the localization of M at m.

2 If R is a domain, let Frac(R) be the fraction field of R. Then we call
M ⊗R Frac(R) the generic matroid of M.

Notice that every matroid over Rm induces a matroid over the residue field
Rm/(m).

We can study the matroid M via all these “classical” matroids.
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Local and global theory

In [Fink- M 2012], a complete combinatorial description is given for
matroids over a discrete valuation ring.
This involves surprising relations with tropical geometry, that will be
further investigated in a future paper.

Passing from the local to the global theory is trivial if R is a unique
factorization domain : in this case a family of modules is a matroid over R
if and only if it is a matroid over each localization of R.
In general, however, we show that there is some extra condition involving
the Picard group of R.

Finally we describe the Tutte-Grothendieck ring of matroids over R. This
allows to produce new invariants ; in the next slides we will present one of
them.
To do so, we have to go back to the origins of the Tutte polynomial...
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The four color problem
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Coloring polynomial and flow polynomial of a graph

Let G = (V ,E ) be a graph.
A q−coloring is a map c : V → Zq. It is proper if c(i) 6= c(j) ∀(i , j) ∈ E .
The fuction assigning to every q the number χG (q) of proper q-colorings
is a polynomial in q, called the chromatic polynomial.

Given an orientation of G , a q−flow is a map f : E → Zq such that

∀v ∈ V ,
∑

t(e)=v

f (e) =
∑

s(e)=v

f (e).

A flow is nowhere zero if f (e) 6= 0 ∀e ∈ E .
The fuction assigning to every q the number χ∗G (q) of nowhere zero
q-flows is a poynomial in q, called the flow polynomial.

If G is planar, we can build a dual graph G ∗ such that χG∗(q) = qcc(G)χ∗G ,
where cc(G ) is the number of connected components of G .
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The Tutte polynomial

Tutte’s idea : introduce a polynomial TG (x , y) that specializes to both the
chromatic and the flow polynomial :

χ(q) =(−1)|V |−cc(G)qcc(G)TG (1− q, 0)

χ∗(q) =(−1)|E |TG (0, 1− q).

Here duality exchanges the variables x and y , and TG (1, 1) is the number
of spanning trees of G .
We can associate with every G a matroid called the graphical matroid.
If G is not planar, there is no dual graph but there is still a dual matroid.
The polyomials χG (q), χ∗G (q) and TG (x , y) are in fact invariants of the
matroid (for example they are the same for graphs A4 and D4).

This can be generalized to higher dimension ([Duval-Klivans-Martin 2012,
Beck-Breuer-Godkin-Martin 2012].
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Coloring and flows of cellular complexes

Let C be a d−dimensional CW complex ; for every i = 0, 1, . . . , d we
denote by Ci the set of its i−dimensonal cells.

The top-dimensional boundary map ∂ : ZCd → ZCd−1 is represented by a
matrix with integer coefficients.

By reducing ∂ modulo q, we get a map ∂ : ZCd
q → ZCd−1

q .

A proper q-coloring of C is an element c ∈ ZCd−1
q such that all the entries

of the vector c∂ are nonzero.
A nowhere zero q-flow on C is an element f ∈ ker ∂ such that the
coordinate f (e) is nonzero for every e ∈ Cd .

Example : if d = 1, C is a graph and ∂ : ZE → ZV is the signed adjacency
matrix, so that we recover the usual definitions.
For d > 1, however, the entries of ∂ can be different from +1, 0,−1, and
the number of proper q-colorings χC (q) and the number of nowhere zero
q-flows χ∗C (q) in general are not polynomial functions, as the next
example will show.
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Coloring C ' P2
R

Let C be the 2-dimensional cellular complex with one 0-dimensional cell,
one 1-dimensional cell (attached as a loop), and one 2-dimensional cell
attached so that ∂ = [2].
Clearly G is homeomorphic to a real projective plane.
A q − coloring is the assignement to the 1-cell of a color c ∈ Zq such that
2c 6= 0. So

χG (q) =

{
q − 1 if q is odd

q − 2 if q is even

If you find bizarre this condition for a coloring, cut a Möbius strip into the
projective plane...
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projective plane...

Luca Moci A survey on arithmetic Tutte polynomials 22 / 26



Coloring Escher’s ants

...and then imagine to paint the back and the belly of each ant of
complementary colors !
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Quasi-polynomials and arithmetics

In general, we have :

Theorem (Beck-Breuer-Godkin-Martin, 2012)

The number of proper q−colorings χC (q) and the number of nowherezero
q−flows χ∗C (q) are quasi-polynomial functions of q (i.e, there exist a
subgroup mZ such that the restriction to every coset is polynomial).

Of course, there is no hope to obtain these quasi-polynomials as
specializations of the usual Tutte polynomial.
However, we will show that its place can be taken by a Tutte
quasi-poynomial, that was introduced by [Brändén- M. 2012].

In fact, the topology of C does not depend only on the linear algebra, but
also on the arithmetics of the columns of ∂, as the previous example shows.
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Tutte quasi-polynomial

Let X be a list of vectors in Zd , and for every A ⊆ X let M(A)t be the
torsion part of Zd/〈A〉.
The Tutte quasi-polyomial of X [Brändén- M. 2012] (or more generally of
a matroid over Z) is :

QX (x , y) =
∑
A⊆X

|M(A)t |
|(x − 1)(y − 1)M(A)t |

(x − 1)rkX−rkA(y − 1)|A|−rkA.

This may be seen as a quasi-polynomial interpolating between the (usual)
Tutte polyomial

TX (x , y) =
∑
A⊆X

(x − 1)rkX−rkA(y − 1)|A|−rkA

and the arithmetic Tutte polyomial of X :

MX (x , y) =
∑
A⊆X
|M(A)t |(x − 1)rkX−rkA(y − 1)|A|−rkA.
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The Tutte quasi-polyomial of X [Brändén- M. 2012] (or more generally of
a matroid over Z) is :

QX (x , y) =
∑
A⊆X

|M(A)t |
|(x − 1)(y − 1)M(A)t |

(x − 1)rkX−rkA(y − 1)|A|−rkA.

This may be seen as a quasi-polynomial interpolating between the (usual)
Tutte polyomial

TX (x , y) =
∑
A⊆X

(x − 1)rkX−rkA(y − 1)|A|−rkA

and the arithmetic Tutte polyomial of X :

MX (x , y) =
∑
A⊆X
|M(A)t |(x − 1)rkX−rkA(y − 1)|A|−rkA.

Luca Moci A survey on arithmetic Tutte polynomials 25 / 26



Tutte quasi-polynomial

Let X be a list of vectors in Zd , and for every A ⊆ X let M(A)t be the
torsion part of Zd/〈A〉.
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A higher-dimensional analogue of Tutte’s theorem

We now specialize our construction to the case when X is the list of
columns of ∂, the top-dimensional boundary matrix of a CW complex C .
Then the chromatic quasi-polynomial χC (q) and the flow quasi-polynomial
χ∗C (q) can be obtained from the Tutte quasi-polynomial :

Theorem (Delucchi-M., 2016)

χC (q) = (−1)rk ∂q|Cd−1|−rk ∂Q∂(1− q, 0)

χ∗C (q) = (−1)|Cd |−rk ∂Q∂(0, 1− q).

So the Tutte quasi-polynomial truly deserves its name !

THANK YOU !
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