Foglio di esercizi n.1

Geometria analitica

- 1. (a) Trovare un'equazione parametrica e una cartesiana della retta r di \mathbb{R}^2 passante per i punti $P_0 = (-3, 2)$ e $P_1 = (0, 8)$.
 - (b) Determinare un'equazione di una retta s ortogonale ad r e passante per $P_2 = (10, 0)$.
 - (c) Calcolare la distanza di $P_3 = (-5, -5)$ da s.
 - (d) Sia \mathcal{C} la circonferenza di centro P=(5,-5) e raggio $=\sqrt{45}$. Calcolare le intersezioni $\mathcal{C} \cap r$ e $\mathcal{C} \cap s$.
- 2. (a) Determinare una rappresentazione parametrica e una cartesiana della retta r di \mathbb{R}^3 passante per i punti $P_0 = (3,3,3)$ e $P_1 = (-1,0,-1)$.
 - (b) Determinare l'equazione cartesiana del piano π ortogonale ad r e passante per $P_2 = (1, 2, -3)$.
 - (c) Calcolare la distanza di $P_3 = (3, 5, 3)$ da π .
 - (d) Detta Q l'intersezione fra r e π calcolare il prodotto scalare ed il prodotto vettoriale fra i vettori $\vec{QP_0}$ e $\vec{QP_2}$.
- 3. (a) Sia $Q_0 = (2, 3, -1) \in \mathbb{R}^3$ e sia r la retta

$$r: \begin{cases} x - 2z = 0 \\ y - z - 6 = 0 \end{cases}$$

Scrivere delle equazioni parametriche per la retta r e determinare la distanza di Q_0 da r.

- (b) Determinare le equazioni di una retta s parallela ad r e passante per il punto $Q_1 = (9, 3, 3)$.
- (c) Determinare l'equazione di una retta perpendicolare a r e passante per l'origine. Tale retta è unica?