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Abstract In this paper we study a subspace of the space of Legendrian loops and

we show that the injection of this space into the full loop space is an S1-equivariant

homotopy equivalence. This space can be also seen as the space of zero Maslov index

Legendrian loops and it shows up as a suitable space of variations in contact form

geometry.

1 Introduction

Let M be a 3-dimensional smooth closed (compact, ∂M = ∅) and orientable
manifold, and let α be a 1-form on it. The couple (M,α) is said to be a contact
manifold if the form α ∧ dα is a volume form on M . A curve x ∈ H1(S1,M) is
said to be legendrian if its tangent vector is in the kernel of α, that is α(ẋ) = 0.
Hence we let Lα denote the space of legendrian closed curves on M . This space
is a subset of the free loop space of M denoted by Λ(S1,M). Now we recall a
result of Smale [11]:

Theorem (Smale). Let (M,α) be a contact manifold, then the injection

j : Lα ↪→ Λ(S1,M)

is an S1-equivariant homotopy equivalence.

In this paper we are going to prove a theorem that can be seen as related to
the above theorem: the framework will be slightly different and the space Lα
will be replaced by a smaller space Cβ , that appears to be convenient in some
variational problems in contact form geometry (see for instance [2],[3] and [5]).
We will introduce the following assumption:

(A) there exists a smooth vector field v ∈ ker(α) such that the dual
1-form β = dα(v, ·) is a contact form with the same orientation than α.
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Under (A), we renormalize v onto λv so that α ∧ dα = β ∧ dβ.
By Smale’s theorem, we know that the injection Lβ in Λ(S1,M) is an S1-
equivariant homotopy equivalence. We are interested in a space that is smaller
than Lβ and it is defined in the following way:
Let

Cβ = {x ∈ Lβ ;αx(ẋ) = c > 0}
where c is a constant that varies with the curve x.
The space Cβ is very useful in contact geometry and it is of independent interest
in differential topology. For example, let us take the framework of (S3, α0), the
standard contact form on S3, and let

v = −x4∂x1 − x3∂x2 + x2∂x3 + x1∂x4

be a Hopf fibration vector field in kerα0. The space Cβ can be identified as
the lift to S3 (according to some rules, see [2]) of the space Imm0(S1, S2) of
immersed curves from S1 into S2 of Maslov index zero. Smale’s theorem [11]
asserts then that the injection Cβ ↪→ Λ(S1, S3) is an S1-equivariant homotopy
equivalence.
In this paper, we extend this result to a more general framework of (M,α) un-
der (A) and an additional assumption that we introduce below. We need, in
order to state this second assumption, to introduce the one-parameter group
generated by v that we will denote by ϕs.
From [2] and [5] we know that the kernel of a contact form rotates monotonically
in a frame transported by ϕs along v. Based on this fact we give the following
definition.

Definition 1.1. We say that kerα turns well along v, if starting from any x0
in M , the rotation of kerα along the v-orbit in a transported frame exceeds π.1

Our second assumption is therefore:

(B) kerα turns well along v

In this paper, we will prove the following

Theorem 1.2. Let (M,α) be a contact closed manifold. Then under the as-
sumptions (A) and (B), the injection

Cβ ↪→ Λ(S1,M)

is an S1-equivariant homotopy equivalence.

Let us recall first some properties that we will be using later. Given the contact
form α, we will let ξ be its Reeb vector field. Namely, ξ is the unique vector
satisfying

α(ξ) = 1, dα(ξ, ·) = 0

Therefore the following holds (see [2]):

1It is in fact then infinite
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Lemma 1.3 ([2]). Under the assumption (A), let w be the Reeb vector field of
the 1-form β, then there exist two functions τ and µ such that:

[ξ, [ξ, v]] = −τv, w = −[ξ, v] + µξ

where µ = dα(v, [v, [ξ, v]]).

Notice also that with the previous notation, the following holds:

ẋ = aξ + bv, ∀x ∈ Lβ

Moreover if x is in Cβ then a is a positive constant. One can show (see [2]) that
Cβ \M has a Hilbert manifold structure. For x ∈ Cβ , the tangent space at the
curve x is given by the set of vector fields

Z = λξ + µv + ηw

with the coefficients λ, µ and η satisfying the following equations:
˙λ+ µη = bη −

∫ 1

0
bη,

η̇ = µa− λb
(1)

where λ, µ and η are 1-periodic.
The proof of the main theorem requires several steps. We apply first Smale’s
theorem to conclude that the injection Lβ ↪→ Λ(S1,M) is a homotopy equiva-
lence. Next, we introduce an intermediate space C+β defined by

C+β = {x ∈ Lβ ;α(ẋ) ≥ 0} ,

and we show that we can deform Lβ to C+β . This deformation is not continuous
because “Dirac masses” (see below) along v are created through this transfor-
mation. We will “solve the Dirac masses”, showing how they are created along
a smooth deformation in Lβ .
In a next and last step we “push” the curves of C+β into Cβ . This will be com-
pleted by constructing a flow that brings curves with a ≥ 0 to curves with a > 0.

Before going into more details, let us discuss the assumptions and let us give
some examples of contact structures for which they hold.
Assumption (A) holds for a number of contact structures with suitable vector
fields v in their kernel. For instance the standard contact form on S3

α0 = x2dx1 − x1dx2 + x4dx3 − x3dx4

and also the family of contact structures on T 3 given by

αn = cos(2nπz)dx+ sin(2nπz)dy
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All the contact forms in the previous examples are tight, but there are also over-
twisted contact forms satisfying (A). This is the case of the first non-standard
1-form on S3, given by Gonzalo-Varela in [9]:

α1 = −(cos(
π

4
+π(x23+x24))(x2dx1−x1dx2)+sin(

π

4
+π(x23+x24))(x4dx3−x3dx4))

where an (explicit) existence of a suitable v satisfying (A) is proved in [10].

The assumption (B) holds also for the previous mentioned examples; moreover
this assumption has a deeper meaning. In fact, it was proved in the work of
Gonzalo [8], that (B) holds if and only if α extends to a contact circle, namely
there exists another contact form α2 transverse to α with intersection the line
spanned by v, such that

cos(s)α+ sin(s)α2

is a contact form for every s ∈ R.
Let us observe that α1 defined above represents the first example of an over-
twisted contact circle on a compact manifold. In fact, see [7] for a question of
Geigs and Gonzalo, where they give an example of an overtwisted contact circle
on R3 and they observe that they don’t know an explicit example of overtwisted
contact circle on a compact closed manifold. α1 with the v found in [10] is such
an example.
Using this criteria one can give some conditions under which (B) holds:

Lemma 1.4. Assume that (A) holds, then (B) holds if one of the following
conditions is satisfied:

(i) |µ| < 2

(ii) there exists a map u on M such that µ = uv

Moreover, if µ = 0 then α is tight.

Proof. We use the characterization stated above for contact circles.
Let s be a real number, and consider the 1-form

αs = cos(s)α+ sin(s)β;

then

αs ∧ dαs = cos2(s)α ∧ dα+ sin2(s)β ∧ dβ + cos(s) sin(s)(α ∧ dβ + β ∧ dα)

Notice now, (see [2]), that α ∧ dβ(ξ, v, w) = −µ, thus we have

αs ∧ dαs(ξ, v, w) = 1− sin(2s)

2
µ

and the conclusion follows for (i).
For (ii) we consider

αs = cos(s)α+ sin(s)euβ
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and the same computation yields

αs∧dαs = cos2(s)α∧dα+e2u sin2(s)β∧dβ+sin(s) cos(s)eu(α∧dβ+α∧du∧β)

Evaluating at (ξ, v, [ξ, v]) we get:

αs ∧ dαs = cos2(s) + e2u sin2(s) + eu sin(s) cos(s)(uv − µ)

therefore (ii) follows.
Now notice that if µ = 0 then we have what it is called a taut contact circle (in
fact we have a Cartan structure), therefore based on the result of Geigs-Gonzalo
[7], we have that α and β are tight.
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discussions and advices that led to the results of this paper.
Moreover part of this paper was completed during the year that the second
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wishes to express his gratitude for the hospitality and he is grateful to the
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2 Regularization

Since we are considering curves in Lβ that we want to lift to Cβ , the first dif-
ficulty that we will face are the degenerate curves, namely curves that are not
generic in the sense that the components of the tangent vectors can have bad
behavior. Therefore, in this section we want to regularize the curves starting
from a compact set of Lβ . This regularization will be done by the use of a flow
on the curves that induces a heat flow on the components of the tangent vector
making them smooth and having isolated zeros.
The flow will be constructed on the tangent as a heat flow, but there is no
guaranty that the flow is indeed a flow on curves. For that we will first approx-
imate the deformation vector with a smooth one for which we know the local
existence. Then we will show that when our approximation tends to the original
flow, the maximal time of existence is bounded from below independently of the
approximation. These statements will be made precise and clear in what follows.

Here we want to construct a flow on Lβ that deforms compact sets of curves y of
Lβ into curves x with ẋ = aξ + bv, where a and b are smooth and have zeros of
finite order. This will be used in our proof below. In fact what is needed is just
the fact that a has zeros of finite order but here we will prove the stronger result
involving the preservation of the number of zeros of b along the deformation.
A first idea is to consider the flow defined by the vector field

Z = (ȧ+ f)ξ + (ḃ+ g)v + η[ξ, v]

where η = η(a, b) satisfies the following differential equation:

η̇ = µbη + ḃa− ȧb+ ga− fb.
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The vector field Z constructed in this way will generate a diffusion flow on a
and b as follow: 

∂a

∂s
= ä+ ḟ − bη

∂b

∂s
= b̈+ ġ + η(aτ − µξb)

(2)

To ensure the periodicity of η, we set f = −κb and g = κa with κ = κ(a, b)
satisfying∫ 1

0

e−
∫ r
0
b(u,s)µ(u)du(aḃ− ȧb)(r, s)dr+κ

∫ 1

0

e−
∫ r
0
b(u,s)µ(u)du(a2 + b2)(r, s)dr = 0

The problem with this first attempt is that the previous system depends on the
curve and we do not know so far how this vector Z acts on the curve and if it
defines indeed a flow on Lβ . We will follow the same technique as in [5], to prove
that indeed we have a flow on the curves that gives rise to the system defined
above. Hence a first step consists of regularizing a and b by using a mollifier
φε and we use the classical Cauchy-Lipschitz theorem for the flow defined by
the approximated vector field Zε. The second part consists of showing the
convergence to the aimed system as ε converges to zero.

2.1 Approximated Flow

We consider the regularizing operator φε : H1(S1) −→ H2(S1) such that for
f ∈ H1(S1), φε(f) satisfies the following equation:

− εφ̈ε(f) + φε(f) = f. (3)

Notice that in terms of Fourier coefficients this corresponds to divide by 1+εk2.

2.1.1 Preliminary estimates

We have the following estimates for the operator φε.

Lemma 2.1. Let f ∈ H1(S1), then there exists C > 0 such that

(i) ‖φε(f)‖H1 ≤ C‖f‖H1

(ii) ‖φ̇ε(f)‖2H1 ≤ C
ε ‖f‖

2
H1

(iii) ‖φε(f)− f‖2L2 ≤ Cε‖f‖2H1

Proof. (i) As it was defined φε(f) satisfies

−εφ̈ε(f) + φε(f) = f
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So if we multiply the previous equation by φε(f) we have

‖φε(f)‖2L2 ≤ ‖f‖L2‖φε(f)‖L2 − ε‖φ̇ε(f)‖2L2

hence the inequality follows for the L2 norm, and by linearity we have the same
inequality for ḟ .
(ii) With the same idea, we find

ε‖φ̇ε(f)‖2L2 ≤ C‖f‖2L2

Therefore the estimate follows by linearity.
(iii) From (3) we have that∫ 1

0

|f − φε(f)|2 = ε‖φ̇ε(f)‖2L2 − ε‖ḟ‖L2‖φ̇ε(f)‖L2

Using (i) we have
‖f − φε(f)‖2L2 ≤ 2ε‖ḟ‖2L2 .

We consider now the operator Lε defined by

Lε(f)(s, t) =
∑

e
−s k2

εk2+1 eiktfk,

where f =
∑
fke

ikt. This operator satisfies for g = Lε(f),
∂g

∂s
− φ̈ε(g) = 0

g(0, t) = f(t)

Notice that L0 corresponds to the inverse of the homogeneous heat operator.

Lemma 2.2. The operator Lε converges to L0 in the operator norm from
H1(S1) to L∞(0,∞, H1(S1)).

Proof. Let f ∈ H1(S1), then

‖(Lε − L0)f‖2H1 =
∑

(1 + k2)|fk|2|e
−s k2

εk2+1 − e−sk
2

|2

≤ Cε2‖f‖2H1

where C is independent of s and ε. Hence ‖Lε − L0‖L∞(0,∞,H1) converges to
zero as ε tends to zero with a rate of at least ε.

A similar lemma holds for the operator L̃ε corresponding to the general solution
of: 

∂g

∂s
− φ̈ε(g) = f

g(0, t) = 0
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Lemma 2.3. Let f ∈ L∞(0, ε,H l(S1)), then g = L̃ε(f) ∈ L∞(0, ε,H l(S1).
Moreover, there exists C independent of ε, such that

‖L̃ε(f)‖2Hl(s) ≤ C
∫ s

0

(
‖f‖2Hl−1(r) + ε‖f‖2Hl(r)

)
dr

for all l ≥ 1.

Proof. We consider the Fourier expansion of f =
∑
k fk(s)eikt, then for u =

L̃ε(f) we have that

uk(s) =

∫ s

0

e
− k2

1+εk2 (s−r)
fk(r)dr

Thus

|u2k| ≤
1 + εk2

k2

∫ s

0

|fk|2(r)dr

Therefore

‖u‖2Hl ≤ C
∫ s

0

‖f‖2Hl−1(r) + ε‖f‖2Hl(r)dr

2.1.2 Estimates along the flow

We consider now the component

η(x, a, b) = e
∫ t
0
b(u,s)µ(u)du

(∫ t

0

e−
∫ r
0
b(u,s)µ(u)du((aḃ− ȧb) + κ(a2 + b2)(r, s)dr

)
where

κ(x, a, b) = −
∫ 1

0
e−

∫ r
0
b(u,s)µ(u)du(aḃ− ȧb)(r, s)dr∫ 1

0
e−

∫ r
0
b(u,s)µ(u)du(a2 + b2)(r, s)dr

.

The constant κ is computed so that η is 1-periodic. Notice that we use (x, a, b)
instead of (x, ẋ) since we are interested more in the coefficients a and b.
Similarly, we take λ(x, a, b) = ȧ− κb and µ(x, a, b) = ḃ+ κa.
We define now

ηε(x, a, b) = η(x, φε(a), φε(b)), λε(x, a, b) = λ(x, φε(a), φε(b))

µε(x, a, b) = µ(x, φε(a), φε(b)), κε(x, a, b) = κ(x, φε(a), φε(b))

The vector field
Zε = λεξ + µεv + ηε[ξ, v]

is then locally Lipschitz and hence the flow
∂x

∂s
= Zε(x) = λεξ + µεv + ηε[ξ, v]

x(0) = x0

(4)
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has a unique solution that exists in [0, s0(ε)), by the standard Cauchy-Lipschitz
theorem. It is important to notice that this flow will not stay in Lβ , in fact it
will be defined in a neighborhood of x0 in H2(S1,M). But hopefully, when ε
converges to zero the limiting flow will be in Lβ .
We want to have good estimates on the coefficients a and b as ε converges to
zero.
Using these notations we have that under the flow generated by Zε (see [5]):

∂a

∂s
= λ̇ε − bηε + cµε

∂b

∂s
= µ̇ε + (τa− µξb)ηε + c(τλε − µξµε)

∂c

∂s
= η̇ε − µbηε − µεa+ λεb− µµεc

a(0) = a0, b(0) = b0, c(0) = 0.

(5)

where c is the component of ẋ along [ξ, v]. Existence is not found directly from
the system itself, but instead it follows from the one in (4), since this is the
evolution of the components of the tangent vector to the curve evolving under
the flow generated by Zε. These functions µ, τ , are given as functions of s. That
is µ(x(s)) and τ(x(s)), where x(s) is the solution of (4). We then reformulate
the previous system as a fixed point problem. We will then derive appropriate
estimates on (5) that will allow us to establish existence of the limiting flow as
ε→ 0.
For this purpose, we consider the operator Fε defined by :

Fε(x, ẋ) =

 −κεφ̇ε(b)− bηε + cµε
κεφ̇ε(a) + ηε(aτ − µξb) + c(τλε − µξµε)

η̇ε − µbηε − µεa+ λεb− µµεc


This evolution equation follows from the proposition in Appendix.
Now we define the space Bε, for ε > 0, as follows:

Bε = {x(s, t) ∈ L∞(0, ε,H2(S1)); ẋ(s, t) ∈ L∞(0, ε,H1(S1))}.

So Fε sends Bε to itself. Also, we can define the operator Tε by

Tε(x, ẋ) = Lε

 a0
b0
0

+

 L̃ε(−κεφ̇ε(b)− bηε + cεµε)

L̃ε(κεφ̇ε(a) + ηε(aτ − µξb) + cε(τλε − µξµε))∫ s
0
e
∫ r
s
(µµε)dr(η̇ε − µbηε − µεa+ λεb)ds


So that the fixed point of Tε corresponds to the solution of the system (5). In
fact we have

∂

∂t
Tε(x, ẋ) = φ̈ε(Lε

 a0
b0
0

)+

 φ̈ε(L̃ε(−κεφ̇ε(b)− bηε + cεµε))

φ̈ε(L̃ε(κεφ̇ε(a) + ηε(aτ − µξb) + cε(τλεµξµε)))
0

+
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+

 −κεφ̇ε(b)− bηε + cεµε
κεφ̇ε(a) + ηε(aτ − µξb) + cε(τλε − µξµε)

η̇ε − µbηε − µεa+ λεb− µµεc

 .
In what follow we will use ‖f‖ instead of ‖f(x(·))‖ for the functions depending
on the curve (such as τ , µ, etc.).

Lemma 2.4. Let x ∈ Bε such that ‖ẋ‖L2 ≥ δ > 0, then there exist three positive
constants C1, C2 and C3 independent of ε and possibly depending on δ, such
that

‖Tε(x, ẋ)‖H1(s) ≤ ‖ẋ0‖H1 + eC3

∫ s
0
‖ẋ‖H1

∫ s

0

(C1 + C2

√
ε)eC3‖ẋ‖H1 (r)dr

Proof. We first need an estimate on λε, µε and ηε. In order to do that, an
estimate on the variable κε is necessary.
By the very definition of κ we get

|κε| ≤ C
(‖a‖H1 + ‖b‖H1)2e2‖b‖H1‖µ‖L∞

‖a‖2L2 + ‖b‖2L2

Using the previous estimate and Lemma (2.1.), we have

‖λε(x, ẋ)‖H1 ≤ 1√
ε
‖a‖H1 +

(‖a‖H1 + ‖b‖H1)2e2‖b‖H1‖µ‖L∞

‖a‖2L2 + ‖b‖2L2

‖b‖H1

A similar estimate holds for µε, that is

‖µε(x, ẋ)‖H1 ≤ 1√
ε
‖b‖H1 +

(‖a‖H1 + ‖b‖H1)2e2‖b‖H1‖µ‖L∞

‖a‖2L2 + ‖b‖2L2

‖a‖H1

The estimate for ηε is a little bit different

‖ηε‖H2 ≤ C(‖b‖H1(‖b‖H1+‖a‖H1+‖c‖H1+1)e2‖b‖H1‖µ‖L∞
(1

ε
(‖a‖H1+‖b‖H1)2+

‖a‖H1 + ‖b‖H1

‖a‖L2 + ‖b‖L2

)
And by taking again another derivative we have the desired estimate. In fact
we have

‖η̇ε‖L2 ≤ Ce‖b‖H1‖µ‖L∞ (‖µ‖L∞‖b‖L2+e‖b‖H1‖µ‖L∞ (‖a‖2H1+‖b‖2H1+|κε|(‖a‖2L2+‖b‖2L2))

Now

‖ − κεφ̇ε(b)− bηε + cµε‖H1 ≤ C
( 1√

ε
|κε‖|b‖H1 + ‖b‖H1‖ηε‖H1 + ‖c‖H1‖µε‖H1

)
Also

‖κεφ̇ε(a) + η(aτ − µξb) + cε(τλε − µξµε)‖H1 ≤ C
( 1√

ε
|κε|‖a‖H1+
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+‖ẋ‖L2‖ηε‖H1(‖a‖H1 + ‖b‖H1) + ‖ẋ‖L2‖c‖H1(‖µε‖H1 + ‖λε‖H1)
)

It is crucial to notice that ηε satisfies

η̇ε = µηε + φε(a)µε − λεφε(b)

Therefore we have

‖η̇ε−µbηε−µεa+λεb‖H1 = ‖µηε(φε(b)− b) +µε(φε(a)− a) +λε(b−φε(b))‖H1

≤ ‖µ‖H1‖ηε‖H1‖φε(b)− b‖L2 + ‖µ‖L2‖ηε‖L2‖b‖H1+

+‖µε‖L2‖a‖H1 + ‖µε‖H1‖a− φε(a)‖L2+

+‖λε‖H1‖b− φε(b)‖L2 + ‖λε‖L2‖b‖H1

Using Lemma (2.1.) we have

‖η̇ε−µbηε−µεa+λεb‖H1 ≤ C
(√
ε(‖µ‖H1‖ηε‖H1‖b‖H1+‖µε‖H1‖a‖H1+‖λε‖H1‖b‖H1)+

+(‖µ‖L∞‖ηε‖L2‖b‖H1 + ‖µε‖L2‖a‖H1 + ‖λε‖L2‖b‖H1)
)

Now for the L2 norm we have

‖η̇ε−µbηε−µεa+λεb‖L2 ≤ C
(√
ε(‖µ‖H1‖ηε‖H1

‖b‖H1+‖µε‖H1‖a‖H1+‖λε‖H1‖b‖H1)
)

Let us set
Y = η̇ε − µbηε − µεa+ λεb, A = −µµε

So if we write a curve x ∈ H2(S1,M) as

ẋ = aξ + bv + c[ξ, v]

then c satisfies
∂

∂s
c = Ac+ Y

From this equality we have

∂

∂s
‖c‖L2 ≤ C‖A‖L2‖c‖L2 + ‖Y ‖L2

thus

‖c‖L2 ≤ C
∫ s

0

e
∫ s
r
‖A‖L2dr‖Y ‖L2

≤ C
√
εe

∫ s
0
‖ẋ‖H1

∫ s

0

‖ẋ‖3H1ds

In a similar manner we have

∂

∂s
(‖ċ‖L2) ≤ C‖A‖L2‖ċ‖L2 + ‖A‖H1‖c‖L2 + ‖Y ‖H1
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Thus

‖ċ‖L2 ≤ CeC
∫ s
0
‖ẋ‖H1

∫ s

0

‖ẋ‖4H1ds

Hence

‖c‖H1 ≤ C1e
C

∫ s
0
‖ẋ‖H1

∫ s

0

(1 + ‖ẋ‖4H1)ds

And the conclusion of the lemma follows from the estimate that we got on the
operator L̃ε in Lemma 2.3.

We set s0(ε) the existence time of the solution of system (5). Then we have the
following

Theorem 2.5. There exists ε0 > 0, and σ > 0 such that for every ε < ε0,
s0(ε) > σ.

The proof follows from a Gronwall type inequality. Let us first, state and prove
the general inequality:

Lemma 2.6. Let yε be a family of non-negative C1 functions such that

yε ≤ Cεf
(∫ s

0

yε(r)dr
)

for an increasing and positive function f . Then the blow-up time of yε depends
only on Cε. More precisely, if Cε is bounded then the blow-up time is bounded
away from zero.

Proof. For the sake of simplicity we will remove the index ε for now. Let us set
U =

∫ s
0
y, then one have

U ′ ≤ Cf(U)

Hence if we set G to be the anti-derivative of 1
f , then we get

G(U(s))−G(U(0)) ≤ Cs.

Therefore,
U(s) ≤ G−1(Cs+G(0)),

thus
y ≤ Cf(G−1(Cs+G(0))).

And result of the lemma follows.

Proof. (of Theorem) We have that the solution xε (or more precisely ẋε) is a
fixed point of Tε. From the previous lemma we have

‖ẋε‖H1(s) ≤ ‖ẋ0‖H1 + eC3

∫ s
0
‖ẋ‖H1 (C1 +

√
εC2)

∫ s

0

eC3‖ẋ‖H1 (r)dr

12



Hence if we set if we set y = ‖ẋ‖H1 , then we have

y ≤ ‖ẋ0‖H1 + eC3

∫ s
0
y(C1 +

√
εC2)

∫ s

0

eC3y

Now by using the Jensen inequality for the convex function u 7−→ eC3u and
assuming that s ≤ 1 we have

y ≤ ‖ẋ0‖H1 + (C1 +
√
εC2)

( ∫ s

0

eC3y
)2

Setting H = eC3y we get

H ≤ e‖ẋ0‖H1+(C1+
√
εC2)(

∫ s
0
H)2

so we can apply the previous lemma for H and f(t) = e||ẋ0||H1+(C1+
√
εC2)t

2

.
Since the constants never blow-up in our case, we have the result of the theorem,
that is the blow-up time for H and hence for ‖ẋ‖H1 is bounded from below
independently on ε.

2.2 Convergence

Now to see the convergence of the solution as ε tends to zero, we need the
following

Lemma 2.7. If xε is the solution of the flow defined above, then:

(i) cε converges to zero in L2

(ii) aε and bε converge strongly in L2 to a solution of the flow (2).

Proof. (i) Notice that

cε(s) =

∫ s

0

e
∫ r
s
(µµε)dr(µηε(φε(bε)− bε) + µε(φε(aε)− aε) + λε(bε− φε(bε))(r)dr.

Since we have boundedness in the H1 sense for s ∈ [0, s0] we can extract a
convergent subsequence in all the Lp; this, combined with the boundedness of
ηε, µε and λε, gives us the convergence to zero in L2.
(ii) Let us go back to the fixed point formulation,

ẋε = Tε(ẋε)

that is
aε = Lε(a0) + L̃ε(−κεφ̇ε(bε)− bεηε + cεµε)

The term cεµε converges strongly to zero in L2. Also we have convergence of
the term bεηε to bη and κε to κ. This tells us that L̃ε(φ̇ε(bε)) converges in L2.

13



So one can check that the limit is L̃0(ȧ). The same holds for bε, hence we can
send ε to 0 to get a limiting system of the form:

∂a

∂s
= ä− κḃ− bη

∂b

∂s
= b̈+ κȧ+ η(aτ − µξb)

Therefore we proved that the system induces indeed a flow on the curves of Lβ
and it has a regularizing effect on a and b caused by the diffusion operator and
this leads to the main result of this section.

3 From Lβ to C+
β

In this section we will lift curves having isolated zeros of a from a compact set
of curves in Lβ to the space C+β . This is where the assumption (B) is crucial.
Since flowing along v will always transport vectors with negative ξ components
to vectors with positive component. But first we want to give a rigorous defini-
tion on the transport along a curve in Lβ by extending its tangent vector in a
small neighborhood. The lifting process is not continuous, in fact, we will show
that this procedure will lead to the formation of some “singularities” that will
be removed later.

3.1 Extending the tangent vector ẋ of a curve x in Lβ

First we describe here a way of extending the tangent vector ẋ to a curve x in
Lβ which we take with the H2-topology, to a neighborhood of it, near a point
x(t) where ẋ(t) is non zero. This becomes a vector field in that neighborhood
allowing us to define a transport map along the curve. We consider a curve
x ∈ Lβ . Let S a disc at x(0) (we are assuming that ẋ(0) is non zero) transverse
to the curve and tangent to [ξ, v] at x(0)(see figure 1 below). Now for any
y0 ∈ S, we consider the solution of the dynamical system

y′(t) = a(t)ξ(y(t)) + b(t)v(y(t))

with y(0) = y0. Since a and b are in H1, by the continuous dependence on the
initial conditions, there exists a small neighborhood of x such that every point
of it lies on exactly one of those orbits for a suitable y0 and hence we associate
to it the tangent to the orbit at that point, and this gives an extension of ẋ.

14



x
0

a(t)ξ(y(t))+b(t)v(y(t))a(t)ξ(x(t))+b(t)v(x(t))

Figure 1: Extension of the tangent vector

It is important to notice that in fact this construction does not really give a
vector field if the curve is not embedded. If the curve self-intersects then there
could be a problem, but notice that the transport map is well defined by use of
the dynamical system above.

3.2 First deformation and formation of Dirac masses

Let us consider a compact set of curves in Lβ , which we can view as given by a
map

f : Sl 7→ Lβ
for some l ∈ N. We claim (see section 2 ) that after a small C1-perturbation,
we may assume that all curves in K = f(Sl) have ẋ = aξ + bv, with a and b
having a finite number of zeros. We will use this result only for the case when
a has a finite number of zeros.
Hence curves in the class K can be seen as pieces of curves with a > 0 and pieces
with a < 0. In order to start our argument, we consider the case when the the
curve has only two distinct zeros at t0 and t1. The argument will be extended
later using a filtration adapted to the number of zeros of a. The filtration will
include degenerate zeros of various orders.
Let us consider a curve x(t) under the assumptions described above and assume
that a is negative in (t0, t1). We will lift in the sequel the pieces with a < 0 by
using the transport map ϕt. Let us now describe this procedure.
Let t2 = t0+t1

2 . Then, since a(t2) 6= 0, we can define

s0 = inf{s > 0;Dϕs(ẋ(t2)) = γξ, γ > 0}.

Therefore if we consider the function

g(s, t) = ϕ∗sβx(t)(ẋ(t))

15



then one has
g(s0, t2) = 0

and
∂sg(s, t) = ϕ∗s (Lvβ) (ẋ(t))

= dβϕs(x(t))(v,Dϕs(ẋ(t))).

Hence, at (s0, t2), we get

∂sg(s0, t2)) = −α(v, [v, γξ]) = −γ < 0.

Thus, by mean of the implicit function theorem, we can define the piece of curve
y(t) = ϕs(t)(x(t)), for t ∈ (t0, t1). Notice that

ẏ(t) = Dϕs(t)(ẋ(t)) + ṡ(t)v = γξ + ṡ(t)v.

If we now close the curve by pieces of v, we transform our original curve x to
a curve x̃ in Lβ having pieces with a > 0, pieces with a = 0 and some isolated
zeros of a (see figure 2).

x(t
0
)

x(t
1
)

a<0

v
a>0

Figure 2: Lifting the negative parts
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Notice that we can transform this process into a gradual process that will not
take place in Lβ , that is, taking the map f : Sl 7−→ Lβ we construct a homotopy
U : [0, 1] × Sl 7−→ Λ(M) such that U(0, ·) = f(·) and U(1, ·) is valued in C+β .

Since the injection of Lβ ↪→ Λ(M) is a homotopy equivalence and since C+β
injects into Λ(M), this will lead us, after we resolve the issue of the “Dirac
masses”, to the fact that C+β ↪→ Λ(M) is an S1-homotopy equivalence. In fact,

by using the previous construction we see that the new curve that we get in C+β
reads as y(t) = ϕs(t)(x(t)), thus the homotopy that one might consider would
be H(t, l) := ϕls(t)(x(t)) (see figure 3).

x(t
0
)

x(t
1
)

a<0

v
a>0

Figure 3: The lifting as a deformation

Now thinking of the base curve, the zeros t0 and t1 of a can come to each other,
collide and cancel as x varies in Sl and f(x) varies in K = f(Sl). Tracking
our construction over this deformation we see how a Dirac Mass, that is a back
and forth run along v, can be created as two zeros of a come to each other and
collapse (see figure 4).
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a>0

a>0

Shrinking Formation of 
a Dirac

Figure 4: Formation of a “Dirac Mass”

More complicated phenomena take place as we resolve the case of collapse of
zeros of a with higher multiplicity, also as x varies in Sl. Let us understand first
the collapse of two zeros.

3.3 Simple Dirac mass

Here we consider a curve x, such that ẋ = aξ+bv where a is positive everywhere
except at a point x(t0) where there is a back and forth v jump of length l.
Consider the family y(t, s) for s ∈ [0, 1], that coincides with the curve x and at
x(t0), y(t, s) has a back and forth v jump of length sl. By using a lemma in
[2], we recognize a process with which the Dirac mass can be gradually removed
(see figure 5).
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Curve with a 
Dirac of size l

Curve without 
the Dirac

Figure 5: Cancellation of a Dirac mass

3.4 Cancellation Process

Here, let us consider a curve close to x, in the case it supports a “nearly” Dirac
mass, namely the former back and forth run along v is now “opened” by a little
bit: a small curve of length ε, where ẋ = aξ+bv and a > 0 is inserted in between
the forth and back run along v.
To remove this nearly Dirac mass, with a process that coincides with the one
in the previous subsection as ε goes to zero, we construct a deformation vector
Z = λξ + µv + η[ξ, v] along the curve. This is done by first taking −v at B,
in fact, if we want it to be adapted to the length of the size of the Dirac mass,
then we should take −lv instead at B, where l is the length of the v jump. We
will disregard this fact for now. So, after taking −v at B, we transport it along
−ẋ (ẋ is close to ξ on the “opening” so that the extension described above is
possible) till we reach A. Eventually, we will have a non-zero [ξ; v] component
for the transported vector at A. We then transport, by using the transport map
of v, our vector from A to C and we adjust the v-length of this v-jump, adding
or subtracting a δsv, so that the v component of the transported vector at C
is zero. At C, we know that a = 0 and this is inconvenient. Therefore, we
transport it a bit further to a point p where a, |b| > c > 0,(see figure 6).
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-v

ξ

[ξ,v] ϵA B

DCp

a>0

Figure 6: Nearly Dirac mass

The requirement that |b| > c at p is not needed, but will be used to prove a
stronger result of deformation, along which the number of zeros of b does not
increase over the deformation. It can be dropped for the proof of Theorem 1.
We need now to compensate the vector that we got at p and to derive precise
estimates on a and b as they are deformed to adjust the variation of the curve
induced by the tangent vector described above.
The main idea of the compensation is first to span the kernel of α at p. This
will be done by using a combination of two process involving the introduction
of a small perturbation to the curve.
The first process is meant to generate a v component at a given point on the
curve. Namely, given a point x1 on a curve x of Cβ (in fact we only need that
the point x1 is located in a portion of the curve with a > 0) we can construct a
small variation of the curve near x1 so that we get a vector almost equal to v at
that point. In fact, this can be described as changing b to λb, in a small interval
before x1, with λ > 1 to generate v and λ < 1 to generate −v (see figure 7).
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p
0

p

v

-v

Figure 7: Perturbation of b to create v

The second step consists on generating a [ξ, v] component at a given point of
a curve x in Cβ . This will be done by transporting v (and this is where the
combination comes in) along ẋ to the point x2 where we want to get the [ξ, v]
component (see figure 8); of course we will have other components at that point
but we will show that they have a minor contribution.

v

Figure 8: Creation of a [ξ, v] component

We will show that a combination of these two steps, after a careful choice of
the points in the curve for inserting them, indeed span the kernel of α (after
a projection parallel to ẋ) at the desired point. The last step then consists
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of removing the undesired components along ξ. This will be done by using
the transport map along the curve as described in paragraph 3.1, as we will
transport the vector aξ + bv along itself, and by adjusting the length, we can
cancel the additional component to find a resultant vector in kernel of α.
All the previous construction will be made precise as it depends tightly on the
choice of the points and on the portions of the curve on which the deformation
be built (see figure 9).

λb, λ>1 v+o(δ)

p
1

V
1

V
2

p
2

p
δ δ' p

Figure 9: Combination of the processes

We will find a vector Z = λξ + µv + η[ξ, v] which is locally Lipschitz in the
H2 topology in a neighborhood of the curve x (that is the topology of Lβ). It
is important to follow the full construction: we start from a compact set K in
Lβ endowed with the H2 topology and we deform it, by using the regularizing

flow in section 2, to a compact set K̃ of smooth curves. This construction that
follows is done on curves in K̃, and it is done curve by curve. It will be made
continuous by using a partition of unity adapted to a covering of K̃ in the H2

topology: these details are in the Appendix.
Let us start now by detailing the construction that will be carried on four steps
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as mentioned above.
Let us consider the following system of differential equations:

λ̇ = bη

µ̇ = (bµξ − aτ)η + hδ

η̇ = bµη + µa− λb

(6)

The first equation of this system tells us that a = α(ẏ) remains constant along
the variation. The second equation provides us the variation of b. The third
equation tells us that the curve stays in the space Lβ . In fact the second equation
corresponds to the introduction of a small variation of b using the function hδ
that will be chosen depending on the situation, also the initial conditions will
vary with the different cases of hδ that we will consider.

3.4.1 Case hδ 6= 0

We will give here the details on how to generate the vector v at a point as it
was mentioned above.
In what follows for every δ > 0, hδ denote a positive function, with compact
support in (0, δ) such that hδ = 1 in the interval [ δ4 ,

3δ
4 ]. We will first describe

the process that will be used starting from any point x0 in the curve, and then
insert them at specific points to get the construction described above.
Consider the following system:

λ̇ = bη

µ̇ = (bµξ − aτ)η + hδ

η̇ = bµη + µa− λb

λ(0) = η(0) = µ(0) = 0

(7)

As mentioned before the second equation provides us the variation of b. So here
this will induce a change of b in the positive direction. We solve this system in
the interval [0; 2δ] so that there is no zero of b in this interval, i.e. 1

c < b < c;
this is always possible since b is real analytic and it is possible for all the curves
in an H2 neighborhood of the curve (see section 2).
A study of the previous system leads us the following lemma that will be proved
in the rest of this paragraph:

Lemma 3.1. Let us assume that Z1 satisfies (7), then:
‖λ‖∞ ≤ C(‖a‖∞ + ‖b‖∞)δ2

‖µ−
∫ t
0
hδ(s)ds‖∞ ≤ C(‖a‖∞ + ‖b‖∞)δ2

‖η‖∞ ≤ C(‖a‖∞ + ‖b‖∞)δ2

(8)
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Proof. Let A be the matrix of the previous differential system, that is

A =

 0 0 b
0 0 (bµξ − aτ)
−b a bµ

 ,

and let R denote the resolvent of the system, that is Ṙ = AR with R(0) = id.

Then, if Z1 =

 λ
µ
η

, we have

Z1(t) = R(t)

∫ t

0

R−1(s)

 0
hδ(s)

0

 ds.

Now since Ṙ = AR we have that

|R(t)− id| ≤
∫ t

0

|A(s)|ds+

∫ t

0

|A(s)||R(s)− id|ds, (9)

It follows from Gronwall’s lemma that

|R(t)− id| ≤
∫ t

0

|A(s)|dse
∫ t
0
|A(s)|ds, (10)

Hence for t ∈ [0, δ] we have

|R(t)− id| ≤ C
∫ t

0

|A(s)|ds.

Then

|Z1(t)−

 0∫ t
0
hδ(s)ds

0

 | ≤ C ∫ t

0

∫ s

0

|A(u)|duds.

Therefore we deduce the result of the lemma.

According to the previous lemma we can estimate the change of b and a along
the deformation introduced by the vector field Z1 above. Knowing that, once
extended, the evolution equations of a and b read as

∂a

∂s
= λ̇− bη

and
∂b

∂s
= µ̇+ (aτ − µξb)η.

We get that a is unchanged and after a bootstrapping argument (see Appendix)
we have

|b(s, t)− b(t)| ≤ Cs|hδ| ≤ Cs.
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3.4.2 Case hδ = 0

We now consider the same system of equations, but with hδ = 0 and with initial
conditions non-zero, that is:

λ̇ = bη

µ̇ = (bµξ − aτ)η

η̇ = bµη + µa− λb

λ(0) = η(0) = 0, µ(0) = 1

(11)

This will allow us to generate a non-trivial [ξ, v] component at the point p, with
of course an extra term r that needs to be removed in a later stage.
If Z2 is a solution of this equation then we have Z2(t) = R(t)Z2(0). Notice now
that

|
(
R(t)− id−

∫ t

0

A(s)ds
)
Z2(0)| = |

∫ t

0

A(s)(R(s)− id)dsZ2(0)|

Using the estimate (10) we have

|Z2(t)− Z2(0)−
∫ t

0

A(s)Z2(0)| ≤ Cδ2(||a||∞ + ||b||∞)2

Therefore we have

‖η −
∫ t

0

a(s)ds‖∞ ≤ Cδ2(‖a‖∞ + ‖b‖∞)2

and
‖µ− 1‖∞ ≤ Cδ2(‖a‖∞ + ‖b‖∞)2

We will set

θδ = δ2(‖a‖∞ + ‖b‖∞), θ̃δ = δ2(‖a‖∞ + ‖b‖∞)2

3.4.3 Combination

Now we will use a combination of these processes starting at specific points on
the curve to span the kernel of α at p. So here, given a point p on the curve
we will use 3 points p1, p and p2, and we re-parametrize our curve so that zero
corresponds to the point p1 = x(0) whereas the time δ will correspond to the
point p, and take p2 = x(2δ − δ′), p = x(2δ), where here 0 < δ′ << δ. We will
provide more details about the values of δ and δ′ in the sequel. Also δ does not
need to be small.
From p1 we use the construction done with (7) up to time δ. Then again, use
the process described by (11) starting from p with initial condition the resultant
vector from the first construction, till we reach the point p. And to finish we
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run again the first process (that is using (7)) starting from p2 till we reach p
(see figure 9).
Let us see what are the vectors formed now at the point p. From the first and
the second process we get a vector

V1 =

∫ δ

0

hδ(s)ds
[(

1 +O(θ̃δ) +
b

a
O(θδ)

)
v+

+
( ∫ δ

0

a(s)ds+O(θ̃δ)
)
[ξ, v] +

1

a
O(θδ)(aξ + bv) +O(δθδ)

]
and from the third process, we have

V2 = O(θδ′)(aξ + bv) +
( ∫ δ′

0

hδ′(s)ds+O(θδ′)
)
v +O(θδ′)[ξ, v]

Now we compute the determinant det(P (V1), P (V2)), where P is the projection,
on kerα, parallel to aξ + bv, we find:∣∣∣∣∣∣

1 +O(θ̃δ) + b
aO(θδ) O(θ̃δ)∫ δ′

0
hδ′(s)ds+O(θδ′) O(θδ′)

∣∣∣∣∣∣
The dominant term of this determinant is

O(θδ′)−
∫ δ′

0

hδ′(s)ds

∫ δ

0

a(s)ds = O(θδ′)− δδ′a0 + o(δδ′)

Since δ′ << δ this determinant is bounded away from zero.
Now the global estimate on b after extension the of the deformation vector Z,
reads as follows:

|b(s, t)− b(t)| ≤ Cs|hδ(t) + hδ′(t)| ≤ Cs.

3.4.4 Compensation of ξ

Notice that now the only part that needs compensation is the ξ component.
Since we extended the velocity vector of the curve to some small H2 neigh-
borhood of the curve, by transporting aξ + bv from p2, we get a non-zero ξ
component at p. Notice that this corresponds to the use of the transport map
φt(x)(x) where here t(x) is the necessary time to be able to compensate the
given ξ component. This can be made precise if we get the right estimates on
the transported vector from B. Let S be the section at p of kerα and S2 a sec-
tion of kerα at B. We consider also the section S̃2 = Dφt(S2) the image of the
section S2 under the diffeomorphism φt0 where t0 is the necessary time to reach
p starting from B. Now we want to find a way of projecting the section S̃2 on
S using the diffeomorphism φt. In fact, we have

D(φt(p))(·) = Dφt(·) + dt(·)(aξ + bv)
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evaluating at t = 0, the previous equation reads as

D(φt(p))(X) = X + dt(X)(aξ + bv)

for every X ∈ TpM . Therefore we can always project on S by taking dt(X) =
α(X)
a , noticing that dt(X) = 0 means we are already in S, and if dt(X) 6= 0 then

by taking φst(p) and adjusting the s we can always compensate the ξ compo-
nent. The same procedure can be done for the section spanned by the vectors
V1 and V2 at p and projecting them on S to get components free from ξ.
Now one needs to estimate the size of the component that needs to be com-
pensated since the previous procedure corresponds to an increase or decrease in
time. Hence it will change the parametrization of our curve.

B
A

C

S2

S1

p1 p

S

Figure 10: Compensation of ξ

Let ε be the opening of the nearly Dirac mass. Since we are transporting the
vector −v starting from B, the transport equation is equivalent to solving

λ̇ = bη

µ̇ = (bµξ − aτ)η

η̇ = bµη + µa− λb

λ(0) = η(0) = 0, µ(0) = −1

(12)

This last system behaves as (11), starting from the point p̃. Thus, it holds

µ = −1 +O(θ̃ε), η =

∫ ε

0

a(s)ds+O(θ̃ε)
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Since the transport equation is linear, we have that at p all the components
of the transported vector are O(ε) and so, |dt| = O(ε). Notice now that if
the initial length is l then the new length will be l′ = l + O(ε) and therefore
the rescaled b is b̃ = b

1+O(ε) . Again this gives a final estimate on b along the

variation as follows:
|b(s, t)− b(t)| ≤ CsO(ε). (13)

Proposition 3.2. There exists ε0 > 0 such that if the opening of the nearly
Dirac mass is ε < ε0, then the nearly Dirac mass can be gradually removed.

Proof. Recall that from the previous construction, b will only change in the
portion [0, 2δ] between p1 and p. In that region we have that 1

c < b < c, hence
from the estimate (13) we have

1

c
− Csε ≤ b(s, t) ≤ c+ Csε.

Therefore, given a nearly Dirac mass of length l, if we take ε < min(cCl, 1
2cCl )

we find that
1

2c
≤ b(t, s) ≤ 2c

for s ∈ [0, l]. Thus the process can be completed and the nearly Dirac mass can
be removed with a control on the number of zeros of b.

After this compensation is done, we can see that this process will cancel the
nearly Dirac mass, in fact if we let Z the deformation vector built in the previous
construction, then if we start by −v at B, it is enough to check the behaviour
of
∫
b. We have

Z ·
∫
b =

∫
µ̇+ (aτ − µξ)η

By splitting the integral into two pieces we see that:

from D to B we have η = 0 hence Z ·
∫
[DB]

b = −1;

from B to A we have Z · b = 0 hence Z ·
∫
[BA]

b = 0.

Proposition 3.3. Let l be the length of the nearly Dirac mass, then if l tends
to zero, the deformation tends to the identity.

Proof. One has to notice that, the previous construction was made regardless
of the length of the nearly Dirac mass, and this can be adapted: instead of
transporting −v from the point B, we start by transporting −lv. Since the
deformation was made using linear differential equations, one has that the new
deformation vector is Z̃(x) = l(x)Z(x), hence if l tends to zero, the deformation
tends to identity.
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3.5 Case of a double zero

In this case we will consider two nearly Dirac masses, that is 3 v-pieces, that
might converge to a single jump. First thing to notice is that we can do our
construction and build the deformation vector in two different ways, but we can
convex combine them since they have independent supports assuming that the
length of each intermediate piece is less that the ε0 that we took in the case of
a single nearly Dirac mass.

Support on J1

Support on J2

Figure 11: Case of a double zero

Hence, the two procedures can be run together without interfering, leading to a
case where we have two positive (or negative jumps) linked by a piece of curve.
Hence, we can convex combine them to end up with a step-like curve that moves
along the convex combination between the two extremal parts that are curves
with a single v jump.
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Removing the negative Dirac

Moving along the homotopy

Removing the positive Dirac

Figure 12: Convex combination of the two process

Another way to do this (which will be useful in the case of large multiplicity) is
to build the deformation vector starting from one nearly Dirac mass and then
crossing the other to finish the compensation from the other side (see figure 13).
In this case we need ε1 + ε2 < ε0 and since the construction can be made from
both sides, they can be superposed since in the common support, it is just
a transport equation that conserves all the quantities and hence they can be
convex combined to get the same result as mentioned above.
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I

II

I II

First process Second process

Figure 13: Second method

3.6 Case of large multiplicity

To clarify the construction let us first take a zero of order 3.
If we assume that,

∑k
i=1 εi < ε0 then we can remove the nearly Dirac masses

by building the decreasing vector on the sides (as in figure 14).
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Section tangent to ker α

p

Compensation is to be done at a point p like in 
the case of a simple zero

Figure 14: The cancellation of multiple Dirac masses

Hence they can be convex combined to lead to a situation of multiple positive
v jumps linked by small pieces, as shown in the following figure 15.

Convex combination of the different deformation

Figure 15: Multiple convex combinations.
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4 “Pushing” in Cβ
After Cancelling the singularities that appears during the lifting process, we
end-up with curves in C+β having consistent pieces with a > 0. In this section

we will proceed with the final step which consists of pushing curves from C+β into
Cβ continuously. This again will be done by the use of a flow that is constructed
in a similar way as in section 2. Indeed, we will construct a flow that induces
a heat type flow on the component along ξ and by the use of a result of S.
Angenent [1], we will see that after small time, the curves will be deformed into
ones in Cβ .

Figure 16: Removing the v pieces

First let us recall that we are deforming a curve x in Lβ , that is ẋ = aξ + bv,
along a vector field Z = λξ + µv + η[ξ, v], and we have:

∂a

∂s
= λ̇− bη

∂b

∂s
= µ̇+ (aτ − µξb)η

(14)

We will assume in what follows that a is not identically zero. That is we do not
consider periodic orbits of v. In fact this can be always assumed after deforming
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our compact set of curves using the vector field Z constructed in Appendix B.
Now we will focus on the first equation of (14), that is the evolution of a. So in
this part we take λ = ȧ + f , µ = ḃ and η satisfying the usual equation of Lβ ,
i.e η̇ = µbη + µa− λb. Hence:

η = e
∫ t
0
b(u,s)µ(u)du

∫ t

0

e−
∫ r
0
b(u,s)µ(u)du((aḃ− ȧb)− bf)(r, s)dr.

So if we look at the evolution of a, we get

∂a

∂s
= ä+ ḟ − bη

Therefore, if we can find a function f such that ḟ − bη = ah, we can insure the
positivity of a starting from a non-negative initial data (as it will be explained
later on). But this is equivalent to solving the linear non-homogenous integro-
differential equation

ḟ + be
∫ t
0
b(u,s)µ(u)du

∫ t

0

e−
∫ r
0
b(u,s)µ(u)dubfdr =

= be
∫ t
0
b(u,s)µ(u)du

∫ t

0

e−
∫ r
0
b(u,s)µ(u)du(aḃ− ȧb)dr + ah

Notice that we need to find a periodic solution to this equation, so we define
the operator K on the space Cper([0, 1]) in the following way:

K(f)(t) =

∫ t

0

b[−
∫ l

0

e
∫ l
r
b(u,s)µ(u)dubfdr +

∫ l

0

e
∫ l
r
b(u,s)µ(u)du(aḃ− ȧb)dr] + ahdl

Since we want periodicity, we will take h = c(f)a where c(f) satisfies∫ 1

0

b[−
∫ l

0

e
∫ l
r
b(u,s)µ(u)dubfdr+

∫ l

0

e
∫ l
r
b(u,s)µ(u)du(aḃ−ȧb)dr]dl = c(f)

∫ 1

0

a2(l)dl

Notice that c(f) is an affine function of f , thus c(f) = c1(f) + c2. Therefore the
final form of the operator K is

K(f) =

∫ t

0

∫ l

0

e
∫ l
r
b(u,s)µ(u)du(aḃ− ȧb)dr + c2a

2dl + T (f)(t),

where T (f) is the bounded linear operator on C([0, 1]) defined by

T (f)(t) =

∫ t

0

−b
∫ l

0

e
∫ l
r
b(u,s)µ(u)dubfdr + c1(u)a2dl

So the problem now is reduced to find a fixed point for the operator K. For
that we will use the contraction mapping theorem for an iterate of K. The main
estimate that is needed reads as

‖Kn(f1)−Kn(f2)‖ ≤ ‖T‖
n

n!
‖f1 − f2‖
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where ‖ · ‖ stands for the L∞ norm.
Thus we have the existence and the uniqueness of f and this leads to the diffusion
equation

∂a

∂s
= ä+ ca2

To be more precise about the existence of this flow, one should follow the same
procedure as in section 2. That is, we need to regularize the coefficients of the
deformation vector to get classical existence, then we need to show that indeed
we have convergence to a flow on the curves. Since the procedure is similar to
that in section 2, we will omit it.
Now we refer to the work of Angenent [1], about the zeros of parabolic equations
of the form

∂a

∂s
= ä+ g1ȧ+ g2a

We know that the number of zeros of a is non-increasing and if we have a(s, t0) =
ȧ(s, t0) = 0 then the flow will move toward the direction canceling the zero. In
our case all the curves in C+β have a ≥ 0, hence if a is not identically zero then
along the flow a will become strictly positive: that is a(s, t) > 0 for s > 0.

Appendix A. Extension of the deformation vector

In this appendix we will see how we can extend the vector field constructed in
section 3 to a global deformation on C+β .
Before we start our extension, let us recall how one can compute the evolution
of the tangent to a curve along a deformation vector. We consider here a curve
x ∈ H2(S1,M) such that

ẋ = aξ + bv + c[ξ, v]

and we also consider a vector field

Z = λξ + µv + η[ξ, v]

Proposition 4.1. Let us assume that x evolves under the flow of Z, that is

∂x

∂s
= Z(x),

then the following hold:

(i)
∂a

∂s
= λ̇− ηb+ µc,

(ii)
∂b

∂s
= µ̇+ η(τa− µξb) + c(µξµ− λτ)

(iii)
∂c

∂s
= cµµ+ η̇ − µbη + µa− λb
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Proof. (i) Notice that a = α(ẋ), hence

∂

∂s
a = Z · a = (Z · α)(ẋ) + α(Z · ẋ) =

= dα(Z, ẋ) + α(Ż) = λ̇− ηb+ µc

(ii) We consider the 1-form γ(·) = −dα(·, [ξ, v]) so we have b = γ(ẋ). Therefore

∂

∂s
b = dγ(Z, ẋ) + γ(Ż).

Now

dγ(Z, ẋ) = (λb− µa)dγ(ξ, v) + (λc− ηa)dγ(ξ, [ξ, v]) + (µc− bη)dγ(v, [ξ, v]),

but
dγ(ξ, v) = ξγ(v)− vγ(ξ)− γ([ξ, v]) = 0,

dγ(ξ, [ξ, v]) = −γ([ξ, [ξ, v]]) = τ

and
dγ(v, [ξ, v]) = −γ([v, [ξ, v]]) = dα([v, [ξ, v]], [ξ, v]) = µξ.

Thus
∂

∂s
b = µ̇+ η(−µξb+ τa) + c(−λτ + µξµ).

(iii) Here c = −β(ẋ), therefore

∂

∂s
c = −dβ(Z, ẋ)− β(Ż) =

= −(λb− µa)dβ(ξ, v)− (λc− ηa)dβ(ξ, [ξ, v])− (cµ− ηb)dβ(v, [ξ, v]).

A similar computation to the one in (ii) shows that

dβ(ξ, v) = 1, dβ(ξ, [ξ, v]) = 0

and
−dβ(v, [ξ, v]) = dα(v, [v, [ξ, v]]) = µ

Hence
∂

∂s
c = η̇ − (λb− µa)− µηb+ cµµ

Given a curve x ∈ K̃ ∩ C+β , where K̃ is the image of the compact set K ⊂ Lβ
under the regularizing flow constructed in section 2, such that ẋ = aξ+ bv. The
construction of the vector in section 3 depends on the point p and on the zeros of
a at the points B and C as shown in figure (9). So we write this vector Zp,C,B ,
noticing that the same construction works for ϕ1 and ϕ2 close to a and b in
H2(S1,M) with p, A and B the same. Therefore, there exist two neighborhood
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U(a) and U(b) for which the vector field Zp,C,B is well defined. This constitutes
an open cover of the space H2(S1,M) for a and b.
Now, since H2(S1,M) is paracompact, we can extract a refined cover (Ui)i∈I
that is locally finite and an adapted partition of unity (ψi)i∈I . We then use the
global deformation

Z =
∑
i∈I

ψiZpi,Ci,Bi .

Observe that each Zpi,Ci,Bi allows us to compensate our combination of defor-
mations decreasing the “Dirac mass” from A to C. The deformation from A to
C does not depend on pi, Ci, Bi. Then Z will also “compensate” the deforma-
tion. To complete this part, we need to show that indeed Z is a vector field
that defines a flow (at least locally). For instance if we can show that Zp,C,B ,
is Lipschitz, then the proof is finished.

Lemma 4.2. Consider a vector field V ∈ TΛ(M), such that for x ∈ Λ(M)

V (x) = λ(x)ξ + µ(x)v + η(x)[ξ, v].

Then, if the functions λ, µ, and η are Lipschitz then so is V .

Proof. Let us fix x ∈ Λ(M), then there exists a neighborhood Ux of x in
Λ(M) such that for every x̃ ∈ Ux, there exists h ∈ x∗TM such that x̃(t) =
expx(t)(h(t)). Hence, this brings the study to curves in H2

loc(S
1,R3).

The vector field V in this case can be seen as acting on h, since V (x̃)(t) =
V (expx(t)(h(t)). This yields the regularity of V , given the regularity of the
coefficients.

We consider now the vector field Zp,C,B constructed on a given curve x. This
vector contains mainly two parts. The first one is obtained by transporting −v,
and it depends smoothly on the curve since it depends on the transport equation
of the curve. The second part is the one obtained by solving a differential system
of the form Ż = AZ +H. If we show that the component of the solution Z has
Lipschitz dependence on the curve, then combined with the previous lemma,
this proves the result.

Lemma 4.3. The resolvent R of the system satisfying Ṙ = AR, as function of
the curve, is Lipschitz.

Proof. The proof is a computational consequence of the formula

R(x̃)(t) = R(x)(t) +R(x)(t)

∫ t

0

R(x)−1(s)(A(x)−A(x̃))(s)R(x̃)(s)ds.

Let us consider now for x0 ∈ C+β the solution to the flow generated by Z. That
is 

∂x

∂s
= Z(x)

x(0) = x0,
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So for 0 < s < s0, x(s) will be in a certain neighborhood U of x0. Hence
Z(x(s)) =

∑n
i=1 ψiZpi,Ci,Bi

. Thus we have

∂b

∂s
=

n∑
i=1

ψi(x(s))(hδ,i + hδ′,i)

So we have
|b(0, t)− b(s, t)| ≤ s(δ + δ′)

Now adapted to the opening ε and the length l of the nearly Dirac mass we
have

|b(0, t)− b(s, t)| ≤ Cεl(δ + δ′)

Appendix B. Perturbation of the periodic orbits
of v

Let us consider now the periodic orbits of v, if there is any. We want to perturb
them using the flow of a vector field Z so that they have a part with a 6= 0.
Let us recall that the variation of a along a vector field Z = λξ + µv + η[ξ, v] is
given by

∂a

∂s
= λ̇− bη

Hence we want to solve the following system:{
λ̇− bη = h
η̇ = µbη − λb

For a certain h ≥ 0. This can be written as

Ẋ = bAX +H

where

X =

[
λ
η

]
, A =

[
0 1
µ −1

]
, H =

[
h
0

]
We take a point p = x(0) where b 6= 0 then it is easy to see that for t0 small
enough R(t0)− id is invertible, where R(t) is the resolvent of the system. This
follows from the fact that R(t) − id = tA(0) + o(t), hence det(R(t) − id) =
−bt2 + o(t2).

p=x(0) p

a>0
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So we take h to be supported in the interval [0, t0]. It is important to notice that
Z depends on p and t0 hence we can write it as Zp,t0 . Now we need to extend
this deformation globally. In a similar way as before we can take an adapted
partition of unity (Ui, ψi) to the periodic orbits of v, so that the vector field Z
is globally defined by Z =

∑
i ψiZpi,t0,i .
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