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Abstract We study a conformally invariant equation involving the Dirac operator and a non-linearity
of convolution type. This non-linearity is inspired from the conformal Einstein-Dirac problem in
dimension 4. We first investigate the compactness, bubbling and energy quantization of the associated
energy functional then we characterize the ground state solutions of the problem on the standard
sphere. As a consequence, we prove an Aubin-type inequality that assures the existence of solutions
to our problem and in particular the conformal Einstein-Dirac problem in dimension 4. Moreover, we
investigate the effect of a linear perturbation to our problem, leading us to a Brezis-Nirenberg type
result.
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1 Introduction and motivation

Let M be a closed (compact, without boundary) manifold of dimension n > 3, endowed with
a fixed Riemannian metric g and a spin structure ¥,M. Let D, be the Dirac operator acting
on spinors 1 € ¥,M. Let us introduce the Einstein-Dirac functional

E(g. 1) = /MRg+<Dgw,¢>A|w|2 v, 1)

where R, is the Scalar curvature of the metric g and X is a real parameter. Critical points of
& are solutions of the Einstein-Dirac equations (see for instance [36])

, R
Ricg — 7gg =Ty @)

Dgl/’ =\

'Department of Mathematics, Clark University, 950 Main Street, Worcester, MA 01610, USA. E-mail
address: amaalaoui@clarku.edu

2Department of Mathematics, MIT, 77 Massachusetts Avenue Cambridge, MA 02139-4307. E-mail address:
maala650@mit.edu

3Dipartimento di Matematica, Alma Mater Studiorum - Universita di Bologna. E-mail address:
vittorio.martino3Qunibo.it

4Department of Mathematics, Faculty of Sciences Tunis, University of Tunis el Manar, Tunis, Tunisia.
E-mail address: mbarki.lamine20160@gmail.com; lamine.mbarki@fst.utm.tn




where Ricy is the Ricci tensor and Ty is the stress—energy tensor given by
1
Tyu(X,Y) = _Z<X Vy¢+Y - -Vxo,¢), XY eTM,

here - and V denote the Clifford multiplication and the connection on X,M (see [30], [17]).
This functional was investigated in dimensions 3 and 4 in [36], where the authors study the
limits of such structures under natural bounds on the diameter and the curvature. We also
mention that the first equation in is similar in structure to the semi-classical gravity
model coupling gravity with matter in a way that only the matter fields are quantified, we
refer to [3] for more details about the model. Now, if we restrict the variations of the metric
to a given conformal class, that is g = uﬁ g and 1; = u%w € X5M, we obtain the following
functional

£(7,v) = /M uLgu + (Dgth, ) — A2 )2 dvy = E,(u, ) , (3)

where L, here is the conformal Laplacian. The critical points of this functional solve the
conformal Einstein-Dirac equations

A
n—2

4—n

[ un=z

Lyu =
(4)
Dyt = Aum2y)

The case n = 3 was investigated in [0], [22], [35] and the case n = 2 corresponds to the
super-Liouville problem investigated in [26, 27, 28]. We also mention the recent work of Sire
and Xu [40] where the authors adopt a flow approach to investigate the problem. We notice
that in dimension n = 4, the system takes a more approachable structure. That is, one
can solve the first equation, finding u in terms of |t/|? by using the Green’s function of the
conformal Laplacian, then inserting it in the second equation one has a single equation that
can be written as

Dy = ([ Glamivfw) duyw)v,

where G is the Green’s function of the conformal Laplacian L,. Due to the singularity of the
Green’s function (G(z,y) ~ ﬁ, when z is close to y), one can see the similarities with
other classical equations in the literature. It is in fact surprising how this type of equations
appears naturally in different models in physics. For instance, based on the work in [18],
the Schrodinger-Newton model can be derived from the Einstein-Dirac model through a non-

relativistic limit and we recall here that the Schrodinger-Newton equation in R? takes the

form 5 )
t
i‘b:—mp—c(/w’( Y)| dy)w,
ot |z =yl
where we see clearly the convolution term that appears in the non-linearity. Notice that
the static solutions correspond to a version of the Choquard equations. Hence, our problem
can be seen as a spinorial version of the Choquard equation, we refer the reader to the
survey [37] and the references therein. But also, this equation is similar to the semi-classical
Hartree’s equation and the Lieb-Yau conjecture for the pseudo-relativistic Boson stars model



[33, B34, B1]. Another important model where such equation appears is the Dirac-Maxwell
system studied in [12] (see also the references therein).

In this work, we propose to study a general problem with the same structure and confor-
mal invariance properties that would capture the solutions to the conformal Einstein-Dirac
equation in dimension 4. We then consider the following equation

Dytp = (G5 [y]*)0, (5)

and its linear perturbation
Dy = M + (G * [0 ), (6)
where we denoted by

(G5 % f)(x) = /M G5 (2, 9) £ (9) dvg(y)

the convolution of a given function f with the Green’s function G of the conformal fractional
Laplacian Pg, of order 2s =n — 2.
These equations have a variational structure and the corresponding energy functional for @
is given by
1 2 1 s NP
T (@) = 5 [ Dy = NP dog =5 [ (G5 0PI duy

= ;/M<Dgw7"¢> - /\|¢|2 dvg — i/MXMGZ(x,y)‘w(y)P ’1/)(3?)’2 dug(y) dvg(z) , (7)

where (-,-) is the canonical Hermitian metric defined on ¥,M. Notice that J, o =: J, is the
energy functional corresponding to .

We see that, the particular choice of the parameter s makes the functional .J, invariant under
a conformal change of the metric; in order to see this, for any s for which the conformal
fractional Laplacian is defined (see [19, [10]), let us consider a conformal change of the metric

G=urrg, 0<uec C®(M). (8)

Given a spinor ¢ € ¥ M, we set

)= un i€ NgM

where we implicitly understand the action of a canonical isometric isomorphism between the
spinor bundles ¥zM and ¥,M (see [30], Section 2). In this way, we have the conformal

change of the Dirac operator
+1

Dyt = u”n=2 Dyt .

Also, by using the conformal covariance property of the fractional Laplacian

P(f) = u 5 Py(uf)

we obtain the conformal change of its Green’s function

G3(z,y) = u(z) " uly) " Gyle,y) -



Now, taking into account the change of the volume
2n
dvg = un=2sdvy ,
we substitute in and find

Ty0) = 5 | Dy dvg =1 [ Galaa)lb) @) dusty) dug(e)

]. 44-4s—2n

L s 2 v vo(x
5 [ D o1 [ Gl )P u T duy () duy(a)
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Therefore, if 25 = n — 2 we obtain Jg(@) = Jy(¢). In particular, this says that equation
is critical, in the sense of the conformal analysis.

This manuscript is mainly split in two parts. In the first part, we investigate the lack of
compactness of the problem, due to the conformal invariance and we prove the following
bubbling and energy quantization result for the functional Jj.

Theorem 1.1. Let us assume that (M, [g]) has a positive Yamabe constant Ys(M, [g]) and let
(Yr)ken be a Palais-Smale sequence for J, at level ¢ > 0, where Ys(M, [g]) is the s-Yamabe
constant, which we define in the next section.. Then there exist Vo, € C®(M,X,M), a

solution of ., m sequences of points xk, ‘e a:k € M such that limy_, xiz =2l € M, for
j=1,...,m and m sequences of real numbers Rk, -+, R} converging to zero, such that:

ii) @Z)k—?/)oo+z¢]+0 mHz(ZM)

7j=1
iti) Jg(vr) = Jg(os) + Z Jggn (\Iﬂoo) +o(1),
j=1

where ' 4 .
%= (B Bjok (W),
with op; = (prj) ™" and pry(-) = exp (Ri) is the exponential map defined in a suitable
k
neighborhood of R™. Also, here (3; is a smooth compactly supported function, such that B; =1

on Bi(27) and supp(B;) C Ba(z?) and WL is the solution to our equations (@ on R™ with
its Buclidian metric grn.

As we will see in the proof, the same result holds for the functional J, », with the same bubbles
at infinity. We also characterize the ground state solutions that appear in the bubbling
phenomena in the theorem above.

Theorem 1.2. Let ¢ € C*(X,,S™) be a non-trivial solution of

Dyt = (G, )0, on 5™, (9)
where go is the round metric on S™. Then,

)‘+(Sn’ [QOD2)/S(Snv [90])
1 .

Jgo (1) = Y (5", [g0]) == (10)



Moreover, if Jg,(¢) = Y (S™, [g0]) then, up to a conformal change, v is a —%—Killing spinor.
That is, there exists a —%—Killing spinor W € ¥408™ and a conformal diffeomorphism f €
Conf(S™, go) such that

n—

1
b = (det(df)) ™ Fyegogo(19).
As a corollary of this Theorem we have an Aubin-type inequality for the problem :

Corollary 1.1. Under the assumptions of Theorem[1.1], there exists a conformally invariant
constant Y (M, [g]) > 0 with the following properties:

X7 = n + n7 2 ;A 'n,7
i) VM, [g]) < V(5™ [go]) = 2 EL0DRE )
i) If Y(M,[g]) <Y (S™[g0]) then the problem has a non-trivial solution.

Notice that in particular, when n = 4, we can state i) in the setting of the conformal
Einstein-Dirac equation. That is, if Y(M, [g]) < Y (S™, [go]) the conformal Einstein-Dirac
problem is solvable.

The second part of this paper deals with the existence of solutions for the linearly perturbed
problem @ Namely, we prove a Brezis-Nirenberg type result associated to the original

problem .

Theorem 1.3. Assume that (M,[g]) has a positive Yamabe invariant and Y;(M,[g]) > 0.
Then for any A & Spec(Dgy) and A > 0, there exists a non-trivial ground-state solution 1y for
@. Moreover, if A € (Mg, A\gt1), then ¥y — 0 as A — Agiq.
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2 Preliminaries

A spin structure on a riemannian manifold (M, g) is a pair (Pspin(M, g), ), where Psp;, (M, g)
is a Spin(n)-principal bundle and o : Psyin(M,g) — Pso(M,g) is a 2-fold covering map,
which restricts to a non-trivial covering x : Spin(n) — SO(n) on each fiber. That is, the
quotient of each fiber by Zs is isomorphic to the frame bundle of M and hence, the following
diagram commutes:

PSpin(M7g) PSO(M,Q)

(M, g)



We denote by S,, the unique (up to isomorphism) irreducible complex Cl,-module such that
Cl, ® C = Endc(S,) as a C-algebra, where Cl,, denotes the Clifford algebra of R™. This
allows us to define the spinor bundle ¥,M as

YgM = Pspin (M, g) X5 Sy.

In fact, ¥y M is a Hermitian bundle equipped with a metric connection induced by the Levi-
Civita connection on T'M, that we will denote by V. Moreover, there is a natural Clifford
multiplication defined by the action of 7'M on ¥,M. We can summarize the main properties
of the spinor bundle in the following few points:

e For all X,Y € C®°(M,TM) and ¢ € C®(M,X,M) we have X - Y -p+Y - X -¢p =
—29(X,Y ). Here, 7”7 denotes the Clifford multiplication.

e If (-,-) denotes the Hermitian metric on ¥,M, then for all X € C*(M,TM) and
1,0 € C®(M,X,M) we have (X -, ¢) = —(¢, X - ¢).

o For all ¥,¢ € C°(M,S,M) and X € C®(M,TM), then X(,¢) = (Vxi, o) +

e Forall X,Y € C°°(M,TM) and ¢ € C°°(M,%,M) we have Vx (Y -¢) = (VxY) -4 +
Y - Vb,

For the rest of the paper, we let (-,-) := Re(-,-). Then (:,-) defines a metric on ¥,M.
The Dirac operator D, is then defined on C*(M,¥,M) as the composition of the Clifford
multiplication and the connection V. Indeed, if (ej, - ,e,) is a local orthonormal frame
around a point p € M and ¢ € C*°(M,3¥,M) then one can locally define Dy by

Dgp =Y ;- Veb.
=1

The Dirac operator is a natural first order operator acting on smooth sections of ¥,M.
Moreover, if M is compact, then Dy is essentially self-adjoint on L*(X,M) := L*(M,X%,M),
with compact resolvent. In particular, there exists a complete orthonormal basis (g )gez of
LQ(EQM) consisting of eigenspinors of D,. That is Dypr = Appr, with A\ — foo when
k — +oo. We will use the convention that A\;, > 0 (resp. Ay < 0) when k& > 0 (resp. k < 0).

Proposition 2.1 ([5, [I7]). Consider a compact spin manifold (M, g,¥,M), then

i) The Dirac operator Dy is conformally invariant. That is, if § := e?tq, then there exists
a unitary isomorphism Fy 5 : XgM — XM so that for o € C°(M,X,M),

n+1

—n=ly -y
Dg(e” 2 “Fya(p)) = e 2 “Fy5(Dgp).

ii) For p € C®(M,X,M), Dgcp =—-Agp+ %go, where Ry is the scalar curvature.

In what follows, we will identify spinors ¢ € ¥yM with their isomorphic image Fj;(¢),
unless there is a specific distinction. Notice that as a result of the two points of the previous



Proposition we have that Dy is invertible if the Yamabe invariant of (M, g) is positive.
We can define now the (unbounded) operator |Dy|* : L*(X,M) — L*(X,M), for s > 0 by

1Dgl*t = " [Mel*arer,

kEZ

for 1 =,z arwr. The Sobolev space H%(EQM) is then defined by
Hz(S,M) = {p € L*(S,M);|Dy|2¢) € LA(SyM)}.

This function space is equivalent to the classical H 3-Sobolev space and will be endowed with
the inner product (-, -) 1 defined by

1 1 1
(0.60) = [ ADy50, D120} duy, 0.6 € HA(2,01).
M
Notice that this inner product defines a natural semi-norm on H 3 (X4M) by setting

1
111 = [11Dg[2 9] 2

This semi-norm becomes a norm when D, is invertible. Using the spectral resolution of D,
we can split the space H %(ZQM ) in a convenient way that fits our analysis. That is, we can
write ) ) ) )
H2(S,M)=Hz" o H:'o H2t | (11)
with ) X )
H2™ = span{y;}i<0, H2Y .= ker Dy, H2" .= span{p; }i0.

This leads to the natural projectors P¥ : H%(EgM) — H2* and for (NS H%(EQM) we will
write ¢ := P* and 1~ := P~4. Since we will be considering a linear perturbation of the
Dirac operator, we introduce the following operator Dy := D, — A, for A € Spec(D,). Notice
that Dy has a similar spectral decomposition and hence we can introduce a similar adapted
splitting as in , for the space H 3. That is:

Hi($,M) = H; @ H}
The new adapted inner product and norm are then defined by

(16, ) = /M<|DA|%¢), Da3g) dvg and  [llx = 1Dl eblloe, Vb, 6 € HE (S,M).

We recall now some of the properties of the conformal fractional Laplacian and GJMS oper-
ators. A good reference for the material discussed in this paragraph is [19]. For this purpose,
we consider a Poincaré-Einstein manifold (X, g*) with conformal infinity (M, [g]). Therefore,
there exists a geodesic defining function p such that in a neighborhood of M in X of the form
M x (0,¢), the metric g+ takes the form

1
gt = ?(dp2 + gp),



where g, is a one parameter family of metrics on M such that gg = g. Moreover, we have
Ricg+ = —ngy. In fact, one can weaken this last Einstein equality to be up to a term of
the form O(p"~2) if n is even and up to a term of O(p™>), if n is odd. One then can solve
(even formally) the following generalized eigenvalue problem: for s € (0, %) and s € N, and
u € C®(M)

AU~ (5+8)(5—s5)U=0in X

U =p2F(p)+ p2"*G(p);

where F,G € C®(X,g = p?g") and Flp—o = u. For the details about the construction
of such solution, we refer the reader to [2I]. The operator S(s) : u + G|,—¢ is called the
scattering operator. The fractional conformal Laplacian is then defined by

I'(s)

I'(—s)

The properties of the operator P; can be summarized as follows:

Pju :=dsS(s)u, where ds = 228

Proposition 2.2 ([10, 19 21]). Using the definition above, we have:

o P is a self-adjoint pseudo-differential operator on M with principal symbol coinciding
with the one of (—Ag)®.

4
e P is a conformally covariant operator. That is, if g = un=2sg then

_ n42s

P;(-) =u n=2s Pl(u-).

. (Pgs)se(o,g) constitutes a meromorphic family of operators that has potential simple poles
when s € N. These poles are compensated by the normalization constant ds, making the

family then holomorphic.
e When M is the Euclidean space R™, we have P3 = (—Agn)®.

grn
Notice that P is a non-local operator when s ¢ N. But when s = £ is an integer, then ng“ is

a differential operator and it coincides with the classical GJMS operators [20]. In fact, one
can check that

n—2
Pl=L,:=-A,+ ——
g g g + 4(n . 1) Rgv
and 4
P? = —A2 4 div(an Ryg + by Ricy)d + ”TQ2,

where a,, and b,, are two constants depending on n and ()5 is, up to a multiplicative constant,

the classical Q-curvature. In a similar way, one can define the fractional Q-curvature by:
oo B
97 (n—2s)

For example, Q; = %. We will restrict ourselves to the case 0 < 2s < n. One now
can formulate the fractional Yamabe problem, which addresses the question of prescribing

constant ()j-curvature. This is equivalent to solving the problem of finding u > 0 such that

n+2s

Pju = cun=2s. (12)

8



As in the classical Yamabe problem, the sign of the constant c is a conformal invariant and
it is determined by the sign of | v @ dvg. We will focus on the positive case, that is, when
S Qj dvg > 0. We consider then the functional I : [g] — R defined by

fM Qj, do

n—2s *

( fM dwl) !

Is(h) :=

Taking h := uﬁ g yields

uP3u dv
IS(“? g) = IS(h’) = fM Y gn—QS *

(fM i dUg) "

Therefore, finding a critical point of I is equivalent to finding a solution to (12)). We can
then define the s-Yamabe constant by

Ys(M, lg]) := inf{Is(h);h € [g]} = inf{Is(u,g);u >0 and u € H*(M)}. (13)

Notice that when Y;(M,[g]) > 0 (as in the case of (S™,[go]), one can define an equivalent

H?®-norm on M by setting
1
HUHHS = </ 'U,PgS’U, d'l)g) 2.
M

In this case, the best constant in the Sobolev embedding H*(M) — Lim (M) coincides with
Ys(M, [g])fé We will assume from now on that the Green’s function of P} is positive. This
is not a necessary condition but it does make the notations in the proofs easier. In fact,
there are several conformally invariant assumptions that we can consider if we truly need the
positivity of the Gj. We refer the reader to [9] where the authors address the positivity of the
Green’s function in certain ranges of the parameter s. We point out that when Y(M, [g]) > 0
and Gy is the Green’s function of P}, then for any f € C*°(M), we have

| G i@ w) ey (o) = .

We summarize here some of the useful properties of the G that we will be using in the next
sections.

Proposition 2.3. We consider a compact Riemannian manifold (M, g) as above and fix
0 <s < 5. Assume that Ys(M, [g]) > 0, then the Green’s function of P; satisfies:

i) Gy is continuous and bounded away from the diagonal Apxn = {(v,x) € M x M}.

ii) For po € M there exists a small neighborhood Up, around py in M such that in normal
coordinates around py,
Go(z,y) = G (2,y) +r(2,y), Vo, y € Uy,

— Cn,s
E I

where G, (,9) is the Green’s function of (—Agn)® and there exists C' > 0

such that o
Ir(z,y)| < W,V&“,y € Upy-

9



3 Regularity

In this section, we will focus on the study of regularity of solutions of , actually the same
results hold for @ In the sequel, for the sake of simplicity, we will omit the dependence
on the metric; for instance XM = ¥,M and so on. For the same reason, we will denote the
functional spaces depending only M; for instance LP(M) = LP(M,¥XM). The H 2-norm will
also be denoted simply by || - ||.

Our objective here is to show that weak solutions of are indeed classical solutions. First
of all, we consider the Sobolev space H 3 (M) as defined in the previous section. Here we just
recall that there exists a continuous Sobolev embedding

HZ(M) = LP(M), 1<p<

n—1

this is also compact if 1 < p < %
We will say that 1 € L%(M) is a weak solution of (j5)) if

/ (D6, dv = / (G 5 [[2)(6, ) do,
M M

for all ¢ € C*°(M). Notice that for a fixed metric g, the critical points of J, are weak
solutions of . We then have the following result:

Theorem 3.1. Let ¢ € L%(M) be a weak solution of . Then i € C°(M).

The idea of the proof is somehow similar to that in [25] (see also [35]), but we will provide
here the full details since the non-linearity, in this case, is non-local.

Proof. Given a small r > 0, we consider two cut-off functions n; and 72 such that n; is
supported in Bs, and equals 1 on Bs,.. Similarly, 7o = 1 on B% and supported in B,.. Now,
one has

D(natp) = (G* = [ )matp + Vg2 - . (14)
On the other hand, we will write

G* % [P = G (Y + (1 = m)[¥1*) = w1 + ua, (15)

so that
D(n2vp) = uimatp + nougtp + Vg - 1.

Now, for 1 < p < n, let P: WP(M) — LP(M) defined by
Pv = uqv.
We notice that
lurvllze < flurlpo ol ze;

< CWHQL% [ollw e - (16)

(Bsr)

10



Thus, we have

Pllo, < Cllv|]? 2 ,
[Pllop < WHL%(BM)

where || - ||op stands for the operator norm. Since D : WIP(M) — LP(M) is invertible,
we have for r small enough, that D — P : WYP(M) — LP(M) is invertible. Noticing that

Vo) + naugt) € L%(M), there exists a unique solution vg € W1P(M) of
Do = uyvo + Vipy) + npua),

foralllgpgﬂ.

Similarly, we can consider the invertible operator D : L%(M ) — W_l’%(M ), and define
~ 2n_ 1.2
P:Ln1(M)— W n1(M)

by .
Pv = ulf) .

We see that in this case, we have

1Pol 2sy < lutllzelfol] 2o,

Therefore, since L%(M) — Wﬁl’%(M), we have

Pllo, < Cllvl|? 2 )
[Pllop < IWHL%(BST)

2n
For the same reason as above, there exists a unique solution vy € L»-1 (M), of
Dv =u1v+ Vna - Y + nougi).

Therefore, since WP (M) — L%(M), for nQ—fl < p < n, we have that

2n
= Uy = Wl’p M — < .
vo = Tg = M2t € ( )7n+1_p<n
Thus, ¢ € WLP(M) for nz—fl < p < n, in particular, ¢ € LP(M) for all p > 1. Therefore, by
the elliptic regularity for D and a standard bootstrap argument, we have that ¢» € C°°(M).
O

4 Bubbling and energy quantization

In this section, we will analyze the behaviour of Palais-Smale sequences for J,;. This type
of asymptotic study is quite standard when dealing with concentration phenomena (see for
instance the books [41] [13]); in particular, for our equation, the estimates that we will need
are analogous to those in [35] (Section 4; for the Dirac-Einstein problem, in dimension three)
and in [25] (Section 5, for the pure Dirac operator, in any dimension). We start with the first
result.

Lemma 4.1. Let (¢y) C H%(M) be a (PS) sequence for Jy. Then (1) is bounded.

11



Proof. Let (1) be a (PS) sequence for J,, at level ¢ € R. Then

Jg(r) = c+o(1)

and

Dythr, = (G5 # [ )0 + e,
with e — 0 in H_%(M) Now we notice that
27,(0) = (VT ) = 5 [ (G Py do (17)

Thus,
/M<G; [l el dv = de+ ol ix])-

From the elliptic regularity and the Sobolev embeddings, there exists C' > 0 such that
1G5 w70 < C/M(G; s |l 2) 1|2 do.

On the other hand,
91 = [ (%16 <) do

< ([ @it ao)* ([ @5 lotiivi?

[ @il @) 16 < P
< (C+ o el I I 18)

A similar inequality holds for [[¢), |2, leading to

U
i~
N—
[N

IN

19kl < C + ol[[xl])-

Hence, (1) is bounded in H%(M) O

Remark 4.1. From the previous Lemma, it follows that there exists 1o € H%(M) such that

2n
(up to sub sequences) YV — Yoo weakly in H;( M) and L»=1(M) and strongly in LP(M) for
1 <p < =2 Moreover, one can easily see that Vs s a weak solution of ., wmn particular
from Theorem [5.1) it is smooth.

Lemma 4.2. Let hy := 9, — Yoo, then we have

Jg(hk) = Jg(d’k) - Jg(¢oo) + 0(1) )

and

12



Proof. We have

Tylabk) = Jylabne) + o) + (V.Jy(ao), ha) — 5 /M<G; i oo )2
- / (G5 [htl?) (oo i) v — / (G5 % (oo, Tkt )
M M

Since 1) is a solution of (B]), we have (V.Jy(¥o), hi) = 0. Also since hy — 0 weakly in
H %(M ) we have that hy — 0 strongly in LP(M) for all p < =%. Therefore,

/ (G * [Vs0|?) [hi|? dv — 0, as k — oo.
M

Similarly, we have by Holder’s inequalities that

’/ # [hil?) (oo, hie) dv

<|IG5 * [P || ol tPoo | Low |l 2y
L

< Cllhgll? 2o ||
Ln—1

n_ .
La-T

Notice that Lemma implies that HthH 3 is uniformly bounded and HthLn% — 0 as

1
k — oo. Hence, we have

/ (G * |he)?) (thoos hie) dv — 0 as k — oc.
M

Similarly,
/ (GG * (Yoos hie) (Yoo, hie) dv — 0, as k — oo,
M
Thus,
Jg(Vr) = Jg(Yoo) + Jg(hi) + o(1).
The statement for V.J,(hy) can be proved in the same way. O

From now on, we will assume without loss of generality that the (PS) sequence (1) converges
weekly to 0, namely 1o, = 0. Given g9 > 0, we define the following sets

Yi(eg) = xEM;liminfliminf/ W’k|% dv >¢g ¢,
r—0 k—oo B, (z)

Ya(eo) = {x € M;liminfliminf/ (G; * Wzk|2>n dv > 60} ,
r—0 k—oo Br(x)
and

r—0 k—o0

Y3(g0) = {x € M;liminfliminf/ (G * U] ?) x| dv > 60} ,
B, (z)

where B, (x) is the geodesic ball with center in x and radius r. We can state then the following
e-regularity type result.
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Lemma 4.3. Let () be a (PS) sequence converging weekly to 0. There exists eg > 0 such
that if x & 31(g0) NXa2(e0) NX3(eo), then there exists v > 0 such that 1, — 0 in H%(BT(xO)).

Proof. We will use the same notations as in the proof of Theorem We have, as in ,
Dy(natpr) = n2(G5 * [vhi]*)or + Vg - g + 6,
where 0, — 0in H 7%(M ). Using elliptic estimates, we have
ln2ell 3 < Cllna(Gy * [rl*) v + Vi - v + 0l

< Co((lma (G % [0s Pl zpy 19 ], 2y +-0(D))-

In addition, we have
V2 - il 2p < Collvkll | 2p — 0.

n+1

Now, we assume first that z¢ & Y(e), then by Holder’s inequalities,
2 2
112(Gg * [P )bull | 2n < NGy * [kl Ln ey Im2tfkll | 2n;
1
< Coet matiel -
Therefore, if 01036% < %, we have
lm2tpiell g < CallVi -kl 2p +0(1).

Hence, n2t) — 0 in H%(M)
On the other hand, let us assume that 2o ¢ 1 (). Then as in (15]), we can write

(G5 [ ) = n2(G5 * Imoe*)¥e + 2G5+ (1 — i) el *) bk = A1 (¥r) + Aa(hr). (19)

Now we notice that
||A2(¢k)||Ln2?n < O5||wk||?i2 —0ask—0.

Also,

AL @R 2 < CﬁHmmHi% 17290k [ 20,
< CsCrCye™n [m2wll 1 -
Hence, for CﬁC7CgEnT_1 < %, we get again

[m2wll 1 — 0

In order to finish the proof, we see from the decomposition that for zo ¢ X3(¢) we have

i 1
400l 2 < ([ G eIl ) 165 ¢ b Pl

1
< Coe? lmll 3

Again, for 096% < % we obtain the desired conclusion. O
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As a corollary, we get the following result.

Proposition 4.1. Let (¢) be a (PS) sequence converging weekly to 0. If the (PS) sequence

() does not converge (up to subsequences) strongly to zero in H%(M), then there exists
g0 > 0 (even smaller if necessary) such that

Y1(g0) = Ba(e0) = Es(e0) # 0.

Moreover, if (V) is a (PS) sequence at level ¢, with 4¢c < eq, then (V) converges strongly to
zero in H%(M)

The last assertion follows immediately from equation and the definition of 33(eo).
We need here to take into account again the dependence on the metric. Let us consider now
the concentration function

Qr(t) = sup (G; * ]wk\z)” dvg.
xeM J B, (x)

If we assume that Yo(eg) # 0, then given € > 0 so that 3e < gg, there exists Ry > 0 such that
R — 0 and a sequence xp € M, that we can assume converging to a certain zp € Xa(gp) so
that

QR = [ (G e, =< (20)

Bry, (zk)

We let pp(r) = exp, (Rgz) defined for Ry|z| < «(M); here (M) is the injectivity radius
of M, that we will assume for the sake of simplicity ¢(M) > 3. Therefore, if we let BY
denote the Euclidean ball centered at zero and of radius R, then we have that the two spaces
(B%,R,;Qp}';g) and (Br,r(xk),g) are conformally equivalent for k large enough. We define
then the metric g = R;2p};g on BY. It is easy to see that g — ggrn in C>°(B%). We will
use the map pg to also identify the spinor bundles, that is

(Pk)* : El‘o (B%vgk‘) - Epk(:vo)(Mmg)'

n—1

1
We can then define the spinor ¥y, = R, 2 pity, on Xy, (B%, gi), where pfiby = (pr)r ' o ¢y 0
(pr)«. Therefore, based on the properties of the convolution and the conformal invariance,

we have
/ G () [0 ()20 (9) vy () g, (1)
B%XB%
- / G5 () [ () P 0 ()2 dlvg () dlug (),
Bry,r(zk) X Bry R(Tk)
/ (g, Dy, Uy) dug, :/ (¥, Dgthre) dug,
BY Br,, r(zk)
and

2n _2n_
Ll o = [ a, (21)

b Br, r(zk)

We can now, state the following result.
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Proposition 4.2. Let Wy be the spinor on Xy, (B%,gk), defined as before. Let us set

Fyy 1= Dg, Wy, — (G5, # |Up|*) ¥y
_1
Then Fy, — 0 in H, > (R"), namely for R > 0, it holds

sup{/ (Fi, ®) dvg, ;@ € H%(R") N <1,supp(®) C B%} — 0 as k — c0. (22)

14 gy

Proof. From the definition of Fj and the conformal invariance, we have
n+1 ntl

Fy = Dy W — (G}, * W)W = R* o (Dt — (G # [nl2)n) = Ry* pi

Consider then a test spinor ® with supp(®) C B% and ||<I>HH% < 1. Then we have

_n—1
[ oy o = [ G o) duy,
BREI BR;1

n—1

:/ G Ry 7 (pi ) ®) du,.
Bi(zy)

n—1

Since [|P|| ) < 1, there exists C' > 0 such that ||R, 2 (p,?l)*CDHH%(M) < C. Hence we

HE (Rr
have that holds. O

We introduce here the following space
DAR") = {@ € LT[R 5 |¢31) € L2(RM)

where ® is the Fourier transform of ®.

Proposition 4.3. Let e > 0 small enough in (@, then there exists Vo, € D%(R”) such that
1
Uy — Voo in HP (R") and Vo, satisfies the equation

Dyn Voo = (G5 5 || Vs, inR". (23)

grn gRrn

1
Proof. First, the sequence ¥y, is bounded in H? (R"), hence there exists ¥, such that, up

1
to subsequence, U, — o, in H2 (R") and strongly in L} (R") for 1 <p < %
Now, from the relation (21)), we have

lim sup /
k—o00 B

hence U, € L%(R”).

Next, arguing as in Lemma and Remark we have that W, is a weak solution of ,
from which we deduce that U, € D2 (R™).

We can now assume without loss of generality that U, = 0, just replacing ¥,, by ¥,, — ¥,

2n 2n
| W n=T dvg, < sup/ |Yg| =T dvg < +o0,
k>1JMm

0
R
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and using Lemma 4.2
But by assumption we have that, given 2 € R3, for k big enough we get from

/ (G;k * |\Pk‘2)ndvgk = / (G; * |wk’2)ndvg — e
By By, (zk)

1

Let 8 € C§°(R™), with supp(B) € BY, we get

18kll,py, < € (IDgen (BTN, + 16%x]12) (24)

< C (I1Dg (B¥)I, -y + 1(Dgen = D) By + 1%kl 12)

We have ||f¥||2 — 0 and, since g, — gr» in C*°, we also have ||(Dggn —ng)(ﬁ‘l’k)HH_% —
0. For the last term, using Proposition [4.2, we have

1D (B, g < (G, * [2)BTs + BE],_y + (1),

hence
1D, (BYR -y < 1(Gy, % [Ck)BUR)I| 3 +o(1),

since SF; — 0 in H 3. Finally
18%el,3 < O, *[T6P)BE] 2, +0(1)
< O|IGG, = [kl 1BLl, 2n; +0(1)
1
< (Cen ||ﬁ\I/kHanjn +0(1) = 0.
O

We observe that by the regularity Theorem we have that indeed ¥, € C*°(R"™). Now,
for € > 0 and small enough, as before, there exists Ry > 0 such that R; — 0 and a sequence
xr € M, that we can assume converging to xg € M. We consider then a cut-off function
B =1 on Bj(xg) with supp(8) C Ba(z¢) and we define ¢, € C*°(M) by

_n-1
O = Rk 2 /B(P;;l)*(\l'm) (25)
We have then the last result of this section:

Lemma 4.4. Let (Y1) be a (PS) sequence and set 1), = V¥ — dr. Then, up to a subsequences,
Gy — 0 in H2(M); (26)

VJ,(6r) = 0 and V.Jy(i;,) — 0, in H-2(M). (27)

Moreover, we have the following energy estimate

Jg(ak) = Jg(wk) - Jan (\Iloo) + 0(1) (28)
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Proof. The proofs of these last three estimates are similar to those in [35] (Lemma 4.8, 4.9,
4.10) and in [25] (Lemma 5.6, 5.7, 5.8); for this reason, in order to show how to handle our
nonlinearity in this situation, we will prove only the first limit .

We know that ¢ — 0, therlefore we need to study the weak convergence of ¢p; now, we know
that this is bounded in H2 (M), thus up to subsequences, it has a weak limit: we have to
prove that the limit is zero. In particular, given a test spinor h € C°°(M), we will show that

/M<¢k, hydv, — 0. (29)

Let us fix R > 0, we will prove two estimates, the first one on Bg, r(z)) and the second one
on M \ Bg,r(zr). By definition of ¢ given in and the conformal change, we have

n—1

/ (dp, hydo, = R, 2 / BU(or! ) (Woc), h)dv,
Br, r(zk) Bry r(zk)

n+1

=R [ O W W)y

R

Therefore,

ntl
/ (fr, h)dvg| < C1R,* HhHoo/ Voo |dvgys, -
Br, r(zk) B

In the same way, if k is large enough, we have

n4l
/ (6o, = B [ P(B) (Wec. () g,
M\Br, r(zk) BgR_l\BOR
k
Thus,
n41l
‘/ (P, h)ydvg| < C2R,* HhHoo/ | Woo|dvgan
M\Bg, r(zk) BgR—1\B%

k

_2n_
<Gl | [ el P,

-1 R
3Rk

Finally, we put the two estimates together and we get

n—1
_ o 2n
‘/ (O, h)dvg| < C|h|loo | R,> / |V |dvgg, + / W oo | "1 dv gy
M BY, BY _,\B}
k
Therefore, if kK — oo and then R — oo, we obtain (29)). O

Remark 4.2. In order to finalize the proof of Theorem|1.1), we need a last estimate regarding
the solutions of equation . Since Theorem addresses an explicit conformal lower
bound of the energy of ground state solutions, we will use the result and leave the details to
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the next section. Here we just notice the following fact: if ¥ satisfies equation , then its
pull-back by the standard stereographic projection satisfies equation (@ Therefore, by (@)
we have that there exists a positive constant Cgrn, such that

Jgan (Woo) > Crn. (30)
Proof. (of Theorem )
Let () be a Palais-Smale sequence for J; at level ¢; we will apply a standard iteration
procedure. Let
Vi = U — Yoo
then by Lemma we have
Tg() = Jg(vr) — Jg(thoo) +0(1) .

As we saw after Proposition we can find a sequence of points m,lc € M converging to some
point 2! € M, a sequence of real numbers R}C converging to zero, a function W', solution of
(23) and its related (j),lg defined as in (25). Next we define

Vip o= P — B = Pk — Yoo — P -
By equation in Lemma we obtain

Jg(WR) = Jg(¥r) = Jgen (Vao) +0(1) = Jg(vr) — Jy(¥oe) = Jgen (¥5o) +0(1) -

We can repeat this procedure m times, finding m sequences of points xi,, <o, xp € M con-
verging to some points z!,--- ,2™ € M, m sequences of real numbers R,lf, -++, R} converging
to zero, m functions Wl  --- W™ solutions of (23) and the related gb,lg, -+, 0" defined as in

, with
Pt = = e — Y 4,

Jj=1

m
To(Wp ™) = Jo(r) = Jg(too) = Y Jomn (Vhe) + (1) .
j=1
Now, from in Remark we have that

J,

grn

(WL )>Crn j=1,....,m.

€0

Therefore, since from Proposition (PS) sequences at levels strictly below £ converge
strongly to zero in H%(M), we stop the iteration when ¢ — mCrn < ¢, obtaining the
thesis. O
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5 Least Energy Solution on the Sphere

In this section, we will provide the proof of Theorem [1.2}

We start by recalling the conformal invariant A™ (M, [g]), which was thoroughly studied in [T}, 2]
in order to study the optimal first eigenvalues of the Dirac operator. It plays the same role
as the classical Yamabe invariant but for its spinorial version (we also refer the reader to [40]
for recent results on the spinorial Yamabe problem). One way of defining A" (M, [g]) is as
follows:

A (M, [g]) = inf{ M1 (Dp)Vol(h) =, h € [g]}.
It can also be characterized by

on n:;l
¢ (fM | Dgtp|nt1 dv)
1mn
$eC=(SM)y( Dy )20 | [1,(Dgth, by dvl

AT(M, [g)) =

Proof. (of Theorem )
If 4 is a non-trivial solution of @, then we have

(Jfon (101G 102) ™ a0) ™
[or G ORI o

(/S (G o) dv)i

But u = G* * [1)|? satisfies Pyu= [¥|%. So if we define the H*-norm by

AT(S", [g0]) <

IN

1 1
[ullzrs = 1(Pg)2ullp2 = [[uPgull7,,
as in Section 2, we have from the Sobolev embedding H*(M) < L%(M) = L"(M), that

1
[ullzn < Y5(S™, [90]) 2 |l ull s,

where Y;(S™, [go]) is defined in (13)). Thus,

(/S (G« fuf)" av)" < W<[9 VPG [0f? o). (31)

In particular, we have that

4Jg (1) = XT(S™, [90])*Ys (5™, [g0])- (32)

We assume now that v is a ground state solution on (S™, gg). Then we are in the case of
equality in Holder’s inequalities. Namely,

n

[ (ke sguf) ™ (6o xtwl) ™ do= ([ wPeesiu o)™ ( [ (G xlupy )",
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_ Jon(G*[yp]?)" dv

Hence, for ¢, = T OPGoTUT do” we have

calul = (G < p?) " (33)

From the equalities in and , we have

1 n—2

i VoS [go])? = (X (5™ [0 Y (5™ [g0) 7"

Thus

AT(S™, [go])"
Cn = :
T Ye(S™ [90))
On the other hand, from (33)), we have that the function u = G* * |1)|? satisfies

Pés u= —ynt
R Cn,

Hence, by the classification results in [11], we have that up to a conformal change, u is
constant and hence |¢|? is constant. In particular, from the case of equality in Hijazi’s
inequality [23], 24], ¢ is a —%—Killing Spinor on S™. O

From the conformal invariance of and , we also have the following
Corollary 5.1. Let ¢ € H%(]R”, CN) be a non-trivial ground state solution for the equation
Dgntp = Ggn * 9],

where G is the Green’s function of the Laplacian on R", with N = 2l2]. Then there exists
Py € CN, a point xg € R™ and A > 0 so that

l(z) = c”()M)g(l -(557) @),

6 Brezis-Nirenberg Problem

We focus now on the linearly perturbed problem
Dyp = N+ G* % [,

where A > 0 and not a spectral value of D,. Also, define H;\r, H, and Hg to be the positive,
negative and null space of D, — A\ on H %(EM ). Notice that zero is a trivial solution for the
problem. In fact, one can obtain solutions to the problem if A < A\py; € Spec(Dy) and A
close to Agy1. Indeed, this type of solutions can be obtained using bifurcation theory. For
instance, if we define the operator L) : H%(M) — H%(M) by

Ly = (1+]Dg|) M (Dgh) — (1 + [Dgl) ™ (M) + G x [ *9).

Then its differential VL,[0] takes the form VL yh = Ah + C(A, h), where A is a self-adjoint
Fredholm operator and C' is compact (actually, it is a linear self-adjoint operator). Moreover,
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we have L)0 = 0 for all A € R. Now, if we take A\y < A_ < Ag41 < A4 then we can easily
check that the operators VL, [0] are invertible. Moreover, the spectral flow of VL,[0] on
[A—, A+] is well defined and can be computed explicitly by

SF(VLA[0], [A=, A4]) = dim(H, N H)tr) —dim(H,, N HY)
= —dimker(Dg — Ap41) # 0.

Hence, by Theorem in [16, Theorem 1], we have that 0 is a bifurcation point and hence,
there exists a nontrivial solution ¢y of Ly¢y = 0 for A close to A\rpy1. Moreover, ¢y — 0 as
A= >\k+1-

In what follows, we will show the existence of a non-trivial ground state solution ¢, without
restriction on A > 0 as long as A ¢ Spec(Dy). Moreover, if 0 < A € (A, Ag41), the solution 1y
can be thought of as the extension of the bifurcation branch ¢, to all the interval (g, Agy1).
We first start by preparing the variational setting allowing the construction of a minimizing
sequence. The setting is very close to the work of Sire and Xu in [39] and the bifurcation
result is close in nature to the one in [4] but we will not address the case when A € Spec(Dy),
although we expect a similar result to hold in our setting.

We recall that the energy functional of the problem has the following expression

1

T (@) = @) = 3 [ (Do) = AuPdo=1 [ G aploP @)

For ¢ € H2 we will write ¢ = ¢ + ¢~ € Hi @ Hy, if A is not an cigenvalue of D,,.
Proposition 6.1. There exits a C'-map 7 : HY — H, such that for every 1 € Hy
In(¥ +h) < In(¥ +7(¥)),Yh € Hy ,h # 7(h).
Moreover, T satisfies the following properties:
i) Py [Dyr(w) = (fy G*@,0)lr (@) + () do(y)) @ + ()] = 0.
i) 17K < 3 Sarens [P @G (@ 9) [0 (y) do(y)do(z).
iii) If K(¥) = 1 [arear G2 9) 0P (@)[¢(y) do(z)dv(y), then
IV lop < IV2E (% + 7)) llop-

i) Let J : Hi — R defined by J(1) := Jy(¢ + 7(¥)). If (Yr)x is a (PS) sequence of J,
then (VY + 7(¢¥g))k is a (PS)-sequence for Jy and

IV )| = [V Ir (e + 7(9))[|, Vb € H .

Proof. First notice that the functional

1
ho D) = 510 = 50E =5 [ [ @@yl hP@I + hPw) dela)doty)
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defined on H,, is strictly concave and anti-coercive, hence it has a unique maximizer (1)
and therefore 7) is satisfied. Now, since 7(1)) is a maximizer of J)(¢+-) on H, , we have that

DY+ 7)) = ().
It follows that

lrIE<5( [ G epP@lke) d@i)

- [ Gyl r@P@I + ) w) do@doy))
M x M

1

<3 /MxMGS(%@/)W\Q(@IW(@/) dv(z)dv(y).

and ii) follows. We consider now the operator T := —V3J\(¢ + -)[7(¢)] : Hy — H, that
can be expressed as

T(0) = ~Daht P (2 [ Gy (r(w).) do(e) 6+ 70+ [ G @)lietr)Pv(oh).

Notice that T is positive definite and

(T(h), k) = ||hlIX + 2/ G*(z,y) (¢ + 7(), h)(x) (Y + 7(¥), h)(y) dv(z)dv(y)

M x M
+/ G*(z,y)lY + ()] dv(z)du(y) > [|R]3. (34)
MxM

Hence, it is invertible and
HT71”017 <L

On the other hand, if
L) = P [Dah= [ Gl + vP () dolo)(o -+ b))

then from ), we have
L(r(4),4) = 0.

Applying the implicit function theorem yields

-1

Vr()e = = ((VaL)(r(¥). %)) (VuL)(r(), )¢, for all ¢ € Hy.
But (V4L)(1(¢),¥) =T and (VyL)(7(¥), %) = V2K (¢ + 7(¢)). Hence,
IV7(@)llop < V2K (¥ + 7(4)) | op-

and therefore (i77) holds. We finish the proof now by differentiating J in order to get

VI(@)d = VI + 7))o + V()]
But V7(¢)¢ € H, and 7(3) is a critical point of Jy(¢ + -) restricted to H, . Therefore,

V()¢ = VI + 7(1))¢, Ve € HY .

In particular, if (¢), C Hy is a (PS) sequence for Jy, then (15 + 7(¢y))x is a (PS) sequence
for J. O
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We claim, next, that J has a mountain-pass geometry. Indeed, we have J(0) = J(0) = 0.
Moreover, if ¢ € Hy" with |[¢| = 1, we have

T 2 t4 s 2 2
Jw) > ) = 5 - /MG « ORI do.

Therefore, there exists tyg > 0 and vy > 0 such that
J(tp) > 0,Y0 < t < tg and J(to)) > vp.

In order to find a critical point for J (and hence a critical point for J)y ), we define the min-max
level 0y by setting )
0y := inf  maxJ(tv).
YeH\{o} >0 ()

Notice that dy > vy > 0. This critical level, if it exists, corresponds to the ground state of J
on the Nehari manifold

M= {¢ € H{;(VJ(y),9) = 0}.
That is,

as long as M # (). If J satisfies the (PS) condition and M # (), then Jy is indeed a critical
value for J and hence for .Jy. But, J and .Jy satisfy the (PS) condition only below Y. So
our objective now, is to show that d, < Y. In the classical setting, one uses a test function
(mainly grafting a standard bubble). In our case, some work needs to be done to handle the
T-component of any potential test spinor. To this end, we want to be able to estimate the
energy level of a (PS) sequence of J in terms of the energy levels of Jy.

We consider then a (PS). sequence (¢); for Jy. That is, Jx(¢r) — ¢ > 0 and ||V (¢ )] — 0.
Based on the study of (PS) sequences above, we know that ||1x|| is bounded. Moreover, we
have the following properties:

Proposition 6.2. Given a (PS). sequence (V) for Jy, we have
i) o5 — 7@l = O(IVHwwI).
i) VJ(¥;F) — 0.
iti) There exists t, > 0 such that ty;} € M. Moreover, |t — 1| = O(HVj(%j)H)

Proof. We start by the proof of 7). We let z; = 1/),': + T(w:) and 2o = ¢ — 7'(1/}]:_), so that
21 + 2o = Y. Recall that
<VJ)\(21),ZQ> =0.

Therefore,

iz - [ G xlaPla ) do =0,
M

On the other hand, we have
(VIn(w),22) =~ 22 = [ G P, 2) o
M
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Hence,

(VI (k) 22) = —[[22]l3 + / G+ 212 (21, 22) dv — / G i o, 22) .
M M

Notice now, that

/ G* % |21|* (21, 22) dv —/ G % Y] (g, 22) dv = (VK (21), 20) — (VK (¢y), 22).
M M

Thus, there exists ug € [0, 1] such that

/ G x |z1[* (21, 22) dv — / G [ * (g, 22) = — (V2K (21 + prz2)[22), 22) < 0.
M M
This yields

z2][x < [[VIA(¥r)]] = O,

as claimed in 7).
For the proof of i), we start with

VJx(z1) = VJI\(¢r — 22),

and since zo — 0, as claimed in i), we have VJy(z1) — 0. Therefore,
IV I (0 = V(=0 = 0.

It remains now to prove #ii), which is more involved. First, we claim that there exists cg > 0
such that

/ G % | 2|2 dv > co. (35)
M
Indeed, we have

1 1
-5 =5 [ G xlallal do
M

On the other hand, since zo — 0, we have that Jy(z1) = J\(¢x) + o(1) = ¢+ o(1) and
(VJ(z1),21) = o(1). Hence,

Ja(21)

1
/ G* % |21)?|21)* dv = ¢ + o(1),
2 J/m

which finishes the proof of the claim. Now we consider the function f(t) := (V.J (t;), t).
Notice that f(1) — 0 as k — oco. Moreover, we have

P = (VAIDWEL O + (VT (), o).
But expanding the first term of the previous equation yields

(VIO 00 = I IR — (VAR + r() by + V) [ )
= (VI o) + (VK@ + 7)), ¢)
— (VEK (4 + 7))+ V)WL ).
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We set then z := ¢ + 7(¢;") and hy == V() [0 ] — 7(¥;). Then we have

(VK (z), 1) — (V2K (z1) 21 + b, ) = (VK (2k), 21) — (VK (21), 7(4;))
— (V2K (21)[2k + i), 21 + hie)
+ (V2K (21) [21 + b, VT ().

On the other hand, by differentiating ) in Proposition with respect to ¢, we have

—(Vr(D)[Wf T, wis = (V2K (21)[2k + hi, w).

K
sz

In particular,
VT WA = (V2K (i) [z + hal, V() [0)-

Moreover, we have

—lT@R) 12 = (VK (), 7())  and = (7)), VT W]]) = (VK (21), V(40 [0 ])-
Hence,

(VK (21), %) = (V2K (z) [z + hae], ) = =[[helI3 + (VK (21), 21) + 2(V K (21), hi)
— <V2K(Zk)[zk + hi], 2z, + hi).

Thus,
F() =2f(1) + (VK (z1), 21) — (VK (2) [z + h], 2k + i) + 2(VE (25), he) — || 13-

In order to evaluate the sign of f(1), we need to expand (VK (zy),zr) — (V2K (2x)[zx +
hk], 2k + hk> + 2<VK(Zk), hk> Indeed,

(VK (21), 21) — (V2K (21) 21 + i), 26 + he) + 2(V K (2), hy,) = / G* |z} 2] do
M
— / G* % |z |* | 2h + hye|? dv — 2/ G® * (z + hg, z) (2 + hg, 2k) dv
M M
+ 2/ G* * |z |* (21, i) do
M
= —2/ G * (zk + hi, 2i) (21 + I,y 21) dv — / G* * |z, | |* dv
M M
< —2/ G° <Zk + hk,zk><zk + hk,2k> dv < 0.
M
Therefore,
(1) <2f() - 2/ G* * (2 + by, 25 (25 + B, 25) dv — || B3
M

But f(1) — 0 as K — oo, which leads to two cases. Either there exists pg > 0 such that
|hrl|3 > po for k large enough, and thus for k large enough

/ Ho
f (1) < _?’
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or ||hk/|3 — 0 and in that case,

/ G*(x,y){(zr + hg, zk) () {2k + hk, 2k)(y) dv(z)dv(y) = / G* % |z |z dv + o(1).
MxM M
Now using , we have the existence of g > 0 such that

2/ G® * (2 + Py 2) (21 + hig, 2) dv > po.
M

In conclusion, we have for k large

/ Ko
Fy< -,

In particular, f'(t) < —£2 in a small neighborhood of 1, independent of k, of the form
[1— p, 1+ p] for a certain g > 0 and small but fixed. Using the mean value theorem, we have

fa+m < £ = HE <0and f(1-p) = f0) + 5F > 0.

So there exists t € [1 — p,1 + p| such that f(tx) = 0. Moreover, since \f%(tﬂ < % for
t e[l —p,1+ p], we have

=11 =177 0) — S (F) < )] = oIV T ).
Ho

which finishes the proof. O
Proposition 6.3. Assume that (Vr)g is a (PS). sequence for Jy with ¢ > 0. Then
0 < D) + O (VA @OIP).

In particular, if Jy satisfies the (PS) condition at the level set §y then it has a critical point
1 at that level.

Proof. We will be using the notations of the previous proof. That is, we let z; = ¢,‘: + T(w;)
and wy, = tkw,:r + T(tkwlj). Then we have from Proposition

ln=wrlln < lw—zp =11l I+ @) = @)l = O IV @l +O (I T@I)-
On the other hand,
IVT@EI = 1930l = IV Ia@) |+ O (llz = vlla) = O(IVIwe)ll).

In particular, we have

e = wells < O(IV @)

Next, we notice that since tkw; € M, we have that

(VI\(wi), i — wi) = (VIa(wy), (W —wi) ) = (1 — ) (VI (tab), ) = 0.
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Hence,
In(r) = In(wi) + (VIz(wi), Y — wi) + O(Wk - wkH?\)

= I(w) + O(IV I (w)I?). (36)
Therefore,

o < T(t7)) = Ta(wr) = (W) + O (IIV () I2).

6.1 Test Spinor

We are now ready to construct a test spinor that will allow us to go under the critical energy
threshold and hence have compactness of the minimizing Palais-Smale sequence. We will
closely follow the construction in [25] and [39].

Consider a constant spinor ¥9 on R” such that [1)9|?> = a,,, where a,, is a constant satisfying

n 1

ar tw, =2"Ye, "t

Here, ¢, is the constant introduced in . We define now the spinor

v () -

so that if f(r) = ﬁ, then |¥|? = a,, f(]z|)""!. Notice that

DU = gqu.

We fix § > 0 so that 20 < i(M), the injectivity radius of M. We let 7 to be a smooth function
on R™ with support in Bys(0) =: Bss such that n = 1 on Bs(0) =: Bs. Now, we can define the
spinor ¥ (x) = n(a:)s_nT_l\Il(f) = n(x)¥(z). Next, we use the Bourguignon-Gauduchon [5]
trivialization in order to graft the spinor 1. on M. Indeed, we fix pg € M and (z1, - ,xy)
local normal coordinates around py provided by the exponential map exp, . That is, there
exists a neighborhood U C Tj,, M = R" and a neighborhood V' C M, such that exp,, : U =V
is a diffeomorphism.

Let G(p) = (gij(p)):; be the components of the metric at p and B = G~z. Notice that B is
well defined since G is symmetric and positive definite. With these notations, we have that
B*g = ggrn. Therefore, B defines an isometry as a map B(p) : (T, -1,U, grr) = (T,V, g(p)).

€XPpg
Hence, given an oriented frame (yi,---,y,) on U, we obtain a natural oriented frame on

V by taking (Byi,- -, Byy,). Thus, one has an isomorphism of the SO(n)-principal bundle
induced by the map ®(y1,--- ,yn) = (By1,--- , Byy) as described in the diagram below:

)
Pso(U, grn) Pso(V,g) C Pso(M,g)

epro

UcCTy,M VM
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The map ® commutes with the right action of SO(n) and hence it induces an isomorphism
of spin structures:

U x Spln(n) = PSpm(Ua gR") PSpin(VYa g) - PS’pin(Ma g)

Gpro
U C TypM VoM

This leads to an isomorphism between the spin bundles ¥ ., U and ¥,V If we let e; = B(0:,)
we then obtain an orthonormal frame (e, --e,) of (T'V,g). We let V and V, respectively
the Levi-Civita connections on (TU, grn) and (T'V, g). We will keep the same notations for
their natural lifts to ¥, U and ¥,V. From now on, if H — U (resp. H — V) is a smooth
bundle over U (resp. over V'), we let I'(H) be the space of smooth sections of H. The Clifford

multiplications then satisfy B B

where here we use the identification that any ¢ € I'(Xy,,U) corresponds via the previously

defined isomorphism to a spinor 1 € I'($,V). If D and D are the Dirac operators acting on
I'(Xg,,U) and T'(3,4V), then we have for ¢ € I'(XU)

Dy =D+ W -4+ X -0+ (bij— )0, - Vo, ¥,
i,
where here, the b;; are such that e; = Zj bijOz;, W € T(CU(TV)) and X € ['(TV) are defined
by

W=- Z Zbia(amabjﬂ)bgklei . ej * €L,
i,0,ki#jAk#L o, B

1 — —k 1 —
X =7 Z(sz —Iyer = 3 ZF;kek‘

and

Using the identification between x € R" and p = exp, z € M, we can write as in [25], 39],
that G = I + O(|z|?) as |z| — 0. Hence, we have

bij = 05 + O(|z|*), W =0O(|z>) and X = O(|z|) as |z| — 0.

Our test spinor then, will be ¢, := 1).. Our ultimate goal in here is to apply Proposition
for the test spinor ¢.. In order to do that, we need to show that (¢.)c is a (PS). sequence
for Jy. So we start by estimating the gradient of Jy at .:

Lemma 6.1. For ¢. defined as above, we have
O(e|n(e)[5), ifn=3

IV Ix(pe) s <
g, ifn>4
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Proof. We need to estimate the Hy-norm of ¢, and R, = Dy, — (Gs * |<pg|2>gog, where HY

here is the dual of the space H %(M ) equipped with the norm || - ||x. One notices that since
A & Spec(Dy), the || - |[x- norm is equivalent to the usual H%(M) norm. Hence, by the
continuous embedding Ln%(M) — H_%(M), we have that for all ¢ € Ln%(M),

[l < Cllll, 2, -
Therefore we have
2n nT-tLl
lpellmy < C”%HL% = (/B% ||+ dv)
co(f o0
|z|<28
% Tnfl nTJrl
= CE(/ ey dr)
0 (147r2)
2
elIn(e)|3 ifn=3
< .
_C{sifnzzl (37)

Next, we move to estimating R.. Indeed, we have

Dge =De + W -he + X - + Y (bij — 6)0z, - Va, Ve

1,J
= ([ Grele. )W)l dy). + (Vo) + X) - oo+ W
+ Z(bij — 0i5)0x, - Vo, Ve (38)
'hj

On the other hand,
Dpe — (G * |oe|*)pe = (/R G (z,9) Ve (y)]? dy)soa - (/M G5 (z,y)|ee|? dy)soa + V() - ¢

= /x_md[%(w,y) - Gyl o) dy) -

H([ enGwPa)e- ([ Gwwlel dy)e.
|z—y|>§ \m—y|>§

+ Vn - ..
This leads to

Dg. — (G5 * |pel*)pe = </

s
lz—y|<5

([ ereavba)e - ([ Gwwlel dy)e.
|m—y|>% |:p—y\>%

+V0 e A Wt + X -+ Y (bij — 6i)0a, - Vo, Ve
.3
= A+ Ay + A3+ Ay + A5 + Ag + A

(G (2.) = G,y 0)? dy ) -
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We will estimate now the terms A;,7 = 1,---,7. Indeed, for A4, we have

n+1
= 7|2 2n

”A4||H; < C||A4HL7127<‘:L1 = CY(/B25 |V77 . \I’g‘nJrl d’U)
n+1

2n "

< C(/ D |1 d:c) 2
<[ <26

26 n+1

SCE(/E B dr) < et

n(n—1)

2 (14r2) oD

>

For Ay, we use Proposition in Section 2 in order to have

1Al < CllAr]lzmnsn < C / / W.(y)]? dy|ve(a)] )" dz)
A Ll ( B25< Bys 1T — Y ) )
1 nooNw
< C||v zn/ /\Inydy de)"
Ml s [ (] g o) do)
< CT.|P
L7+T (Bas)
2 ln(e)]% ifn=3
<cd €l
- {62 ifn>4

For As, we use the fact that the Green’s function is bounded outside of the diagonal. Thus,

HAQHH; < C(H\II€H2L2Hi,OgHani_f1

< Ce2.

A similar inequality holds for ||A3||g;. On the other hand,

2n_ 2n_ nT-H 6n_ on_ ”2—‘*;11
| A5y < C(/ |W |[n+1 |, | ntT dv) < C(/ || 7T | W | b dx)
Bas || <28
2 bn +n—1 n+1
n+1 “on
S 054/5 T—M dT) :
0 (1_’_1"2)”7“

T if3<n<8
<CQ An(e)]s ifn=09
etif n>10
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Similarly for Ag we have

RN
Bas
N
SC(/ |‘T|"+l|we’"+l dx)
|| <26
26 27”+m_1 nt1
5 n+1 nT2
0 (1472 it
"7 ifn = 3.4
<CS 2|ln(e)|s ifn=5
e2ifn>6

It remains now to estimate A7. We will write A7 = By + By, where

Bl = ”Z(bij — (51])8% . Vazj \IIE and BQ = Z(b” — 51])(655377)83% . \I’g.
i, i,
Notice that since |[V¥| < Cf(r)z, we have

n+1

4n 2n "
HBNH;§<7(/ MPﬁHVWAKHcM)2
|z[<26

25 4in
= ——i—n—l n+1
e rntl o
S 052(/ S d'f’) ?
o (14 r2)Pn

" ifn =34
<4 &2In(e)|s ifn=>5
e2ifn>6

We finish now by estimating Bs:

n+1

Ballg < ([ lalwa d)
jl<28

" if3<n<8
<C 84\ln(5)|gifn:9
etif n > 10

All the previous estimates can be summarized as follows:

" ifn =34
|Relltr: <CQ 2 In(e)|5 ifn="5 - (39)
e2ifn>6
Combining and yields the desired result. O

After observing that (¢ )c is indeed a (PS) sequence with a precise estimate on ||V.Jy(¢¢)] HE
we proceed now to estimate the energy.
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Lemma 6.2. For ¢. defined as above, we have

O™ Y ifn=3
i) leellz = Qe) + C{ O(¥|n(e)]) if n =4,
O(¥) ifn>5

n—1

where Q(e) = eanpwn—1 fooo W dr.

ii) Jg(pe) <Y + O(e?).

Proof. Recall that the volume form in normal coordinates takes the form dv, = dz + O(|z|?)
around pg. Hence we have

/ “Pe’Q dvg :/ ‘905‘2 dvg
M Bos

:/‘ hmfdx+/‘ m@mgﬁdx+o(/ a2 dr)
|lz|<o 0<|x[<26 lz|<é
n—1 25

s n-1 26 = n+1
_ R [ — T
_5anwn_1/0 A3 2T dr—i—O(&‘/S A3 2T dr) —I—O(a /0 A3 2T dr)

O™ 1Y) ifn=3

O(e3|In(e)|) if n = 4

O(?) ifn>5
O™ Y ifn=3

=Qe)+{ O@EB|n(e)) ifn=4 . (40)
O(3) if n > 5

=Qe)+0E"HY+C

Here,

,rnfl

Q(f—:) = €anwn1/0 W dr.

Next, we estimate f M (Dp., ©c) dvy. Using the same decomposition as in , we see that

/ (Dipe, 2) dvy = / G (. 9) | ()] 02 () dy duy(x) + / W T T d,
M M JR" M
+ Z(bz] - 51’]’)772(8% : v(‘)zj \1167\1/76> dvg
M
7]

=+ Fy + Fs.

We will estimate each term individually starting by F}. Indeed,
Fi= [ [ Grul )W )n@) [T (@) dy duy(a)
M JR"
[ [ Gl o). Pe) dyis
|z|<d JR™
+o( [ G e, P ()W) dy)
5<|z|<26 JR7

+o( [ [ Grulw )| 0P Wlal ¥ (z) dyda).
|z|<26 JR™
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But recall that

1 5
. O (2, 9)[Pe*(y) dy = i Ve 71 (2),

where ¢,, is the constant defined in . Hence,

)
1 n = ,rn—l
Gon (2, 9) [V 2 () |V (2) dydx = ¢ tai w _1/ ————dr
/|x<6 - R ( )‘ 5’ ( )‘ 5’ ( ) n n n 0 (1 T2)n

1 n +o0 T,n—l
= c;}‘la{{_lwn_lfo atrop dr + O(e").
(41)

On the other hand,

26

1 n n—1
G (2, )|V 2 () |V, | (z ddxzc’”a”lw/grdr
Loy fo G e P ) e = 0l s [ 7

=0(e"). (42)

And to finish, we have

2

>

o( [ [ Grtwiwl@iaPiore) a) =o(2 [ 5 )
o (2, )|V ? (y)|2]?| ¥ |? (2) dydx ) = 5/7"
al<os Jrn o (L4723
= 0(£%).
Therefore,
% Ll +oo T.nfl d O 9
F=cyal™ wp_ —_ .
1 C Gy W 1/0 (1+T‘2)n T+ (6)
The estimates for Fo and F3 are relatively simpler. Indeed,
3y |2 4 2
Fr<C x|’ W dangE/ ——dr
\m|g26| e o (L4+r2)n
O™ 1) ifn = 3,4
<< O@EHIn(e)|)ifn=5 .
O(e*) if n > 6
Similarly,
2 2 T i
Fs<C z|? |V, | |W deC’E/ ——dr
3 |$‘§26‘ | | EH 8‘ 0 (1+T2)n
< O(&?|n(e)|) if n =3
=\ O@E?) ifn>4 ‘
Thus,

D = ooyt O(2|In(e)|) it n = 3
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Now we need to estimate the second term of the energy functional J,.

/ [pe* () Gy (2, y) el (y) do(a)do(y) =/ NP (@) Gy y)leel* () dv(x)dv(y)
M xM

le—y|<§
w [ @G o) dole)doty)
lz—y|>35

— [ PGk ) + )W) dady
lz—y|< §;lz|<5

+0( /|| [ Gl e () o) dydr) + O ( /M ool du,)”)

1
=/| suges Vel @GR (@I W) dxdy+o(/ 0. |?() W 2(y) dady)
ToyI<gilrl=3

|x—y|<% ‘x - y’

+O(/Iz|2§ . Gon (2, )| 2 () |2 W (2) dyd;c) +o((/M|%|2 dvg>2)

le—y|<Zsle|<$ |z =y
+O(/||>5 - G o) o) o (o) dydg:> +o<(/M|%|2 dvg>2)
TlZ3
([ e )

Using , we get

o((/M oel? dvy)) +0((/Rn 0P dry) ) = OE).

Moreover, from and , we have

1 n +oo n—1
S 2 2 _ n— n— r n
/x|§g [ Gaala )V PWI @) dyde = 0] v | o dr+ 0L

and

O</~T|Zg R GISR{"(‘/E’y)|\115’2(y)|x|2|\115’2(13) dydq:) = 0(52).

It remains to estimate

1
of | 0.J2() W[y dndy
( jo—yl<Zslel<E |z —y| )

—of /M /M WP (a) L 0P) dady) + OE)

Using the Hardy-Littlewood-Sobolev inequality, we have

1
Ve (z V.2 (y) dedy < C|||¥c)?| _2n < C¥.||%, = O(e?).
/M/W' )P ) dedy < CINLP s, < 1R = O
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Hence,

1 _n +oo
/ e |?(2)Gs(z, y)pe|* (y) dv(z)dv(y) = Cﬁlaﬁlwn—l/ rizn dr + O(e?).
Mx M o (T+7?)

It follows that

1 ll n_ +oo Tn_l N
Jg(epe) < 26 An Wn—l/o m dr + O(g%)

=Y + O(s%). (43)

Proof. (of Theorem (1.3))
From Lemma and we have that

I(pe) <Y = AQ(e) + O(e?)
and

O(e|In(e)|3 if n = 3

* <
1950l < { SO

Therefore, from Proposition [6.3, we have for € > 0 and small,
o < Ja(pe) + O(IVIr (e ||2)
<Y - \Q(e) + {

<Y.

(44)

Since, Jy and J satisfy the (PS) condition for energy levels below Y, we have that .Jy has a
non-trivial critical point ). O

We finally notice that for A = 0, Jp is a conformal invariant of (M, [g]) and we will denote it
by dp =: Y (M, [g]). With these notations, we see that Corollary is a direct consequence

of .
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