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Abstract In this paper we aim at identifying the level sets of the gauge norm in the Heisenberg

group Hn via the prescription of their (non-constant) horizontal mean curvature. We establish a

uniqueness result in H1 under an assumption on the location of the singular set, and in Hn for

n ≥ 2 in the proper class of horizontally umbilical hypersurfaces.
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1 Introduction

If we identify the Heisenberg group Hn with R2n+1 = Rn × Rn × R with generic point

ξ = (x, y, t) and we choose the group law

ξ ◦ ξ′ = (x, y, t) ◦ (x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ + 2

n∑
k=1

(xky
′
k − ykx′k)

)
, (1)

the so-called homogeneous gauge is the function defined by

ρ(ξ) =
(
(|x|2 + |y|2)2 + t2

) 1
4 .
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Such a ρ(·) is in fact homogeneous of degree 1 with respect to the family of dilations

δR(ξ) = (Rx,Ry,R2t), R > 0, (2)

and it provides the defining function of the following gauge balls (sometimes called

Korányi balls)

BR(ξ0) =
{
ξ ∈ Hn : ρ(ξ−1

0 ◦ ξ) < R
}
, for ξ0 ∈ Hn, R > 0. (3)

The gauge function appeared in [22] in the study of singular integrals on homogeneous

spaces. It has played over the years a crucial role in the analysis of pdes of sub-elliptic

type since the discovery in [15, Theorem 2] that ρ−2n(·) is, up to a constant, the fun-

damental solution of the Heisenberg subLaplacian ∆Hn . It is in fact known since [17,

Théorème 3] (see also the treatment in [4, Section 5]) the validity of an analogue of the

classical Gauss-Koebe theorem saying that the pointwise value of every solution u to

∆Hnu = 0 can be represented as a weighted average of the values of u on gauge balls

BR. The weight is given by the squared norm of the horizontal gradient of ρ (which is

homogeneous of degree 0 but not constant). Gauge balls are actually characterized by

such a weighted mean value property for ∆Hn-harmonic functions as proved by Lanconelli

in [23].

The metric balls BR defined in (3) are not the unique choice of “balls” adapting to the

subRiemannian features of the Heisenberg group. For instance, the Carnot-Carathédory

balls play somehow the role of the geodesic balls in Hn. Furthermore it is very much

related to our purposes the case of the domains bounded by the so-called Pansu spheres:

they are the cmc-spheres with respect to the relevant notion of horizontal mean curvature

(see Definition 2.1 below) and they are the conjectured unique minimizers for the isoperi-

metric inequality [33]. The solution of the isoperimetric problem in the Heisenberg group,

also known as Pansu’s conjecture, has generated a great amount of attention and several

proofs appeared in the literature under extra-assumptions on the class of competitors

[24, 6, 13, 29, 30, 37]. Concerning the related Alexandrov-type problem, it was shown in

[35] that Pansu spheres are the only rotationally invariant hypersurfaces with constant

horizontal mean curvature. To the best of our knowledge, a result which is reminiscent

of the classical Alexandrov theorem [1] is available only in H1: as a matter of fact, in

[36, Theorem 6.10] Ritoré and Rosales proved that Pansu spheres in H1 are the only C2-

smooth critical points of the horizontal perimeter under volume constraint. For n ≥ 2,

various characterizations of Pansu spheres among horizontally umbilical hypersurfaces

were established in [9].
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In this paper we take a new perspective as we address the question of characterizing

the gauge balls by prescribing the horizontal mean curvature. In a similar spirit, in a

companion paper [28] two of us have dealt with various characterizations of gauge balls

through suitable overdetermined problems. To give a better description of the main

results we provide the reader with some initial background on the main notions involved,

and we refer to Section 2 for the precise definitions. In Hn the horizontal distribution is

spanned at any point ξ = (x, y, t) by the vector fields

Xj =
∂

∂xj
− 2yj

∂

∂t
, Yj =

∂

∂yj
+ 2xj

∂

∂t
, j = 1, . . . , n,

which are left-invariant with respect to the group law (1) and homogeneous of degree one

with respect to (2). In our notations we let

Hξ = span{X1, . . . , Xn, Y1, . . . , Yn}.

We also denote T = ∂
∂t , and we consider in Hn the Riemannian metric 〈·, ·〉 which

makes the basis B = {X1, . . . , Xn, Y1, . . . , Yn, T} orthonormal. If we consider a smooth

hypersurface M ⊂ Hn, a point ξ ∈ M is said to be characteristic if the tangent space of

M at ξ coincides with Hξ. At any point ξ ∈M which is not characteristic it is thus well-

defined the so-called horizontal normal νH as the normalized 〈·, ·〉-orthogonal projection

on Hξ of the metric (outer, whenever possible) unit normal ν. The horizontal mean

curvature is the divergence of such νH (see Section 2 for the precise definitions), which

is therefore well-defined at any non-characteristic point. A simple computation shows

that the horizontal mean curvature of ∂BR(0) ⊂ Hn is proportional to the distance to

the t-axis, i.e. it is a constant multiple of
√
|x|2 + |y|2 at any point (x, y, t) ∈ ∂BR(0)

(outside of the two poles sitting on the t-axis, which correspond to the only characteristic

points for the gauge sphere). In H1 our main result reads as follows

Theorem 1.1. Let M be a smooth surface in H1 which is connected, orientable, compact,

and without boundary. Assume that there are no characteristic points of M outside of

the line {(0, 0, t) ∈ H1 : t ∈ R}. If at every non-characteristic point (x, y, t) ∈ M the

horizontal mean curvature of M is proportional to
√
x2 + y2 up to a constant factor

c 6= 0, then c > 0 and there exists t0 ∈ R such that M = ∂BR(ξ0) with R =
√

3
c and

ξ0 = (0, 0, t0).

The restriction to the (n = 1)-dimensional case in the previous theorem relies on the

fact that the 2-dimensional surface M ⊂ H1 has only one horizontal tangent vector field

at every non-characteristic point, and M is then ‘ruled’ by its integral curves (as it is
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clear from the analysis developed in [7, 36]). In higher dimensions we have the following

counterpart, which is a characterization of gauge spheres under the proper prescribed

curvature assumption among the class of umbilic hypersurfaces introduced in [9] (see

Definition 2.3 below).

Theorem 1.2. Fix n ≥ 2. Let M be a smooth hypersurface of Hn which is connected,

orientable, compact, and without boundary. Suppose that M is umbilic and that, at every

non-characteristic point (x, y, t) ∈M , the horizontal mean curvature of M is proportional

to
√
|x|2 + |y|2 up to a constant factor c 6= 0. Then c > 0 and there exists t0 ∈ R such

that M = ∂BR(ξ0) with R =
√

1
c

2n+1
2n−1 and ξ0 = (0, 0, t0).

Remark 1.1. We know that the horizontal mean curvature of a generic gauge sphere

∂BR(x0, y0, t0) in Hn is a constant multiple of
√
|x− x0|2 + |y − y0|2. Since all the as-

sumptions involved are invariant by left-translation, we explicitly notice that for any

(x0, y0) ∈ R2n we can reformulate Theorem 1.1 and Theorem 1.2 as characterizations for

gauge balls centered at points on the t-axis {(x0, y0, t) : t ∈ R}.

The paper is organized as follows. In Section 2 we recall the main definitions involved

and we show some basic properties. In Section 3 we give the proofs of Theorem 1.1 and

Theorem 1.2 which follow a similar pattern: the main aim is to infer, under the respective

assumptions, that the key functions ϕh, ϕv introduced below in (21) and (30) are constant

throughout M . Finally, we will show in Corollary 3.1 that Theorems 1.1 and 1.2 imply in

particular a rigidity result in the class of cylindrically symmetric hypersurfaces M ⊂ Hn

for any n ≥ 1.

2 Definitions and preliminaries

In this section we collect some preliminary material that will be used in the rest of the

paper. We shall recall some known notions for the study of smooth hypersurfaces in Hn,

and we refer the reader to [11, 34, 32, 7, 12, 35, 20, 37, 10, 2, 9, 3] for several insights

and different perspectives and approaches to the geometry of submanifolds in various

subRiemannian settings.

Being 〈·, ·〉 the metric defined in the Introduction (with induced norm | · |), we denote

by ∇ the Levi-Civita connection associated to this metric. A direct computation shows

that for any i, j = 1, . . . , n the following holds

∇XiXj = 0, ∇XiYj = 2δijT, ∇XiT = −2Yi,

∇YiXj = −2δijT, ∇YiYj = 0, ∇YiT = 2Xi,

∇TXi = −2Yi, ∇TYi = 2Xi, ∇TT = 0.

(4)

4



For any smooth vector field V in the horizontal distribution H we define

J(V ) := −1

2
∇V T.

In this way we have J(Xi) = Yi and J(Yi) = −Xi for all i ∈ {1, . . . , n}. Moreover, for

any V,W ∈ H, one can easily see that the following relations hold

〈J(V ),W 〉 = −〈V, J(W )〉, 〈J(V ), J(W )〉 = 〈V,W 〉,
J(∇VW ) = ∇V (JW ), and 〈[V,W ], T 〉 = 4〈J(V ),W 〉.

(5)

For any smooth vector field V in Hn, we will use the notation PH(V ) to denote its

horizontal projection, being PH the orthogonal projection onto H. A special role will be

played by the horizontal part of the position vector, i.e.

ξH := PH(ξ) =

n∑
j=1

xjXj + yjYj .

We can show that

∇ZξH = Z + 2〈J(Z), ξH〉T for any Z ∈ H. (6)

To see (6), we just write Z =
∑n

j=1 (αjXj + βjYj) and it is straightforward to recognize

from (4) that

∇ZξH =
n∑
j=1

(Z(xj)Xj + Z(yj)Yj) +

+
n∑

j,k=1

(αkxj∇XkXj + βkxj∇YkXj + αkyj∇XkYj + βkyj∇YkYj)

= Z + 2

n∑
j=1

(αjyj − βjxj)T = Z + 2〈J(Z), ξH〉T.

Similarly we have

Z(t) = −2
〈
J(Z), ξH

〉
for any Z ∈ H, (7)

since in the same notations we can check that

Z(t) =
n∑
j=1

(−2αjyj + 2βjxj) = −2
〈
J(Z), ξH

〉
.

We now start considering a C2-smooth codimension 1 submanifold M in Hn. We

always assume M to be connected and orientable. We denote by ν a fixed choice for the
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metric normal with unit length, and by TξM the tangent space at ξ ∈ M . Whenever

M is also compact and without boundary, we agree to fix ν as the outward unit normal.

The characteristic set is defined as

SM := {ξ ∈M : PH(ν) = 0} = {ξ ∈M : TξM = Hξ}.

Outside of the set SM we suppose the hypersurface to be C∞-smooth. For any point in

M r SM it is well-defined

νH =
1

|PH(ν)|
PH(ν),

and we can write

ν = |PH(ν)|νH + 〈ν, T 〉T

and define the tangent vector field

τ := 〈ν, T 〉 νH − |PH(ν)|T.

We further denote

η = −JνH (8)

which clearly belongs to H ∩ TM . In case n > 1, locally around any point ξ ∈M r SM

we can also pick smooth horizontal vector fields Vi,Wi for i = 1, . . . , n − 1 such that

J(Vi) = Wi and {
η, νH , V1,W1, . . . , Vn−1,Wn−1

}
is an orthonormal basis for Hξ. With these choices we have fixed the orthonormal frames

for TM and H ∩ TM (outside of characteristic points) as, respectively,

{τ, η, V1,W1, . . . , Vn−1,Wn−1} and {η, V1,W1, . . . , Vn−1,Wn−1} .

In our notations we have the following

Lemma 2.1. In M r SM it holds〈
∇ZνH , T

〉
= 2 〈η, Z〉 for every Z ∈ H, (9)〈

∇τνH , τ
〉

= 0 =
〈
∇ννH , ν

〉
, (10)

and 〈
[Z1, Z2], νH

〉
=
−4 〈ν, T 〉
|PH(ν)|

〈J(Z1), Z2〉 for every Z1, Z2 ∈ H ∩ TM. (11)
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Proof. The relation (9) follows by (5) and (8) since, for all Z ∈ H, we have〈
∇ZνH , T

〉
= −

〈
νH ,∇ZT

〉
= 2

〈
νH , J(Z)

〉
= 2

〈
−JνH , Z

〉
= 2 〈η, Z〉 .

On the other hand, using that |νH | = 1 together with (4)-(5), we obtain〈
∇ννH , ν

〉
=
〈
∇ννH , |PH(ν)|νH + 〈ν, T 〉T

〉
= 〈ν, T 〉

〈
∇ννH , T

〉
= −〈ν, T 〉

〈
νH ,∇νT

〉
= −〈ν, T 〉

〈
νH ,∇|PH(ν)|νHT

〉
= 2|PH(ν)| 〈ν, T 〉

〈
νH , JνH

〉
= 0

and analogously〈
∇τνH , τ

〉
=
〈
∇τνH , 〈ν, T 〉 νH − |PH(ν)|T

〉
= −|PH(ν)|

〈
∇τνH , T

〉
= |PH(ν)|

〈
νH ,∇τT

〉
= |PH(ν)|

〈
νH ,∇〈ν,T 〉νHT

〉
= −2|PH(ν)| 〈ν, T 〉

〈
νH , JνH

〉
= 0.

The previous two identities show (10). Finally, in order to prove (11), we can pick any

Z1, Z2 ∈ H ∩ TM and deduce from the property [Z1, Z2] ∈ TM and (5) that〈
[Z1, Z2], νH

〉
=

1

|PH(ν)|
〈
[Z1, Z2], |PH(ν)|νH

〉
=

1

|PH(ν)|
〈[Z1, Z2], ν〉 − 〈ν, T 〉

|PH(ν)|
〈[Z1, Z2], T 〉 = − 〈ν, T 〉

|PH(ν)|
〈[Z1, Z2], T 〉

=
−4 〈ν, T 〉
|PH(ν)|

〈J(Z1), Z2〉 .

We are then ready to recall the definition of horizontal mean curvature. Such notion

arises in the criticality condition for the horizontal perimeter (see [5, 12]).

Definition 2.1 (horizontal mean curvature). Let M ⊂ Hn as above. For any ξ ∈MrSM
we define the horizontal mean curvature of M at ξ as

HM (ξ) =
div(νH)

2n− 1
=

1

2n− 1

(〈
∇ηνH , η

〉
+

n−1∑
i=1

〈
∇ViνH , Vi

〉
+
〈
∇Wiν

H ,Wi

〉)
, (12)

where div stands for the divergence with respect to the metric 〈·, ·〉.
In particular, if M ⊂ H1 we simply have

HM (ξ) =
〈
∇ηνH , η

〉
in case n = 1. (13)
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We warn the reader that the second equality in (12) is justified by (10). The definition

of HM can be (and, in the literature, has been) in fact given in multiple ways. For

example, since ∇TT = 0, it is immediate to recognize that

div(νH) =
n∑
i=1

〈
∇XiνH , Xi

〉
+
〈
∇YiνH , Yi

〉
.

By noticing that by (9) we have

PH(∇ZνH) = ∇ZνH − 2 〈η, Z〉T for any Z ∈ H,

we can also recall the notion of horizontal shape operator (see [37]) which we will be

needed in what follows.

Definition 2.2 (horizontal shape operator). Let M ⊂ Hn as above. For any ξ ∈MrSM
we can define the symmetric endomorphism AM (·)(ξ) on Hξ ∩ TξM as

AM (Z) = PH(∇ZνH)− 2 〈ν, T 〉
|PH(ν)|

(
J(Z)− 〈η, Z〉 νH

)
for Z ∈ H ∩ TM .

The fact that AM (Z) ∈ H ∩ TM for Z ∈ H ∩ TM follows by the two identities

〈AM (Z), T 〉 = 0 =
〈
AM (Z), νH

〉
which can be easily checked. On the other hand, the symmetry of AM (·) can be deduced

from (11) since

〈AM (Z1), Z2〉 − 〈AM (Z2), Z1〉

=
〈
∇Z1ν

H , Z2

〉
−
〈
∇Z2ν

H , Z1

〉
− 2 〈ν, T 〉
|PH(ν)|

(〈J(Z1), Z2〉 − 〈J(Z2), Z1〉)

= −
〈
νH ,∇Z1Z2 −∇Z2Z1

〉
− 4 〈ν, T 〉
|PH(ν)|

〈J(Z1), Z2〉 = 0

for any Z1, Z2 ∈ H∩TM . When n = 1, H∩TM is 1-dimensional (and generated by η in

our notations) and AM (·) is nothing but the multiplication by the factor HM . In higher

dimensions the horizontal mean curvature appears as the normalized trace of AM since

〈AM (η), η〉+

n−1∑
i=1

〈AM (Vi), Vi〉+ 〈AM (Wi),Wi〉
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=
〈
∇ηνH , η

〉
+

n−1∑
i=1

〈
∇ViνH , Vi

〉
+
〈
∇Wiν

H ,Wi

〉
= (2n− 1)HM . (14)

The following notion of horizontally umbilical hypersurface was introduced and studied

in [9, 8].

Definition 2.3. Let n ≥ 2. We say that M is umbilic if, in M r SM it holds

AM (Z) = (l − k)〈η, Z〉η + kZ ∀Z ∈ H ∩ TM,

for some suitable functions k, l.

In particular, at any non-characteristic point ξ, one has by (14)

HM (ξ) =
1

2n− 1
(l(ξ) + (2n− 2)k(ξ)).

The class of umbilic hypersurfaces is wide enough to contain any M which is rota-

tionally symmetric with respect to the vertical t-axes (see in this respect [9, Proposition

3.1]; see also the proof of Corollary 3.1 below).

Remark 2.1. It is evident from Definition 2.3 that

if M is umbilic with l = 3k then k(ξ) =
2n− 1

2n+ 1
HM (ξ) for all ξ ∈M r SM . (15)

The case l = 3k is related to the gauge spheres (see Example 2.1 below).

On the other hand, let us mention that the Pansu spheres satisfy the umbilicality property

with l = 2k: this is the case studied in [9].

Let us compute explicitly the objects previously discussed in the particular case of

the gauge spheres.

Example 2.1. Let n ≥ 1, ξ0 = (0, 0, t0) ∈ Hn and M = ∂BR(ξ0) = {ξ = (x, y, t) : (|x|2+

|y|2)2 + (t− t0)2 = R4} ⊂ Hn. We use the notation r = r(x, y) =
√
|x|2 + |y|2 = |ξH | to

denote the distance from the t-axis. For any ξ ∈M one has

|PH(ν)| = 2rR2√
4r2R4 + (t− t0)2

and 〈ν, T 〉 =
t− t0√

4r2R4 + (t− t0)2
, (16)

which is saying in particular that the characteristic set coincides with the intersection of

∂BR(ξ0) with the t-axis, i.e. SM = {(0, 0, t0±R2)}. Outside of these two points we have

νH =
n∑
j=1

r2xj − yj(t− t0)

rR2
Xj +

r2yj + xj(t− t0)

rR2
Yj =

r2ξH + (t− t0)JξH

rR2
(17)
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and η = −JνH =
(t− t0)ξH − r2JξH

rR2
.

A straightforward computation then shows for any j, k ∈ {1, . . . , n}

〈∇Xkν
H , Xj〉 = Xk(

〈
νH , Xj

〉
) =

1

r2R2

(
(2xjxk + δjkr

2 + 2yjyk)r −
〈
νH , Xj

〉
R2xk

)
,

〈∇Ykν
H , Xj〉 = Yk(

〈
νH , Xj

〉
) =

1

r2R2

(
(2xjyk − δjk(t− t0)− 2yjxk)r −

〈
νH , Xj

〉
R2yk

)
,

〈∇Xkν
H , Yj〉 = Xk(

〈
νH , Yj

〉
) =

1

r2R2

(
(2yjxk + δjk(t− t0)− 2xjyk)r −

〈
νH , Yj

〉
R2xk

)
,

〈∇Ykν
H , Yj〉 = Yk(

〈
νH , Yj

〉
) =

1

r2R2

(
(2yjyk + δjkr

2 + 2xjxk)r −
〈
νH , Yj

〉
R2yk

)
,

which we can rewrite using (17) in the following way

PH(∇ZνH) =
1

R2

(
2

r

(
〈ξH , Z〉ξH + 〈JξH , Z〉JξH

)
+ rZ +

t− t0
r

JZ − R2

r2
〈ξH , Z〉νH

)
=

1

R2

(
2r〈η, Z〉η + rZ +

t− t0
r

JZ − t− t0
r
〈η, Z〉νH

)
(18)

for any horizontal vector Z. It is then easy to check that

HM (ξ) =
2n+ 1

2n− 1

r

R2
. (19)

Also, recalling Definition 2.2 and using (16) and (18), we can recognize

AM (Z) =
2r

R2
〈η, Z〉η +

r

R2
Z ∀Z ∈ H ∩ TM.

According to Definition 2.3, when n ≥ 2 this is saying that M is umbilic with l(ξ) = 3k(ξ)

and k(ξ) = |ξH |
R2 .

It is well known in the literature that, whenever n ≥ 2, the horizontal and tangent

vector fields in H ∩ TM satisfy an Hörmander type property as they can reproduce any

tangent direction via commutation. If M is also umbilic such information can be made

very precise and it is encoded in the following lemma.

Lemma 2.2. Let n ≥ 2. For ξ ∈M r SM denote

H0
ξ = span{V1,W1, . . . , Vn−1,Wn−1}.

If M is umbilical then

span{Z, [Z1, Z2] : with Z,Z1, Z2 ∈ H0
ξ} =

= span

{
V1,W1, . . . , Vn−1,Wn−1, τ −

k(ξ)|PH(ν)|
2

η

}
.
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Proof. Fix any Z1, Z2 ∈ H0
ξ . By (5) and (11) we have

〈[Z1, Z2], τ〉 = 〈ν, T 〉
〈
[Z1, Z2], νH

〉
− |PHν|

〈
[Z1, Z2], νH

〉
= −4

(
〈ν, T 〉2

|PHν|
+ |PHν|

)
〈J(Z1), Z2〉 =

−4

|PHν|
〈J(Z1), Z2〉 ,

which says that span{Z, [Z1, Z2] : with Z,Z1, Z2 ∈ H0
ξ} is at least (2n− 1)-dimensional.

On the other hand, using also (8) and the commutation property of J and ∇ together

with the umbilicality of M , we obtain

〈[Z1, Z2], η〉 =
〈
∇Z1JZ2 −∇Z2JZ1, ν

H
〉

=
〈
J(Z1),∇Z2ν

H
〉
−
〈
J(Z2),∇Z1ν

H
〉

=

〈
J(Z1), AM (Z2) +

2 〈ν, T 〉
|PHν|

J(Z2)

〉
−
〈
J(Z2), AM (Z1) +

2 〈ν, T 〉
|PHν|

J(Z1)

〉
= 2k 〈J(Z1), Z2〉 .

Hence we get 〈
[Z1, Z2], η +

k(ξ)|PH(ν)|
2

τ

〉
= 0 for every Z1, Z2 ∈ H0

ξ .

This implies that span{Z, [Z1, Z2] : with Z,Z1, Z2 ∈ H0
ξ} is exactly (2n−1)-dimensional

and the vector τ − k(ξ)|PH(ν)|
2 η belongs to such vector space as desired.

3 Darboux-type results

3.1 The case of H1

In this section we first treat the (n = 1)-dimensional case by providing the proof of

Theorem 1.1. As we mentioned in the introduction and recalled in (13), for surfaces M

in H1 the main role is played by the integral curves of the only horizontal and tangent

vector field η. A (naive) way to describe our approach to Theorem 1.1 is to draw a

parallelism with the classical problem of identifying the pieces of circles as the only

smooth connected curves Γ in R2 with non-zero constant curvature K = KΓ. Among

the many ways to show this property, a very direct one is to consider (denoting with

p = (p1, p2) the generic point in R2 and with N a choice for the unit normal to Γ) the

two functions f1(p) = Kp1 − 〈N, ∂p1〉, f1 : Γ→ R,

f2(p) = Kp2 − 〈N, ∂p2〉, f2 : Γ→ R.
(20)

11



By differentiating along a unit tangent vector U and using K = 〈∇UN,U〉, one recognizes

that Uf1 = Uf2 = 0 on Γ. Thus, there have to exist two constants c1, c2 such that fi ≡ ci,
i = 1, 2, and we have 1 = 〈N, ∂p1〉2 + 〈N, ∂p2〉2 = (Kp1 − c1)2 +(Kp2 − c2)2 for p ∈ Γ, i.e.

Γ is contained in the circle of radius 1
|K| and center ( c1K ,

c2
K ). If we bring back the attention

to the case of the 2-dimensional surface M in H1, we emphasize that in Theorem 1.1 we

prescribe the curvature HM (ξ) to be proportional to |ξH | (see also (19) in Example 2.1).

The term |ξH | corresponds to the distance (either Euclidean distance or gauge-related

distance, as they coincide in this case) to the vertical line Lv defined by

Lv = {(0, 0, t) ∈ H1 : t ∈ R}.

Having this in mind, as well as the notations introduced in Section 2, we define the two

functionsϕh(ξ) = 1
3HM (ξ)|ξH |2 − 〈νH , ξH〉, ϕh : M r SM → R,

ϕv(ξ) = 1
3HM (ξ) t

|ξH | − 〈η,
ξH

|ξH |〉 ϕv : M r (SM ∪ Lv)→ R.
(21)

The functions ϕh and ϕv have a different role. In the following lemma we show that ϕh is

in fact constant along the integral curves of η, whereas the behaviour of ϕv is subordinate

to the one of ϕh.

Lemma 3.1. Let M be a smooth surface in H1 which is connected and orientable. Let

also ω be a relatively open set contained in M r SM . Suppose there exists c ∈ R such

that HM (ξ) = c|ξH | for ξ ∈ ω. Then we haveη(ϕh) = 0 in ω,

η(ϕv) = 〈νH ,ξH〉
|ξH |3 ϕh in ω r Lv.

Proof. By (6) and (13), we have

η(|ξH |) =

〈
η, ξH

〉
|ξH |

and η(〈νH , ξH〉) = HM

〈
η, ξH

〉
, (22)

where in the second equality we also exploited the fact that Hξ is generated by the two

orthogonal unit vectors η and νH . Hence, for ξ ∈ ω, we obtain

η(ϕh) = η
( c

3
|ξH |3 − 〈νH , ξH〉

)
= c|ξH |2

〈
η, ξH

〉
|ξH |

−HM (ξ)
〈
η, ξH

〉
= 0.

On the other hand, by (7)-(8) we have

η(t) = −2
〈
νH , ξH

〉
(23)

12



and, using also (6)-(5),

η(〈η, ξH〉) = 1 +
〈
∇ηη, ξH

〉
= 1 +

〈
∇ηνH , JξH

〉
= 1−HM

〈
νH , ξH

〉
. (24)

Recalling that |ξH |2 = 〈η, ξH〉2 + 〈νH , ξH〉2, we then infer

η(ϕv) = η

(
c

3
t− 〈η, ξ

H〉
|ξH |

)
=
−2c

3

〈
νH , ξH

〉
− 1

|ξH |
+HM (ξ)

〈
νH ,

ξH

|ξH |

〉
+

1

|ξH |3
〈η, ξH〉2

=

〈
νH ,

ξH

|ξH |

〉(
−2c

3
|ξH |+HM (ξ)

)
− 1

|ξH |3
(
|ξH |2 − 〈η, ξH〉2

)
=

〈
νH , ξH

〉
|ξH |3

(
1

3
HM (ξ)|ξH |2 −

〈
νH , ξH

〉)
=

〈
νH , ξH

〉
|ξH |3

ϕh(ξ)

whenever ξH 6= 0. This completes the proof of the lemma.

Keeping in mind the comparison between the derivatives of (21) along η in Lemma

3.1 and the derivatives along the curve Γ of (20), it is no surprise that we want ϕh to

vanish identically throughout M . This is exactly what we show in the next lemma. We

will deduce this fact from the global properties of the integral curves of η and from the

assumption SM ⊂ Lv.

Lemma 3.2. Let M be a smooth surface in H1 which is connected, orientable, compact,

and without boundary. Assume that SM ⊆M ∩Lv, and that there exists c 6= 0 such that

HM (ξ) = c|ξH | for every point ξ ∈ M r SM . Then c > 0, ϕh ≡ 0, and every integral

curve of η reaches SM .

Proof. Let us divide the proof in three steps.

Step I. In the first step we shall show that c > 0. By the compactness of M the function
1
2 |ξ

H |2 attains its maximum at a point ξ1 ∈ M r Lv. Since we have SM ⊆ M ∩ Lv, at

ξ = ξ1 we have

0 = η

(
1

2
|ξH |2

)
=
〈
η, ξH1

〉
and 0 = τ

(
1

2
|ξH |2

)
= 〈ν, T 〉

〈
νH , ξH1

〉
.

Since 〈νH , ξH1 〉2 = 〈η, ξH1 〉2+〈νH , ξH1 〉2 = |ξH1 |2 > 0, we have that 〈ν, T 〉 = 0 and therefore

〈
νH , ξH1

〉
=

1

|PHν|
〈ν, ξ1〉 > 0

13



where the positive sign is a consequence of the maximality condition and the fact that ν

is the outward normal. Moreover, we also know that η2
(

1
2 |ξ

H |2
)
≤ 0 at the maximum

point ξ = ξ1. This fact, together with the identity

1− c|ξH |
〈
νH , ξH

〉
= 1−HM (ξ)

〈
νH , ξH

〉
= η(

〈
η, ξH

〉
) = η2

(
1

2
|ξH |2

)
provided by (24), yields that

c ≥ 1

|ξH1 |
〈
νH , ξH1

〉 > 0.

Step II. We now prove that

ϕh ≡ 0.

By contradiction we shall assume the existence of ξ0 ∈ M r SM such that ϕh(ξ0) 6= 0.

Since by definition we have

ϕh(ξ) =
c

3
|ξH |3 −

〈
νH , ξH

〉
, (25)

it is clear that ϕh vanishes on the vertical line Lv. Therefore we know that ξ0 ∈M rLv.

Let us consider the integral curve γ of η starting from ξ0. Lemma 3.1 implies that ϕh is

constant along γ, i.e.

ϕh(γ(s)) = ϕh(ξ0) =: ϕ0.

Since SM ⊂ Lv and ϕ0 6= 0, γ remains in M r Lv and there is no problem in extending

the curve indefinitely. We claim that this fact will contradict the boundedness of M ⊃ γ.

Denote by t(s), r(s), and θ(s) the three smooth functions defined for ξ ∈ γ respectively

by

t(s) = γ3(s), r(s) =
(
γ2

1(s) + γ2
2(s)

) 1
2 = |ξH |, andcos (θ(s)) =

〈
νH , ξ

H

|ξH |

〉
,

sin (θ(s)) =
〈
η, ξ

H

|ξH |

〉
.

From (25) we readily recognize

c

3
r3(s)− r(s) cos (θ(s)) = ϕ0,

which implies that along the curve γ the positive function r(s) is in fact a function of

cos (θ(s)) (in the sense that it is uniquely determined by the value cos (θ(s))). As we will

make use of this fact, we set the notation R(cos(θ(s))) = r(s). From (23) we have that

t′(s) = −2r(s) cos (θ(s)) = 2ϕ0 −
2c

3
r3(s). (26)

14



Thus, if ϕ0 < 0 then t′(s) ≤ 2ϕ0 < 0 and t(s) would be forced to be unbounded providing

an immediate contradiction. We can then assume ϕ0 > 0. Since from (22) and (24) we

have

η

(
arctan

( 〈
η, ξH

〉
〈νH , ξH〉

))
=

(1−HM

〈
νH , ξH

〉
)
〈
νH , ξH

〉
−HM

〈
η, ξH

〉2

〈η, ξH〉2 + 〈νH , ξH〉2

=

〈
νH , ξH

〉
−HM |ξH |2

|ξH |2
=
−2c

3 |ξ
H |3 − ϕh(ξ)

|ξH |2
,

we obtain

θ′(s) =
−2c

3 r
3(s)− ϕ0

r2(s)
. (27)

The assumption ϕ0 > 0 (together with the boundedness of M) implies that θ′(s) stays

below a strictly negative constant: thus θ(s) is strictly decreasing and the angle formed

by (the horizontal projections of) νH and ξH attains every value in [0, 2π] infinitely many

times along γ. We can then consider a strictly increasing sequence of values {sk}k∈N such

that θ(sk)− θ(sk+1) = 2π for all k ∈ N. By exploiting (26) and (27) we notice that

t(sk+1)− t(sk) =

∫ sk+1

sk

t′(s)ds

= −2

∫ sk+1

sk

r(s) cos(θ(s))ds = 2

∫ sk+1

sk

r3(s) cos(θ(s))
2c
3 r

3(s) + ϕ0
θ′(s)ds

=
2

c

∫ sk+1

sk

(cr3(s)− r(s) cos(θ(s)) + r(s) cos(θ(s))) cos(θ(s))
2c
3 r

3(s) + ϕ0
θ′(s)ds

=
2

c

∫ sk+1

sk

cos(θ(s))θ′(s)ds+
2

c

∫ sk+1

sk

r(s) cos2(θ(s))
2c
3 r

3(s) + ϕ0
θ′(s)ds

=
2

c

∫ sk+1

sk

r(s) cos2(θ(s))
2c
3 r

3(s) + ϕ0
θ′(s)ds

= −2

c

∫ θ(sk)

θ(sk+1)

R(cos(σ)) cos2(σ)
2c
3 R

3(cos(σ)) + ϕ0
dσ = −2

c

∫ θ(s1)

θ(s1)−2π

R(cos(σ)) cos2(σ)
2c
3 R

3(cos(σ)) + ϕ0
dσ

for every k ∈ N. This implies, also in the case ϕ0 > 0, the unboundedness of t(s) since

t(sk+1) = t(s1)− k2

c

∫ θ(s1)

θ(s1)−2π

R(cos(σ)) cos2(σ)
2c
3 R

3(cos(σ)) + ϕ0
dσ → −∞ as k →∞.

Therefore, under both the assumptions ϕ0 < 0 and ϕ0 > 0, we have reached a contradic-

tion. This completes the proof of the identity ϕh ≡ 0.

Step III. We finally show that

SM 6= ∅ and every integral curve γ of η starting from any ξ0 ∈M r SM reaches SM .
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Let us exploit the same notations of Step II. Arguing again by contradiction, we can

assume that the curve γ can be extended indefinitely. We stress that r(s) can vanish

(at points in Lv r SM ) but only at isolated points on the curve since ηξ̄ belongs to

span{∂x, ∂y} at points ξ̄ ∈ LvrSM . Also, the functions r(s) and θ(s) are smooth outside

Lv. Since SM ⊆ M ∩ Lv, two situations might occur: either there exists s0 such that

infs∈(s0,∞) r(s) > 0 or there exists a strictly increasing sequence of values {sk}k∈N such

that, for every k ∈ N, r(sk) = 0 and r(s) > 0 for s ∈ (sk, sk+1). Since by Step II and

(26) we have

t′(s) = −2c

3
r3(s), (28)

we deduce that the occurrence of the first case leads to an immediate contradiction since

t′(s) ≤ −2c
3 (infs r(s))

3 < 0 for s > s0 and t(s) would be unbounded. Hence, we can

assume the existence of the sequence {sk}k∈N satisfying the above assumptions. Fix any

k ∈ N and consider s ∈ (sk, sk+1). Using Step II, (27), and Step I, we have

cos (θ(s)) =
c

3
r2(s) > 0 and θ′(s) = −2c

3
r(s) < 0. (29)

This yields (cos (θ(s)), sin (θ(s)))→ (0,+1) as s→ s+
k

(cos (θ(s)), sin (θ(s)))→ (0,−1) as s→ s−k+1.

Hence we infer

t(sk+1)− t(sk) =

∫ sk+1

sk

t′(s)ds = −2

∫ sk+1

sk

r(s) cos(θ(s))ds

=
3

c

∫ sk+1

sk

θ′(s) cos(θ(s))ds =
−6

c
.

In other words, each time the curve γ re-joins the vertical line Lv the t-component of the

curve drops by a fixed amount. Since we are assuming that γ is reaching Lv an infinite

number of times, this fact is in contradiction with the compactness of M . The proof is

then complete.

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We start by noticing that, under our assumptions, the set SM

(which is non-empty by Lemma 3.2) consists of isolated points. As a matter of fact, since

SM ⊂ Lv, if we had a sequence of points in SM converging to ξ̄ ∈ SM then such sequence

would be in Lv and at the point ξ̄ the vector field T would be tangent. On the other hand,

the tangent space at the characteristic points coincides with the horizontal distribution
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which is span{∂x, ∂y} on Lv. This argument ensures the fact that the characteristic points

are isolated. Therefore, there exist t1 < t2 < . . . < tp for some finite p ∈ N such that

SM = {(0, 0, t1), . . . , (0, 0, tp)}.

Consider now any point ξ0 ∈ M ∩ {t < t2} such that ξ0 6= (0, 0, t1), and consider the

integral curve γ of η starting from ξ0. Using the same notations as in Lemma 3.2 we

know that t(s) is decreasing (see (28)) so that γ ⊂ M ∩ {t < t2}. Exploiting Lemma

3.1 together with the identity ϕh ≡ 0 showed in Lemma 3.2, we have that the function

ϕv(ξ) = c
3 t−

〈
η, ξ

H

|ξH |

〉
is constant along γ, i.e.

c

3
t(s)− sin(θ(s)) = ϕv(ξ0).

We stress that the previous identity holds true in γrLv, and it can then be extended by

continuity on the whole γ. By Lemma 3.2 we have that γ reaches SM , and in particular

as γ(s)→ (0, 0, t1) we have

t(s)→ t1 and sin(θ(s))→ −1

(see also (29) in this respect). Hence

ϕv(ξ0) =
c

3
t1 + 1.

By the arbitrariness of ξ0 ∈ (M ∩ {t < t2}) r {(0, 0, t1)} we have

ϕv(ξ) =
c

3
t1 + 1 for all ξ ∈ (M ∩ {t < t2}) r {(0, 0, t1)}.

The two identities ϕh ≡ 0 and ϕv ≡ c
3 t1 + 1 can be rewritten as〈

νH ,
ξH

|ξH |

〉
=
c

3
|ξH |2 and

〈
η,

ξH

|ξH |

〉
=
c

3

(
t− t1 −

3

c

)
,

which implies

1 =

〈
νH ,

ξH

|ξH |

〉2

+

〈
η,

ξH

|ξH |

〉2

=
( c

3
|ξH |2

)2
+

(
c

3

(
t− t1 −

3

c

))2

for any ξ ∈ (M ∩ {t < t2}) r {(0, 0, t1)}. By the very definition of gauge sphere, this

shows that

(M ∩ {t < t2}) r {(0, 0, t1)} ⊂ ∂BR(0, 0, t0)

where

R2 =
3

c
and t0 = t1 +

3

c
.

Being M a smooth connected surface with no boundary and having the gauge sphere only

two characteristic points at (0, 0, t0 − R2) = (0, 0, t1) and (0, 0, t0 + R2) = (0, 0, t1 + 6
c ),

we can conclude that M = ∂BR(0, 0, t0) as desired.
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3.2 The case of Hn, n ≥ 2

Let us now turn the attention to the case n ≥ 2 and to the proof of Theorem 1.2. By

pushing further the parallelism with the classical Euclidean framework, we can say that

the higher dimensional analogue of the planar argument sketched in (20) is effective if

one requires the hypersurface to be (locally) umbilical: it provides in fact a proof of the

classical characterization of umbilical surfaces also known as Darboux theorem [14] (see

[31] for an expository text; see also [26, 18] for different but related settings). In our

Theorem 1.2 the main assumption is the umbilicality of M with respect to Definition 2.3.

We warn the reader that in Definition 2.3 there is no information about the relationship

between the two functions l and k, and therefore a characterization is possible only

under a prescription of the curvature (see in this respect [9] for the case of constant

σk-curvatures). Having this is mind, together with the fact that we are prescribing

HM (ξ) = c|ξH |, our aim is to provide a Darboux-type approach to Theorem 1.2. We

defineϕh(ξ) = 2n−1
2n+1HM (ξ)|ξH |2 − 〈νH , ξH〉, ϕh : M r SM → R,

ϕv(ξ) = 2n−1
2n+1HM (ξ) t

|ξH | − 〈η,
ξH

|ξH |〉 ϕv : M r (SM ∪ Lv)→ R,
(30)

where we have kept the notation

Lv = {(0, 0, t) ∈ Hn : t ∈ R}

to denote the t-axis. With the following lemma we realize that the constancy of the key

function ϕh along η is tied to the vanishing of l− 3k (in Example 2.1 we saw that for the

gauge spheres l = 3k by a direct computation).

Lemma 3.3. Fix n ≥ 2. Let M be a smooth hypersurface in Hn which is connected and

orientable. Let also ω be a relatively open set contained in M rSM . Suppose there exists

c ∈ R such that HM (ξ) = c|ξH | for ξ ∈ ω. If M is umbilic then we have

η(ϕh) =
2n− 2

2n+ 1

〈
η, ξH

〉
(3k − l) in ω.

Proof. The umbilicality condition in Definition 2.3 implies that

〈∇ηνH , ξH〉 = l(ξ)〈η, ξH〉. (31)

For ξ ∈ ω we can then exploit the assumption HM (ξ) = c|ξH |, together with (31) and

(6), to deduce that

η(ϕh) = η

(
c
2n− 1

2n+ 1
|ξH |3 − 〈νH , ξH〉

)
= 3c

2n− 1

2n+ 1
|ξH |2

〈
η, ξH

〉
|ξH |

− l(ξ)
〈
η, ξH

〉
18



=
〈
η, ξH

〉(3(2n− 1)

2n+ 1
HM (ξ)− l(ξ)

)
.

Keeping in mind Definition 2.3, we obtain

η(ϕh) =
〈
η, ξH

〉(3(2n− 2)

2n+ 1
k(ξ) +

2− 2n

2n+ 1
l(ξ)

)
=

2n− 2

2n+ 1

〈
η, ξH

〉
(3k(ξ)− l(ξ))

as desired.

We now show that in fact ϕh ≡ 0 and l ≡ 3k. There are two main tools in the proof:

the use of the Codazzi equations found in [9], and the analysis of the global behaviour of

the auxiliary function |ξH |2n−2ϕh(ξ) (a weighted version of ϕh).

Lemma 3.4. Fix n ≥ 2. Let M be a smooth hypersurface in Hn which is connected,

orientable, compact, and without boundary. Assume that M is umbilic, and suppose that

there exists c 6= 0 such that HM (ξ) = c|ξH | for every point ξ ∈ M r SM . Then, for all

ξ ∈M r SM , we have
〈
νH , ξH

〉
= |ξH |2k(ξ),〈

η, ξH
〉

= 2|ξH |2 〈νξ,T〉|PH(νξ)| ,〈
Vj , ξ

H
〉

=
〈
Wj , ξ

H
〉

= 0 for j ∈ {1, . . . , n− 1}.

(32)

We also have that c > 0, SM = M ∩ Lv 6= ∅, and

ϕh ≡ 0 ≡ l − 3k. (33)

Proof. Let us divide the proof in multiple steps.

Step I. We first show the validity of (32). Let

α =
2 〈ν, T 〉
|PHν|

.

By [9, Proposition 4.2] we know that

Vj(k) = Wj(k) = 0 = Vj(l) = Wj(l) for j ∈ {1, . . . , n− 1} (34)

and

η(k) = (l − 2k)α, η(α) = k2 − α2 − kl. (35)

For ξ ∈M r (SM ∪ Lv), from (34) and the identity (2n−1)HM = (2n−2)k+ l we obtain〈
Vj , ξ

H
〉

|ξH |
= Vj(|ξH |) =

1

c
Vj(HM (ξ)) =

2n− 2

c(2n− 1)
Vj(k) +

1

c(2n− 1)
Vj(l) = 0
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for j ∈ {1, . . . , n− 1}. The same holds for
〈
Wj , ξ

H
〉
. This shows that〈

Vj , ξ
H
〉

=
〈
Wj , ξ

H
〉

= 0 for j ∈ {1, . . . , n− 1} and ξ ∈M r SM . (36)

We then deduce that the function |ξH | is constant even along the commutators of the

vector fields in span {V1,W1, . . . , Vn−1,Wn−1}. Exploiting Lemma 2.2 this implies

〈
τ, ξH

〉
=
k(ξ)|PH(ν)|

2

〈
η, ξH

〉
.

Recalling that τ = 〈ν, T 〉 νH − |PH(ν)|T and using
〈
T, ξH

〉
= 0 we infer

α(ξ)
〈
νH , ξH

〉
= k(ξ)

〈
η, ξH

〉
for ξ ∈M r SM . (37)

From (6), (5), and the umbilicality condition in Definition 2.3, we can compute

η(
〈
η, ξH

〉
) = 1 +

〈
∇ηη, ξH

〉
= 1 +

〈
∇ηJη, JξH

〉
= 1 +

〈
∇ηνH , JξH

〉
= 1 + l(ξ)

〈
η, JξH

〉
= 1− l(ξ)

〈
νH , ξH

〉
. (38)

If we now differentiate the identity (37) along η, the relations (31), (35), and (38) yield

0 = η(α)
〈
νH , ξH

〉
+ αη

(〈
νH , ξH

〉)
− η(k)

〈
η, ξH

〉
− kη

(〈
η, ξH

〉)
= (k2 − α2 − kl)

〈
νH , ξH

〉
+ αl

〈
η, ξH

〉
+ (2k − l)α

〈
η, ξH

〉
+ kl

〈
νH , ξH

〉
− k

= (k2 − α2)
〈
νH , ξH

〉
+ 2kα

〈
η, ξH

〉
− k

= (k2 + α2)
〈
νH , ξH

〉
− k + 2α(k

〈
η, ξH

〉
− α

〈
νH , ξH

〉
).

Keeping in mind (37), this says that

〈
νH , ξH

〉
=

k(ξ)

k2(ξ) + α2(ξ)
and

〈
η, ξH

〉
=

α(ξ)

k2(ξ) + α2(ξ)
(39)

at least for any ξ ∈ M r SM where k(ξ) 6= 0. Notice that in our assumptions we have

k2+α2 > 0 in MrSM (see [8, part (a) in Theorem B], and keep in mind that α 6≡ 0 due to

the boundedness of M). Let also notice that, if k vanishes at a point ξ̄ ∈M r (SM ∪Lv),
then η(k)(ξ̄) = l(ξ̄)α(ξ̄) = (2n − 1)c|ξ̄H |α(ξ̄) 6= 0. Hence the relations (39) hold true by

continuity throughout M r SM . This implies that

1

k2(ξ) + α2(ξ)
=
〈
νH , ξH

〉2
+
〈
η, ξH

〉2
(40)

=
〈
νH , ξH

〉2
+
〈
η, ξH

〉2
+
n−1∑
j=1

〈
Vj , ξ

H
〉2

+
〈
Wj , ξ

H
〉2

= |ξH |2,
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where in the second equality we used (36). Inserting the last identity in (39), we get〈
νH , ξH

〉
= |ξH |2k(ξ) and

〈
η, ξH

〉
= |ξH |2α(ξ) for ξ ∈M r SM . (41)

The combination of (36) and (41) completes the proof of (32). In particular, since the

function α2 →∞ only at characteristic points, from (40) we can also deduce that

SM = M ∩ Lv. (42)

As a matter of fact, the inclusion M ∩ Lv ⊆ SM follows from the fact that at non-

characteristic points |ξH |−2 = k2(ξ) +α2(ξ) is finite whereas the inclusion SM ⊆M ∩Lv
is a consequence of the boundedness of α2(ξ) ≤ k2(ξ) + α2(ξ) = |ξH |−2 outside of Lv.

Step II. We now show that

ξ 7→ φ(ξ) := |ξH |2n−2ϕh(ξ) is constant throughout M r SM .

To this aim, using (41) we can rewrite the function ϕh in the following way

ϕh(ξ) =
2n− 1

2n+ 1
HM (ξ)|ξH |2 − k(ξ)|ξH |2 = |ξH |2

(
(2n− 2)k(ξ) + l(ξ)

2n+ 1
− k(ξ)

)
=
l(ξ)− 3k(ξ)

2n+ 1
|ξH |2, (43)

so that

φ(ξ) =
l(ξ)− 3k(ξ)

2n+ 1
|ξH |2n.

It is clear from (34) and (36) that

Vj(φ) = Wj(φ) = 0 for all j ∈ {1, . . . , n− 1},

which also implies by Lemma 2.2 that

τ(φ)− k|PH(ν)|
2

η(φ) = 0.

On the other hand, by using (43) and Lemma 3.3 we obtain

η(φ) = η
(
|ξH |2n−2ϕh

)
= (2n− 2)|ξH |2n−4

〈
η, ξH

〉
ϕh + |ξH |2n−2η(ϕh)

=
2n− 2

2n+ 1
|ξH |2n−2

〈
η, ξH

〉
(l − 3k) +

2n− 2

2n+ 1
|ξH |2n−2

〈
η, ξH

〉
(3k − l) = 0.
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This says that the function φ is constant along every tangent vector fields in M r SM

and concludes the proof of the current step.

Step III. In this step we show that

c > 0.

We argue similarly to the proof of Step I in Lemma 3.2. By the compactness of M the

function 1
2 |ξ

H |2 attains its maximum at a point ξ1 ∈ M r Lv, and we know from (42)

that ξ1 /∈ SM . Then, at ξ = ξ1 we have

0 = η

(
1

2
|ξH |2

)
=
〈
η, ξH1

〉
and 0 = τ

(
1

2
|ξH |2

)
= 〈ν, T 〉

〈
νH , ξH1

〉
.

Since by (36) we have

〈νH , ξH1 〉2 = 〈η, ξH1 〉2 + 〈νH , ξH1 〉2 +
n∑
j=1

〈Vj , ξH1 〉2 + 〈Wj , ξ
H
1 〉2 = |ξH1 |2 > 0,

we deduce that 〈ν, T 〉 = 0 and therefore

k(ξ1) =
1

|ξH1 |2
〈
νH , ξH1

〉
=

1

|ξH1 |2 |PHν|
〈ν, ξ1〉 > 0

where the positive sign is a consequence of the maximality condition and the fact that ν

is the outward normal. Moreover, at the maximum point ξ = ξ1 we obtain from (38)

1− l(ξ1)
〈
νH , ξH1

〉
= η2

(
1

2
|ξH |2

)
≤ 0

which says that

l(ξ1) ≥ 1〈
νH , ξH1

〉 > 0.

Therefore, keeping in mind Definition 2.3, we have

c =
l(ξ1)

(2n− 1)|ξH1 |
+

(2n− 2)k(ξ1)

(2n− 1)|ξH1 |
> 0.

Step IV. We now show that

φ(ξ) = |ξH |2n−2ϕh(ξ) ≡ 0 for ξ ∈M r SM .

We already know from Step II that φ is identically equal to a constant value φ0. By

contradiction we shall assume that φ0 6= 0. Since from the definition of ϕh in (30) it

is clear that ϕh and φ tend to 0 as ξ approaches M ∩ Lv and we know from (42) that
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M ∩ Lv = SM , we have that SM = M ∩ Lv = ∅ (so that there exist 0 < rm ≤ rM < ∞
satisfying rm ≤ |ξH | ≤ rM ). If we consider the integral curve γ of η starting from any

point ξ0 ∈ M , we can then extend γ indefinitely. Arguing similarly to the proof of Step

II in Lemma 3.2 (from which we also borrow the analogous notations for the smooth

functions t(s), r(s), and θ(s)) we want to infer that the assumption φ0 6= 0 leads to the

unboundedness of γ(s) (which contradicts the compactness of M). We can rewrite

c(2n− 1)

(2n+ 1)
r2n+1(s)− r2n−1(s) cos (θ(s)) = φ0,

which implies in particular that along the curve γ one has r(s) = R(cos(θ(s))) (i.e. the

positive function r(s) is uniquely determined by the value cos (θ(s))). From (7) we infer

that

t′(s) = −2r(s) cos (θ(s)) = 2φ0r
2−2n(s)− 2c(2n− 1)

(2n+ 1)
r3(s). (44)

Since c > 0 by Step III and r(s) is bounded, if φ0 < 0 then t′(s) ≤ 2φ0r
2−2n
M < 0 and t(s)

would be forced to be unbounded. We can then assume φ0 > 0. Exploiting (31), (38),

and (36) we recognize that

η

(
arctan

( 〈
η, ξH

〉
〈νH , ξH〉

))
=

(1− l(ξ)
〈
νH , ξH

〉
)
〈
νH , ξH

〉
− l(ξ)

〈
η, ξH

〉2

〈η, ξH〉2 + 〈νH , ξH〉2

=

〈
νH , ξH

〉
− l(ξ)|ξH |2

|ξH |2
=

〈
νH , ξH

〉
− (2n+ 1)ϕh(ξ)− 3k(ξ)|ξH |2

|ξH |2

=
−2
〈
νH , ξH

〉
− (2n+ 1)ϕh(ξ)

|ξH |2
,

where in the last two equalities we have made use of (43) and (41). The previous identity

yields

θ′(s) =
2n− 1

r2(s)

(
r(s) cos (θ(s))− cr3(s)

)
(45)

=
2n− 1

r2(s)

(
−φ0r

2−2n(s)− 2c

2n+ 1
r3(s)

)
.

Since we know that c > 0 and M is bounded, the assumption φ0 > 0 implies that θ′(s)

stays below a strictly negative constant: thus θ(s) is strictly decreasing and θ(s)→ −∞
as s → ∞. We can then pick a strictly increasing sequence of values {sk}k∈N such that

θ(sk)− θ(sk+1) = 2π for all k ∈ N. From (44) and (45) we get

t(sk+1)− t(sk) =

∫ sk+1

sk

t′(s)ds
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= −2

∫ sk+1

sk

r(s) cos(θ(s))ds =
2

2n− 1

∫ sk+1

sk

r3(s) cos(θ(s))

φ0r2−2n(s) + 2c
2n+1r

3(s)
θ′(s)ds

=
2

(2n− 1)c

∫ sk+1

sk

(cr3(s)− r(s) cos(θ(s)) + r(s) cos(θ(s))) cos(θ(s))

φ0r2−2n(s) + 2c
2n+1r

3(s)
θ′(s)ds

=
2

(2n− 1)c

∫ sk+1

sk

cos(θ(s))θ′(s)ds+
2

(2n− 1)c

∫ sk+1

sk

r(s) cos2(θ(s))

φ0r2−2n(s) + 2c
2n+1r

3(s)
θ′(s)ds

= − 2

(2n− 1)c

∫ θ(sk)

θ(sk+1)

R(cos(σ)) cos2(σ)

φ0R2−2n(cos(σ)) + 2c
2n+1R

3(cos(σ))
dσ

= − 2

(2n− 1)c

∫ θ(s1)

θ(s1)−2π

R(cos(σ)) cos2(σ)

φ0R2−2n(cos(σ)) + 2c
2n+1R

3(cos(σ))
dσ

for every k ∈ N. Since the term t(sk+1) − t(sk) is strictly negative and independent of

k, we conclude as in Lemma 3.2 that t(sk)→ −∞ as k →∞. Hence we have reached a

contradiction in both scenarios φ0 < 0 and φ0 > 0. This ensures the validity of φ ≡ 0.

Step V. In this final step we finish the proof of the desired statements. Keeping the

same notations as before, if we insert the information φ ≡ 0 proved in Step IV in (44) we

infer

t′(s) = −2c(2n− 1)

(2n+ 1)
r3(s) ≤ 0. (46)

If the sets SM and M ∩Lv were empty, we could extend the integral curves γ of η indef-

initely and we would have the contradicting property t(s)→ −∞ as s→∞. Therefore,

by (42), it has to be

SM = M ∩ Lv 6= ∅. (47)

Finally, exploiting again (42) and the identity φ ≡ 0 in M r SM , we have

ϕh ≡ 0 in M r SM

and, by (43), also

l − 3k ≡ 0 in M r SM .

This concludes the proof of (33), and of the lemma.

We are finally ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. With Lemma 3.3 and Lemma 3.4 in hand, in order to complete

the proof we can follow closely the arguments of Theorem 1.1. In fact, we deduce from

(47) that there exists p ∈ N such that

SM = {(0, 0, t1), . . . , (0, 0, tp)}
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for some t1 < t2 < . . . < tp (we stress that points in SM = M ∩ Lv cannot accumulate

since T is aligned with the normal direction at characteristic points). If we consider any

point ξ0 ∈ M ∩ {t < t2} such that ξ0 6= (0, 0, t1), we can look at the integral curve γ of

η starting from ξ0. With the same notations as in Lemma 3.4, we know from (46) that

γ ⊂M ∩ {t < t2} and

γ(s) reaches (0, 0, t1).

As r(s) > 0 and it is reaching 0, we obtain from the identity ϕh ≡ 0 proved in Lemma

(3.2) that

cos(θ(s)) =
(2n− 1)c

2n+ 1
r2(s) > 0 and cos(θ(s))→ 0.

Recalling (45), this implies that sin(θ(s)) is decreasing and

sin(θ(s))→ −1.

This yields

(2n− 1)c

2n+ 1
t(s)− sin(θ(s))→ (2n− 1)c

2n+ 1
t1 + 1 as γ(s) approaches (0, 0, t1). (48)

On the other hand, if we differentiate along η the function

ϕv(ξ) =
2n− 1

2n+ 1
HM (ξ)

t

|ξH |
− 〈η, ξ

H〉
|ξH |

=
(2n− 1)c

2n+ 1
t− 〈η, ξ

H〉
|ξH |

,

for ξ ∈M r SM , by using (7) and (38), we obtain

η (ϕv) (ξ) = −2(2n− 1)c

2n+ 1

〈
νH , ξH

〉
−

1− l
〈
νH , ξH

〉
|ξH |

+
〈η, ξH〉2

|ξH |3

=
1

|ξH |3

(
−2(2n− 1)HM

2n+ 1
|ξH |2

〈
νH , ξH

〉
− |ξH |2 + l|ξH |2

〈
νH , ξH

〉
+
〈
η, ξH

〉2
)

=

〈
νH , ξH

〉
|ξH |3

(
−2(2n− 1)HM

2n+ 1
|ξH |2 −

〈
νH , ξH

〉
+ l|ξH |2

)
+

−
∑n−1

j=1

〈
Vj , ξ

H
〉2

+
〈
Wj , ξ

H
〉2

|ξH |3
.

We can now use the properties (32)-(33) established in Lemma 3.4 together with (15),

and we deduce

η (ϕv) (ξ) =

〈
νH , ξH

〉
|ξH |3

(
−2k(ξ)|ξH |2 −

〈
νH , ξH

〉
+ 3k(ξ)|ξH |2

)
= 0.
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Hence ϕv is constant along γ. From (48) we know that such constant has to be equal to
(2n−1)c

2n+1 t1 +1. The arbitrariness of ξ0 ∈ (M ∩ {t < t2})r{(0, 0, t1)} (which is the starting

point of γ) yields

ϕv ≡
(2n− 1)c

2n+ 1
t1 + 1 in (M ∩ {t < t2}) r {(0, 0, t1)}.

The previous identity and the identity ϕh ≡ 0 can be rewritten, keeping in mind the

definitions in (30), as〈
νH ,

ξH

|ξH |

〉
=

(2n− 1)c

2n+ 1
|ξH |2 and

〈
η,

ξH

|ξH |

〉
=

(2n− 1)c

2n+ 1

(
t− t1 −

2n+ 1

(2n− 1)c

)
.

This implies

1 =

〈
νH ,

ξH

|ξH |

〉2

+

〈
η,

ξH

|ξH |

〉2

=

(
(2n− 1)c

2n+ 1
|ξH |2

)2

+

(
(2n− 1)c

2n+ 1

(
t− t1 −

2n+ 1

(2n− 1)c

))2

for any ξ ∈ (M ∩ {t < t2}) r {(0, 0, t1)}, which shows that

(M ∩ {t < t2}) r {(0, 0, t1)} ⊂ ∂BR(0, 0, t0)

with

R2 =
2n+ 1

(2n− 1)c
and t0 = t1 +

2n+ 1

(2n− 1)c
.

This allows, as in Theorem 1.1, to conclude the proof of the desired statement.

3.3 The axially symmetric case

As a concrete application of our main theorems we want to single out a relevant class of

hypersurfaces in which we have a uniqueness result for the gauge spheres. We already

mentioned in the Introduction (see also [21, 25, 38, 16, 27, 19] for related settings) that

it is quite typical to require some apriori symmetry in terms of rotational invariances.

More precisely, we can recall the following well-known class of symmetric domains (which

is consistent with the type of prescription of the horizontal curvature HM we are dealing

with).

Definition 3.1. For n ≥ 1 we say that a smooth hypersurface M ⊂ Hn is cylindrically

symmetric if, locally around any point of M , there exists a defining function f for M

which can be written as

f(x, y, t) = v(|x|2 + |y|2, t) (49)

for some smooth function v.

26



We have the following

Corollary 3.1. Fix n ≥ 1. Let M be a smooth hypersurface of Hn which is connected,

orientable, compact, and without boundary. Suppose that M is cylindrically symmetric

with respect to Definition 3.1 and that, at every non-characteristic point (x, y, t) ∈M , the

horizontal mean curvature of M is proportional to
√
|x|2 + |y|2 up to a constant factor

c 6= 0. Then c > 0 and there exists t0 ∈ R such that M = ∂BR(ξ0) with R =
√

1
c

2n+1
2n−1

and ξ0 = (0, 0, t0).

Proof. Fix an open neighborhood U ⊂ Hn where U ∩M is described, as in (49), by the

zero-level set of a smooth function f with non-null gradient. Pick the sign of f such that

the outward normal ν at ξ ∈ U ∩M is equal to

ν =
TfT +

∑n
j=1XjfXj + YjfYj(

(Tf)2 +
∑n

j=1(Xjf)2 + (Yjf)2
) 1

2

.

By exploiting (49) one has Tf = v2, Xjf = 2xjv1−2yjv2 and Yjf = 2yjv1 +2xiv2, which

implies that

|PHν|2 =
4(|x|2 + |y|2)(v2

1 + v2
2)

4(|x|2 + |y|2)(v2
1 + v2

2) + v2
2

.

This is saying that for cylindrically symmetric hypersurfaces we can have characteristic

points only when |x|2 + |y|2 = 0, i.e.

SM ⊆M ∩ Lv.

Therefore, in case n = 1 we can apply Theorem 1.1 to infer the desired statement.

Fix then n ≥ 2. We want to check that the cylindrically symmetric assumption implies

that M is in fact umbilic. Since we have

νH =

n∑
j=1

xjv1 − yjv2√
|x|2 + |y|2

√
v2

1 + v2
2

Xj +
yjv1 + xjv2√

|x|2 + |y|2
√
v2

1 + v2
2

Yj

and

η =

n∑
j=1

yjv1 + xjv2√
|x|2 + |y|2

√
v2

1 + v2
2

Xj +
yjv2 − xjv1√

|x|2 + |y|2
√
v2

1 + v2
2

Yj ,

for any j, k ∈ {1, . . . , n} we can directly compute

〈∇Xkν
H , Xj〉 = Xk(

〈
νH , Xj

〉
) =

δjkv1 + 2xj(xkv11 − ykv12)− 2yj(xkv12 − ykv22)√
|x|2 + |y|2

√
v2

1 + v2
2

+
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−
〈
νH , Xj

〉( xk
|x|2 + |y|2

+
2v1(xkv11 − ykv12) + 2v2(xkv12 − ykv22)

v2
1 + v2

2

)
,

〈∇Xkν
H , Yj〉 = Xk(

〈
νH , Yj

〉
) =

δjkv2 + 2xj(xkv12 − ykv22) + 2yj(xkv11 − ykv12)√
|x|2 + |y|2

√
v2

1 + v2
2

+

−
〈
νH , Yj

〉( xk
|x|2 + |y|2

+
2v1(xkv11 − ykv12) + 2v2(xkv12 − ykv22)

v2
1 + v2

2

)
,

〈∇Ykν
H , Xj〉 = Yk(

〈
νH , Xj

〉
) =
−δjkv2 + 2xj(ykv11 + xkv12)− 2yj(ykv12 + xkv22)√

|x|2 + |y|2
√
v2

1 + v2
2

+

−
〈
νH , Xj

〉( yk
|x|2 + |y|2

+
2v1(ykv11 + xkv12) + 2v2(ykv12 + xkv22)

v2
1 + v2

2

)
,

〈∇Ykν
H , Yj〉 = Yk(

〈
νH , Yj

〉
) =

δjkv1 + 2xj(ykv12 + xkv22) + 2yj(ykv11 + xkv12)√
|x|2 + |y|2

√
v2

1 + v2
2

+

−
〈
νH , Yj

〉( yk
|x|2 + |y|2

+
2v1(ykv11 + xkv12) + 2v2(ykv12 + xkv22)

v2
1 + v2

2

)
.

From the previous relations we can recognize by a straightforward computation that

PH(∇ZνH)− 2 〈ν, T 〉
|PH(ν)|

J(Z) = kZ for any Z ∈ H such that
〈
Z, νH

〉
= 〈Z, η〉 = 0

and

PH(∇ηνH) = lη

where

k =
v1√

|x|2 + |y|2
√
v2

1 + v2
2

, and

l =
v1√

|x|2 + |y|2
√
v2

1 + v2
2

+
2
√
|x|2 + |y|2

(v2
1 + v2

2)
3
2

(
v11v

2
2 + v22v

2
1 − 2v12v1v2

)
.

A direct comparison with Definition 2.2 and Definition 2.3 tells us that M is umbilic.

We can then apply Theorem 1.2 and complete the proof of the corollary.
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