A Legendre transform on an exotic S^3

Vittorio Martino

Dipartimento di Matematica,
Università di Bologna, Italy
e-mail: martino@dm.unibo.it

Abstract

We consider an exotic contact form α on S^3 and we establish explicitly the existence of a non singular vector field v in $\ker(\alpha)$ such that the non-singular one-differential form $\beta(\cdot) := d\alpha(v, \cdot)$ is a contact form on S^3 with the same orientation than α. In particular this means that a Legendre transform can be completed.

1991 Mathematics Subject Classification. 53D35, 58E05.

Key words. Contact form, periodic orbits

1 Introduction

In this paper we consider an exotic contact form α on S^3, introduced by J.Gonzalo-F.Varela in [2], (case $n = 1$). It is, according to [2] an overtwisted contact structure and in Appendix A we can actually find an explicit disk D^2 whose boundary is a Legendrian curve for α and $\ker(\alpha)$ has exactly one point of tangency to D^2. This contact structure is therefore not standard. The standard contact form α_0 on S^3 is a pull-back from the standard contact form on $P(\mathbb{R}^3)$, that is the unit sphere cotangent bundle of S^2; therefore it is equipped with its Liouville form. Legendre duality can be completed for this Liouville form. This Legendre transform can be viewed as the data of a vector field v in $\ker(\alpha_0)$ such that $\beta_0(\cdot) := d\alpha_0(v, \cdot)$ is a contact form with the same orientation than α_0.

This Legendre transform allows the transformation of a Hamiltonian problem on the cotangent sphere of S^2 into a Lagrangian problem. This duality has been extended by A.Bahri-D.Bennequin in [1] to the more general framework of a contact form α on a three-dimensional compact orientable manifold without boundary M, leading
to a variational problem on a spaces of curves. In fact if one assumes that:

(i) \(\exists v \in TM, \) a non-vanishing vector field, such that \(v \in \ker(\alpha) \)

(ii) the non-singular one-differential form \(\beta(\cdot) := d\alpha(v, \cdot) \) is a contact form on \(M \) with the same orientation than \(\alpha \)

by defining the action functional

\[
J(x) = \int_0^1 \alpha(\dot{x})dt \tag{1.1}
\]

on the subspace of the \(H^1 \)-loops on \(M \):

\[
C_\beta = \{ x \in H^1(S^1; M) \text{ s.t. } \beta(\dot{x}) = 0; \alpha(\dot{x}) = \text{strictly positive constant} \}
\]

if \(\xi \in TM \) denotes the Reeb vector field of \(\alpha \), i.e.

\[
\alpha(\xi) = 1, \quad d\alpha(\xi, \cdot) = 0 \tag{1.2}
\]

then the following result by A.Bahri-D.Bennequin holds [1]:

Theorem 1.1. \(J \) is a \(C^2 \) functional on \(C_\beta \) whose critical points are periodic orbits of \(\xi \).

It is important to observe that this construction is “stable under perturbation”, that is the same \(v \) can be used to complete Legendre duality for forms \(\lambda \alpha \), with \(\lambda \in C^2 \) and \(|\lambda - 1| \) small.

In this work we establish the existence of such a \(v \), which is given explicitly, for the contact structure of J.Gonzalo-F.Varela.

The organization of the paper is the following: in Section 2 we verify the hypothesis (i) giving explicitly the vector field \(v \); in Section 3 we verify the hypothesis (ii); we conclude the paper with four appendices. In Appendix A, we provide an explicit disk that allows to recognize a known fact about the contact structure of \(\alpha \), namely that it is overtwisted. Appendix B is devoted to the graphs of some of the (complicated) functions that we use. Our \(v \) is \(C^\infty \) outside of two curves. It is only \(C^0 \) on \(S^3 \). We regularize it (with a very standard and straightforward regularizing procedure; \(v \) is in fact \(C^\infty \) in the direction of the Reeb vector field \(\xi \) in Appendix C so that it is now \(C^\infty \) and hypotheses (i) and (ii) are still satisfied. We then study in Appendix D the case \(n > 1 \) of the contact forms/structures of Gonzalo-Varela [2]. The definition of \(v \) extends, but hypothesis (ii) is not satisfied anymore by this extension. Another extension might work.

Acknowledgement. I was introduced to this topic by Professor Abbas Bahri during the year I was visiting him at Rutgers University first and Courant Institute then, so it’s a pleasure to thank him for all his help, support and valuable hints.
2 Verification of hypothesis (i)

From now on we consider S^3 as embedded submanifold of \mathbb{R}^4 where we will carry on most of our computation. Let $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$, by denoting
\[r_1 = x_1^2 + x_2^2, \quad r_2 = x_3^2 + x_4^2 \]
then
\[S^3 = \{ x \in \mathbb{R}^4 : r_1 + r_2 = 1 \} \]
and on S^3 we take the non-standard (or exotic) contact form α defined by J.Gonzalo and F.Varela in [2], (case $n = 1$):
\[\alpha = -\left(A(x_2dx_1 - x_1dx_2) + B(x_4dx_3 - x_3dx_4) \right) \]
\[\text{where} \quad \theta = \frac{\pi}{4} + \pi r_2, \quad A = \cos \theta, \quad B = \sin \theta \]
Now we compute $d\alpha$. If we denote by
\[\tilde{A} = A + \pi r_1 B = \frac{\partial}{\partial r_1} (r_1 A) \quad \tilde{B} = B + \pi r_2 A = \frac{\partial}{\partial r_2} (r_2 B) \]
then by a direct computation
\[d\alpha = 2 \left(\tilde{A}dx_1 \wedge dx_2 + \tilde{B}dx_3 \wedge dx_4 \right) \quad (2.1) \]
Now, if
\[\zeta = -\left(\tilde{B}(x_2\partial_{x_1} - x_1\partial_{x_2}) + \tilde{A}(x_4\partial_{x_3} - x_3\partial_{x_4}) \right) \]
one has $\zeta \in T(S^3)$ and it holds\footnote{See Appendix B}
\[\alpha(\zeta) = A\tilde{B}r_1 + B\tilde{A}r_2 > 0, \quad d\alpha(\zeta, \cdot) = 0 \quad (2.2) \]
Thus the Reeb vector field of α is
\[\xi = \frac{\zeta}{\alpha(\zeta)} \quad (2.3) \]
Let us define the following non singular\footnote{See Appendix B} vector field in $T(S^3)$
\[T = -\left(A(x_2\partial_{x_1} - x_1\partial_{x_2}) + B(x_4\partial_{x_3} - x_3\partial_{x_4}) \right) \quad (2.4) \]
so one finds
\[\alpha(\cdot) = < T, \cdot > \quad (2.5) \]
where $< \cdot, \cdot >$ is the usual inner product in \mathbb{R}^4. In other words, a vector field is in the kernel of α if it is orthogonal to T.
Theorem 2.1. Let \(R := |T| \), where
\[
|T|^2 = <T, T> = \alpha(T) = A^2 r_1 + B^2 r_2 > 0
\]
By letting \(C = A/R \) and \(D = B/R \) let us define the vector field
\[
v = v_1 \partial_{x_1} + v_2 \partial_{x_2} + v_3 \partial_{x_3} + v_4 \partial_{x_4}
\]
with
\[
\begin{align*}
v_1 &= x_3 \frac{(x_1^2 - D x_2^2)}{r_1} + \frac{(x_1 x_2 x_4)}{r_1} (1 + D) \\
v_2 &= x_4 \frac{(x_2^2 - D x_1^2)}{r_1} + \frac{(x_1 x_2 x_3)}{r_1} (1 + D) \\
v_3 &= -x_1 \frac{(x_3^2 + C x_2^2)}{r_2} - \frac{(x_2 x_3 x_4)}{r_2} (1 - C) \\
v_4 &= -x_2 \frac{(x_4^2 + C x_3^2)}{r_2} - \frac{(x_1 x_3 x_4)}{r_2} (1 - C)
\end{align*}
\]
(2.6)
Then \(v \in T(S^3) \), \(|v| = 1 \) and \(v \in \ker(\alpha) \), so the condition (i) is satisfied.

Proof. We introduce the two objects
\[
M = S^3 \setminus (\{r_1 = 0\} \cup \{r_2 = 0\})
\]
(2.7)
and
\[
T^2 = \{r_1 = c_1, r_2 = c_2, c_1 + c_2 = 1, c_1 \neq 0, c_2 \neq 0\}
\]
(2.8)
So \(T^2 \) are invariant tori for \(\xi \) (i.e. \(\xi \in T(T^2) \)) and \(M \) is the sphere without the two degenerate tori (circles). Moreover, also the vector field \(T \) is tangent to \(T^2 \). We introduce the following two vector fields in \(T(M) \)
\[
X = \frac{1}{\sqrt{r_1 r_2}} \left(D r_2 (x_2 \partial_{x_1} - x_1 \partial_{x_2}) - C r_1 (x_4 \partial_{x_3} - x_3 \partial_{x_4}) \right)
\]
(2.9)
\[
Y = \frac{1}{\sqrt{r_1 r_2}} \left(r_2 (x_1 \partial_{x_1} + x_2 \partial_{x_2}) - r_1 (x_3 \partial_{x_3} + x_4 \partial_{x_4}) \right)
\]
(2.10)
It holds
\[
|X| = |Y| = 1
\]
thus \(X, Y \) are non degenerate on \(M \). Moreover \(X, Y \in \ker(\alpha) \), in particular \(X \in T(T^2) \) and \(Y \in N(T^2) \) (the normal space to \(T^2 \)). With the following coefficients
\[
a = \frac{1}{\sqrt{r_1 r_2}} (x_1 x_3 + x_2 x_4), \quad b = \frac{1}{\sqrt{r_1 r_2}} (x_1 x_4 - x_2 x_3), \quad a^2 + b^2 = 1
\]
(2.11)
let us define
\[
v = aY + bX
\]
(2.12)
So \(v \in ker(\alpha) \), \(|v| = 1\) and by a direct computation one finds the coefficients in (2.6). Let us remark that \(v \) is defined only on \(M \). Since

\[
\lim_{r_2 \to 0} C = -\lim_{r_1 \to 0} D = 1
\]
on \(r_1 = 0 \) one has

\[
v = x_3 \partial_{x_1} + x_4 \partial_{x_2}
\]
whereas on \(r_2 = 0 \) one finds

\[
v = -x_1 \partial_{x_3} - x_2 \partial_{x_4}
\]
so, by continuity, \(v \) is defined on the whole \(S^3 \).

\[\square\]

Corollary 2.1. In the same way if we define the vector field

\[
w = w_1 \partial_{x_1} + w_2 \partial_{x_2} + w_3 \partial_{x_3} + w_4 \partial_{x_4}
\]

with

\[
\begin{aligned}
w_1 &= -x_4 \frac{(x_1^2 - Dx_1^2)}{r_1} + \frac{(x_1x_2x_3)}{r_1} (1 + D) \\
w_2 &= x_3 \frac{(x_2^2 - Dx_2^2)}{r_1} - \frac{(x_1x_2x_4)}{r_1} (1 + D) \\
w_3 &= -x_2 \frac{(x_3^2 + Cx_3^2)}{r_2} + \frac{(x_1x_3x_4)}{r_2} (1 - C) \\
w_4 &= x_1 \frac{(x_4^2 + Cx_4^2)}{r_2} - \frac{(x_2x_3x_4)}{r_2} (1 - C)
\end{aligned}
\] \hfill (2.13)

Then \(w \in T(S^3) \), \(|w| = 1\), \(w \in ker(\alpha) \) and \(w \perp v \).

Proof. The proof is the same as in (2.1), with

\[
w = aX - bY
\] \hfill (2.14)

So \(w \perp v \), \(w \in ker(\alpha) \), \(|w| = 1\). Moreover on \(r_1 = 0 \) one has

\[
w = -x_4 \partial_{x_1} + x_3 \partial_{x_2}
\]
whereas on \(r_2 = 0 \) one finds

\[
w = -x_2 \partial_{x_3} + x_1 \partial_{x_4}
\] \[\square\]

Remark 2.1. We want to point out that the (coefficients of the) vector fields \(v, w \) are by construction only \(C^0 \).
3 Verification of hypothesis (ii)

Let us consider now the non-singular one-differential form

\[\beta(\cdot) := \alpha(v, \cdot) \]

(3.1)

By defining \(h := \alpha(\zeta) \), one has

\[d\alpha(v, w) = d\alpha(aY + bX, aX - bY) = (a^2 + b^2)\alpha(Y, X) = \alpha(Y, X) = -\frac{2}{|T|}h < 0 \]

and

\[\alpha \wedge d\alpha(\zeta, v, w) = h\alpha(v, w) < 0 \]

Moreover

\[\beta \wedge d\beta(\zeta, v, w) = \beta(w)d\beta(\zeta, v) = -d\alpha(v, w)d\alpha(v, [\zeta, v]) \]

Thus

\[\frac{\beta \wedge d\beta(\zeta, v, w)}{\alpha \wedge d\alpha(\zeta, v, w)} = -\frac{d\alpha(v, [\zeta, v])}{h} \]

(3.2)

Theorem 3.1. \(d\alpha(v, [\zeta, v]) < 0 \), so the condition (ii) is satisfied.

Proof. We explicitly write some formulas. For \(0 < r_1 < 1 \), one finds

\[Y(r_1) = 2\sqrt{r_1}r_2, \quad Y(r_2) = -2\sqrt{r_1}r_2, \quad Y(\theta) = -2\pi\sqrt{r_1}r_2 \]

\[Y(A) = 2\pi\sqrt{r_1}r_2 B, \quad Y(B) = -2\pi\sqrt{r_1}r_2 A \]

\[Y(\tilde{A}) = 2\pi\sqrt{r_1}r_2(2B - \pi r_1 A), \quad Y(\tilde{B}) = -2\pi\sqrt{r_1}r_2(2A - \pi r_2 B) \]

\[\zeta(a) = -[(\tilde{A} - \tilde{B})a + (\tilde{A} - \tilde{B})b], \quad \zeta(b) = (\tilde{A} - \tilde{B})a \]

\[[\zeta, X] = 0 \]

\[[\zeta, Y] = Y(\tilde{B})(x_2\partial_{x_1} - x_1\partial_{x_2}) + Y(\tilde{A})(x_4\partial_{x_3} - x_3\partial_{x_4}) \]

Moreover

\[[\zeta, v] = [\zeta, aY + bX] = \zeta(a)Y + \zeta(b)X + a[\zeta, Y] + b[\zeta, X] = \]

\[= (\tilde{A} - \tilde{B})w + a[\zeta, Y] = (\tilde{A} - \tilde{B})w + aY(\tilde{B})(x_2\partial_{x_1} - x_1\partial_{x_2}) + Y(\tilde{A})(x_4\partial_{x_3} - x_3\partial_{x_4}) \]

\[= (\tilde{A} - \tilde{B})w + 2\pi(x_1x_3 + x_2x_4)\left\{-[(2A - \pi r_2 B)(x_2\partial_{x_1} - x_1\partial_{x_2}) + (2B - \pi r_1 A)(x_4\partial_{x_3} - x_3\partial_{x_4})] \right\} \]

and

\[\lim_{r_1 \to 0} [\zeta, v] = \frac{\pi}{\sqrt{2}}(-x_4\partial_{x_1} + x_3\partial_{x_2}), \quad \lim_{r_2 \to 0} [\zeta, v] = \frac{\pi}{\sqrt{2}}(-x_2\partial_{x_3} + x_1\partial_{x_4}) \]

(3.3)

\(^4\)The vector field \(v \) is \(C^0 \) so in order to compute \([\zeta, v]\) we need to regularize \(v \), see Appendix C
By computing
\[d\alpha(v,[\zeta,v]) = d\alpha(v,(\bar{A} - \bar{B})w + a[\zeta,Y]) = \]
\[= -2(\bar{A} - \bar{B}) \frac{h}{R} + ad\alpha(aY + bX, \{Y(\bar{B})(x_2\partial_{x_1} - x_1\partial_{x_2}) + Y(\bar{A})(x_4\partial_{x_3} - x_3\partial_{x_4})\}) \]
and by letting
\[K := \bar{A}(\pi r_2 B - 2A) + \bar{B}(\pi r_1 A - 2B) \]
one has
\[d\alpha(v,[\zeta,v]) = -2\left\{ (\bar{A} - \bar{B}) \frac{h}{R} + 2\pi a^2 r_1 r_2 K \right\} =: -2Q \]
and\(^4 Q > 0. \]

\[\Box \]

Appendix A

Let us consider on \(S^3 \) the following disk
\[D^2 := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \text{ s.t. } x_1^2 + x_2^2 \leq \frac{3}{4}, x_4 \geq 0, x_3 = \varepsilon \} \]
with \(0 < \varepsilon \ll 1 \).

Then the boundary of \(D^2 \) is a Legendrian curve for the contact form \(\alpha \) (i.e. a curve in the kernel of the contact form), in fact
\[\partial D^2 := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \text{ s.t. } x_1^2 + x_2^2 = \frac{3}{4}, x_4 \geq 0, x_3 = \varepsilon \} \]
thus \(\theta|_{\partial D^2} = \frac{\pi}{2}, A|_{\partial D^2} = 0 \) and \(\alpha(\partial D^2) = 0 \). Now let us consider the identically zero form on \(S^3 \)
\[\omega = x_1 dx_1 + x_2 dx_2 + x_3 dx_3 + x_4 dx_4 \]
that on \(D^2 \) it reads as \(x_1 dx_1 + x_2 dx_2 + x_4 dx_4 \). To find the points of tangency between \(ker(\alpha) \) and \(D^2 \) we can see whether \(\omega = \lambda \alpha \) for some non zero real \(\lambda \). Then it should be
\[\left\{ \begin{array}{l} A x_1 = \lambda x_2 \\ A x_2 = -\lambda x_2 \\ B \varepsilon = \lambda x_4 \end{array} \right. \] \hfill (A.1)
that means in particular
\[A(x_1^2 + x_2^2) = 0 \]
Now if \(A = 0 \) then \(\lambda = 0 \), thus the only possible case is when \(x_1^2 + x_2^2 = 0 \) and the only one point of tangency between \(ker(\alpha) \) and \(D^2 \) is \((0, 0, \varepsilon, \sqrt{1 - \varepsilon^2}) \).

\(^4\)See Appendix B
Appendix B

In this section we show the behavior (in particular the non-negativity) of some functions we used before. From now on let us put \(x := r_2 \).

First we study \(h : [0, 1] \rightarrow \mathbb{R}, \)

\[
h(x) := \alpha(\zeta(x)) = A(x) \tilde{B}(x)(1 - x) + B(x) \tilde{A}(x) x = \frac{\sin(2\theta(x))}{2} + \pi(x - x^2)
\]

where \(\theta(x) = \pi \left(\frac{1}{4} + x \right) \). Since \(h \) is symmetric respect to \(x = 1/2 \), we can consider it only for \(x \in [0, 1/2] \). So:

\[
h'(x) = \pi(\cos(2\theta(x)) + 1 - 2x)
\]

\[
h''(x) = -2\pi(\pi \sin(2\theta(x)) + 1) = -2\pi(\pi \cos(2\pi x) + 1)
\]

thus there exists \(c_1 \), with \(1/4 < c_1 < 1/2 \) such that \(h'' \) is positive definite on \((c_1, 1/2) \) and \(h' \) is increasing on \((c_1, 1/2) \). Moreover \(h'(1/2) = 0 \). Thus there exists \(c_2 \), with \(0 < c_2 < c_1 < 1/2 \) such that \(h'(c_2) = 0 \) and \(h \) is increasing on \((0, c_2) \). Finally, since \(h(0) = 1/2 \), the minimum of \(h \) is \(h(1/2) = -1/2 + \pi/4 > 0 \)

One has also \(R(x) := |T(x)| > 0 \). Indeed

\[
R^2(x) = |T(x)|^2 = \langle T(x), T(x) \rangle = \alpha(T(x)) = A^2(x)(1 - x) + B^2(x)x \geq 0
\]

and the quantities \(A^2(x)(1-x) \) and \(B^2(x)x \) cannot be zero simultaneously. We prove now that \(Q(x) = (\tilde{A} - \tilde{B}) \frac{h(x)}{R(x)} + 2\pi a_1 r_1 r_2 K > 0 \) for \(x \in [0, 1] \) showing the graphs of some function (a straightforward computation is possible, as for the function \(h, R, \) to localize critical points). If

\[
H(x) := (\tilde{A}(x) - \tilde{B}(x)) \frac{h(x)}{R(x)}
\]

Where \(K \) is positive definite then \(Q > 0 \).

Otherwise, if we define

\[
G := 2\pi r_1 r_2, \quad G(x) = 2\pi(x - x^2)
\]
since $a^2 \leq 1$, where K is negative definite

$$2\pi a^2 r_1 r_2 K \geq GK$$

Thus, where K is negative definite, it holds

$$Q(x) \geq H(x) + G(x)K(x) =: W(x)$$

and $Q > 0$, for every $x \in [0, 1]$.

Appendix C

In this section we want to regularize the C^0 vector field v. The only problems are on the circles $r_1 = 0$ and $r_2 = 0$, otherwise v is a C^∞ vector field. Let us consider the case $r_1 = 0$, the other one is similar. Let \mathcal{U} be a tubular neighborhood of $r_1 = 0$ and consider on \mathcal{U} a basis $\{v_1, v_2\}$ of $ker(\alpha)$ with $v_1, v_2 \in C^\infty$ (it is not difficult to find a local C^∞ vector field). Then

$$v = a_1 v_1 + a_2 v_2$$ \hspace{1cm} (C.1)

with $a_1, a_2 \in C^0$. After a convolution with a quite standard mollifiers we can find $a_1^\varepsilon, a_2^\varepsilon \in C^\infty$ on \mathcal{U}, with $\varepsilon > 0$. Thus we define the C^∞ vector field

$$v^\varepsilon = a_1^\varepsilon v_1 + a_2^\varepsilon v_2$$ \hspace{1cm} (C.2)
Now, by formulas (3.3) we already know that the vector field $[\zeta, v] \in C^0$, then using

$$|\zeta(a^1_\varepsilon) - \zeta(a_1)| = o(1), \quad |\zeta(a^2_\varepsilon) - \zeta(a_2)| = o(1), \quad \text{as} \quad \varepsilon \to 0$$

we have on \mathcal{U}

$$[\zeta, v] = \lim_{\varepsilon \to 0} [\zeta, v^\varepsilon]$$

Thus, in order to compute $\beta \wedge d\beta$, we can use that

$$d\alpha(v, [\zeta, v]) = \lim_{\varepsilon \to 0} d\alpha(v^\varepsilon, [\zeta, v^\varepsilon])$$

Appendix D

The exotic contact form α we considered on S^3, actually is the first one of a family of non-standard contact forms introduced by J.Gonzalo-F.Varela in [2]. In fact, for every integer $n \geq 1$ let us define

$$\theta_n = \frac{\pi}{4} + n\pi r_2, \quad A_n = \cos \theta_n, \quad B_n = \sin \theta_n$$

$$\tilde{A}_n = A_n + n\pi r_1 B_n = \frac{\partial}{\partial r_1}(r_1 A_n) \quad \quad \tilde{B}_n = B_n + n\pi r_2 A_n = \frac{\partial}{\partial r_2}(r_2 B_n)$$

then [2]

Theorem 3.2 (J.Gonzalo - F.Varela). *The non-singular one-differential forms*

$$\alpha_n = - \left(A_n(x_2 dx_1 - x_1 dx_2) + B_n(x_4 dx_3 - x_3 dx_4) \right)$$

are non-standard contact forms on S^3, for every $n \geq 1$

If

$$\zeta_n = - \left(\tilde{B}_n(x_2 \partial_{x_1} - x_1 \partial_{x_2}) + \tilde{A}_n(x_4 \partial_{x_3} - x_3 \partial_{x_4}) \right)$$

one has

$$h_n := \alpha_n(\zeta_n) = A_n \tilde{B}_n r_1 + B_n \tilde{A}_n r_2 > 0, \quad d\alpha_n(\zeta_n, \cdot) = 0$$

and then the Reeb vector field of α_n is

$$\xi_n = \frac{\zeta_n}{h_n}$$

Now, using the same arguments as in Section 2 we can see that if

$$T_n = - \left(A_n(x_2 \partial_{x_1} - x_1 \partial_{x_2}) + B_n(x_4 \partial_{x_3} - x_3 \partial_{x_4}) \right)$$

then one finds $|T_n| > 0$ and it holds

10
Theorem 3.3. Let us define \(C_n = A_n/|T_n|, D_n = B_n/|T_n| \).
Let \(n \geq 1 \) be odd.
If \(v_n = v_n^1 \partial x_1 + v_n^2 \partial x_2 + v_n^3 \partial x_3 + v_n^4 \partial x_4 \), with
\[
\begin{align*}
v_n^1 &= x_3 \frac{(x_1^2 - D_n x_2^2)}{r_1} + \frac{(x_1 x_2 x_4)}{r_1} (1 + D_n) \\
v_n^2 &= x_4 \frac{(x_2^2 - D_n x_1^2)}{r_1} + \frac{(x_1 x_2 x_3)}{r_1} (1 + D_n) \\
v_n^3 &= -x_1 \frac{(x_3^2 + C_n x_4^2)}{r_2} - \frac{(x_2 x_3 x_4)}{r_2} (1 - C_n) \\
v_n^4 &= -x_2 \frac{(x_3^2 + C_n x_4^2)}{r_2} - \frac{(x_1 x_3 x_4)}{r_2} (1 - C_n)
\end{align*}
\]
Then \(v_n \) is a non singular \(C^0 \) vector field in \(\ker(\alpha_n) \) and \(|v_n| = 1 \).
Let \(n \geq 1 \) be even.
If \(v_n = v_n^1 \partial x_1 + v_n^2 \partial x_2 + v_n^3 \partial x_3 + v_n^4 \partial x_4 \), with
\[
\begin{align*}
v_n^1 &= x_3 \frac{(x_1^2 + D_n x_2^2)}{r_1} - \frac{(x_1 x_2 x_4)}{r_1} (1 - D_n) \\
v_n^2 &= -x_4 \frac{(x_2^2 + D_n x_1^2)}{r_1} + \frac{(x_1 x_2 x_3)}{r_1} (1 - D_n) \\
v_n^3 &= -x_1 \frac{(x_3^2 + C_n x_4^2)}{r_2} + \frac{(x_2 x_3 x_4)}{r_2} (1 - C_n) \\
v_n^4 &= x_2 \frac{(x_3^2 + C_n x_4^2)}{r_2} - \frac{(x_1 x_3 x_4)}{r_2} (1 - C_n)
\end{align*}
\]
Then \(v_n \) is a non singular \(C^0 \) vector field in \(\ker(\alpha_n) \) and \(|v_n| = 1 \).
Thus the hypothesis (i) holds by using the previous \(v_n \).
Putting \(\beta_n(\cdot) = d\alpha_n(v_n, \cdot) \) then in order to compute \(\beta_n \wedge d\beta_n \) we need to know the sign of \(d\alpha_n(v_n, [\zeta_n, v_n]) \). By a direct computation:
if \(n \geq 1 \) is odd then
\[
d\alpha_n(v_n, [\zeta_n, v_n]) = -2 \left\{ (\tilde{A}_n - \tilde{B}_n) \frac{h_n}{R_n} + 2n\pi a^2 r_1 r_2 K_n \right\} =: -2Q_n
\]
where
\[
K_n := \tilde{A}_n(n\pi r_2 B_n - 2A_n) + \tilde{B}_n(n\pi r_1 A_n - 2B_n), \quad a = \frac{1}{\sqrt{r_1 r_2}} (x_1 x_3 + x_2 x_4)
\]
whereas if \(n \geq 1 \) is even then
\[
d\alpha_n(v_n, [\zeta_n, v_n]) = -2 \left\{ (\tilde{A}_n + \tilde{B}_n) \frac{h_n}{R_n} + 2n\pi a^2 r_1 r_2 K_n \right\} =: -2Q_n
\]
where

\[K_n := \tilde{A}_n (n\pi r_2 B_n - 2A_n) + \tilde{B}_n (n\pi r_1 A_n - 2B_n), \quad a = \frac{1}{\sqrt{r_1 r_2}} (x_1 x_3 - x_2 x_4) \]

Now, for every \(0 < r_1 < 1\), there exist \(x_1, x_2, x_3, x_4\) (even along the periodic orbits of \(\xi_n\)) such that \(a^2 = 0\). In such a points the sign of \(d\alpha_n(v_n, [\zeta_n, v_n])\) depends on \(\tilde{A}_n \pm \tilde{B}_n\) and we find the following graphs

Thus in general the hypothesis \((ii)\) does not hold in general. Anyway the existence of a ”good” \(v_n\) (for which the hypotheses \((i), (ii)\) are satisfied) is not a priori excluded.

References
