
NONSMOOTH SOLUTIONS FOR A CLASS
OF FULLY NONLINEAR PDE’S ON LIE GROUPS

VITTORIO MARTINO & ANNAMARIA MONTANARI

Abstract. In this paper we prove the existence of non smooth viscosity solutions

for Dirichlet problems involving a class a fully non-linear operators on Lie groups.

In particular we consider the elementary symmetric functions of the eigenvalues

of the Hessian built with left-invariant vector fields.

Mathematics Subject Classification. 35R03, 35J96, 35D40, 35J70

Keywords and phrases. Fully nonlinear Degenerate elliptic PDE’s. Elementary

symmetric functions of the eigenvalues. Horizontal Hessian. Left invariant vector

fields. Comparison principle. Gradient estimates. Pogorelov counterexample

Contents

1. Introduction 1
2. Comparison principle for viscosity solutions 8
3. A preliminary existence result 9
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In [18] Pogorelov showed that convex generalized solutions of the Monge
Ampère equation

(1) det D2u = f (x)

in a domain Ω ⊂ Rn, n ≥ 3, need not be of class C2, even if f is positive and smooth.
Urbas in [20] proved that this absence of classical regularity is not confined to
equations of Monge Ampère type, but in fact occurs for the k-th elementary
symmetric functions in the Hessian and the equation of prescribed k-th curvature,
where k ≥ 3. Recently Gutierrez Lanconelli and the second author in [9] proved
the absence of regularity of graphs with positive and smooth prescribed Levi
Monge Ampère curvature in a domain Ω ⊂ R2n+1, for n > 1.

Our purpose here is to show that a similar result holds for elementary symmetric
functions of the Hessian on Lie groups. Our study is motivated by our recent
results in [14] about existence and uniqueness of Lipschitz continuous viscosity
solutions for Dirichlet problems involving symmetric functions of the Hessian
built with left invariant vector fields on Lie groups. A naturally subsequent
problem is that of further regularity of Lipschitz continuous viscosity solutions.

To fix the notation let us recall some well known facts. Let G = (Rn, ◦) be a Lie
group on Rn with ◦ as group law. Let us denote by l the set of the left-invariant
vector fields. If El = {X1, . . . ,Xn} is any basis of l then a Riemannian metric g on G
is left-invariant if and only if the coefficients gi j := g(Xi,X j) are constant functions.
Each n-dimensional Lie group possesses a n(n+1)/2-dimensional family of distinct
left-invariant metrics, see for instance [15]. Let us fix any left-invariant metric g
and let u be a smooth function, we will denote by Dgu the gradient of u with respect
to the metric g, that is: g(Dgu,X) = Xu = du(X), for every vector field X. Moreover,
there exists a n × n invertible and smooth matrix W such that Dgu = W(x) Du,
where Du denotes the Euclidean gradient of u. If ∇ is the Levi-Civita connection
for g (we recall that the connection coefficients in term of any left-invariant basis
are constant functions), then the metric Hessian of u is the tensor field of type
(0, 2) defined by:

Hgu(X,Y) := XYu − (∇XY)u

for every pair of vector fields (X,Y); since ∇ is the Levi-Civita connection for g
(that is ∇XY − ∇YX = [X,Y]), we note that Hgu is always symmetric. We will
denote by D2

gu := g−1Hgu the associated endomorphism. We explicitly note that
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the previous definition is intrinsic, namely the eigenvalues of D2
gu do not change

in a change of basis. Let us consider a coordinate frame { ∂∂x1
, . . . , ∂

∂xn
}, referred to

local coordinates (in our setting they are actually global), we have:

Hgu
( ∂
∂xi
,
∂
∂x j

)
=
∂2u
∂xix j

− Γs
i j
∂u
∂xs

where Γs
i j are the Christoffel symbols for the metric g (they are not constant in

general). Hence if Du,D2u denote the usual Euclidian gradient and Hessian, then
D2

gu reads in local coordinates

(2) D2
gu := G−1(x)[D2u + B(x,Du)]

where we denoted by G−1 the symmetric matrix of coefficients of g−1 expressed
in the coordinate frame (they are not constant functions in general) and the
coefficients of the matrix B are given by bi j = Γs

i j
∂u
∂xs

. Let us note that the matrix B
is symmetric because the Levi-Civita connection has null torsion.
Here we will consider also the case of strictly restrictions to some subspace of l. Let
then m ≤ n and let El

m = {X1, . . . ,Xm}, we define the subspace of the left-invariant
vector fields

HG := span{X1, . . . ,Xm}

Now we consider a left-invariant metric gm on HG, we can “complete” it to the
full tangent space by defining the blocks metric:

g :=

 gm 0
0 Idn−m


where, for every integer n, Idn denotes the identity matrix of order n. We define

Hg,mu(X,Y) := XYu − (∇XY)u, ∀ X,Y ∈ HG

and D2
g,mu := g−1

m Hg,mu.
We note that there is another recurrent definition of Hessian on Lie groups, let

us call it the symmetrized Hessian Hsu, that is, for every smooth function u and
for every pair of left-invariant vector fields X,Y:

(3) Hsu(X,Y) =
XYu + YXu

2
In particular there is a very large literature on questions involving this symmetrized
Hessian on Carnot groups (see for instance [7], [10], [11], [13], [19], [21], [5], [1]
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and the references therein). An easy computation shows that our metric Hessian
Hgu coincides with Hsu if and only if it holds:

(4) ∇XY =
1
2

[X,Y], X,Y ∈ l

In [14, Example 2.1] we proved that if we consider the case of stratified Lie groups
(in the sequel Carnot groups) (see Definition 4.4 or [3, Definition 2.2.3]), then the
two Hessian definitions coincide. Moreover, in [14, Example 2.2] we exhibited an
example of a Lie group that does not satisfy (4).

Let BR ⊆ Rn be the Euclidean ball of radius R and center at the origin and let
f : BR ×R ×Rn

→ R be a smooth positive function, here we are interested on the
Dirichlet problem associated with equations of the following form

(5)
(
σk(D2

g,mu)
) 1

k
= f (x,u,Dgu), k = 1, . . . ,m

where, for every symmetric matrix M of order m, σk(M) denotes the k-th elementary
symmetric function in the eigenvalues of M.
Our motivation comes from the geometric theory of several complex variables,
where fully nonlinear second order pde’s appear, whose linearizations are non
variational operators of Hömander type. (See [16] and references therein). These
kinds of operators, also arising in many other theoretical and applied settings,
have the form of (5). The dependence on the gradient Dgu in f is motivated by
various applications. An interesting example is the subelliptic analogue of the
prescribed Gauss curvature equation, see [7] and [5].

A direct computation shows that equation (5) reads then in local coordinates:

(6)
(
σk

(
Am(x) D2u AT

m(x) + Qm(x,Du)
)) 1

k
= f̃ (x,u,Du)

where f̃ is a positive function such that f̃ (x,u,Du) = f (x,u,Dgu) = f (x,u,W(x)Du)
and Am is a m × n matrix and Qm is a square matrix of order m, both with smooth
coefficients. Moreover, it is easy to see that (see for instance [3, Section 1.2.2])

(7) Am(0) =
(

Idm 0
)
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and Qm is symmetric and linear with respect to Du. Precisely, we will consider
viscosity solutions of the following Dirichlet problem:

(8)

 F(x,u,Du,D2u) = 0, in BR,

u = φ, on ∂BR,

where

(9) F(x,u,Du,D2u) := −
(
σk

(
Am(x) D2u AT

m(x) + Qm(x,Du)
)) 1

k
+ f (x,u,Dgu)

and φ : ∂BR → R.
We refer to [12], [6] for a full detailed exposition on the theory of viscosity
solutions: we will give the basic definition of sub- and super-solution in the
next section.

We explicitly remark here that the partial differential equation F = 0 is not
elliptic and it is fully nonlinear for k > 1.

In analogy with [4] and [14], we define the open cone

Γm
k = {λ = (λ1, . . . , λm) ∈ Rm : σ j(diag(λ)) > 0, for every j = 1, . . . , k},

where diag(λ) is the m × m diagonal matrix, and we denote by Γm
k and ∂Γm

k the
closure and the boundary of Γm

k respectively.
Remark that F is degenerate elliptic in the cone Γm

k , i.e. F(x, s, p,M) ≤ F(x, s, p,N),
for all x ∈ Rn, s ∈ R, p ∈ Rn, and M,N symmetric n×n matrices whose eigenvalues
belongs to the open cone Γm

k and such that M ≥ N.
Therefore, we give the following

Definition 1.1. Let x0 ∈ Rn and let ϕ be a C2 function in a neighborhood of x0. We
will say that ϕ is strictly F-admissible (respectively F-admissible) at x0, if the vector
λ = (λ1, . . . λm) of the eigenvalues of D2

g,mϕ(x0) belongs to the open cone Γm
k (respectively

Γm
k ). Remark that the cone Γm

k is invariant with respect to permutation of λ j.

We will say that ϕ is strictly F-admissible (respectively F-admissible) in Ω ⊂ Rn if ϕ
is strictly F-admissible (respectively F-admissible) at x0 for every x0 ∈ Ω.
Moreover if ρ : Rn

→ R is a smooth defining function for a bounded open set Ω ⊂ Rn,
that is

Ω = {x ∈ Rn : ρ(x) < 0}, ∂Ω = {x ∈ Rn : ρ(x) = 0}

then we will say that the domain Ω is strictly F-admissible if ρ is strictly F-admissible.
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By taking into account (7) it is easy to show that we can always find a small
radius R > 0 such that the Euclidean ball BR is strictly F-admissible.

The purpose of this paper is to show that when 2 < k ≤ m ≤ n, viscosity
solutions may not be regular even if f is positive and smooth. Precisely, we prove
the following theorem, which is the main result of the paper.

We will assume that there is ` > k/2 such that F in (9) satisfies the following
structure condition

(H`) Qm(x, p) = Qm(x, p`+1, . . . , pn) is independent of p1, . . . , p`.

Let us denote by Lip the space of Lipschitz continuous functions with respect
to the Euclidean metric and by C1,β

X the space of functions u such that the Lie
derivative Xu exists for all X ∈ HG and it is β- Hölder continuous with respect to
the Euclidean distance (see Section 4 for details).

Theorem 1.1. Suppose 2 < k ≤ m ≤ n, and f ∈ C∞(B1 ×R×Rn) is a positive function,
monotone increasing with respect to u and satisfying at least one of the following two
conditions:

• f does not depend on its first argument x
• inf ∂ f

∂u > 0.

Then there exists R ∈ (0, 1) and a F- admissible viscosity solution u to the equation

(10) F(x,u,Du,D2u) = 0 in BR,

such that u ∈ Lip(B̄R).
Moreover, if condition (H`) holds true for some ` ∈ (k/2, k − 1), then u < C1,β

X for any
β > 2`

k −1. If condition (H`) holds true for some ` ≥ k−1, then u < C1,β
X for any β > 1− 2

k .

The proof of this theorem uses Pogorelov’s counterexamples, see [18] or [8,
Section 5.5], and its extensions developed by Urbas in [20] and by Gutierrez,
Lanconelli and Montanari in [9] to show existence of viscosity non classical
solutions to real curvature equations and to Gauss-Levi curvature equations,
respectively.

A principal tool used to carry out the proof of our theorem are the comparison
principles proved in [14, Section 4].

We will show in the Examples section at the end that, in any homogeneous
Carnot group, elementary symmetric functions in the eigenvalues of the Hessian
of the first layer satisfy (H`). Moreover, we recall that any stratified Carnot
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group is isomorphic to a homogeneous Carnot group and that the isomorphism
preserves the stratification (see [3, Proposition 2.2.10 and Theorem 2.2.18]). In
the same section, we will show that there exist Lie groups, not Carnot, such that
elementary symmetric functions in the eigenvalues of the Hessian Hg,m, for some
m still fulfill condition (H`).

The two alternative conditions on the function f in Theorem 1.1 and the Lie
group structure arise in [14] through the consideration of gradient estimates.
We remark that for Monge–Ampère equations (i.e. k = m) on a homogeneous
Carnot group, Bardi and Mannucci in [2] proved the existence of H-convex (i.e.
F-admissible) continuous viscosity solutions of (10) under the only assumption
that f is positive and monotone increasing with respect to u. Moreover, as a
consequence of the H-convexity, the solution is locally Lipschitz continuous with
respect to the Carnot Carathéodory distance (see Definition 4.2) and for R small
enough

‖Xu‖L∞(BCC(R)) ≤
C
R
‖u‖L∞(BCC(2R)), ∀X ∈ HG

where the balls BCC are taken with respect to the Carnot Carathéodory distance
and C is a constant independent of u and of R (see [13, Theorem 4.1], [1] and the
references therein). Let us denote by C1,β

X,dCC
the space of functions u such that the

Lie derivative Xu exists for all X ∈ HG and it is β- Hölder continuous with respect
to the Carnot Carathéodory distance. Thus, as a corollary of Theorem 1.1 (see also
Remark 5.1), we get

Corollary 1.1. Let us consider a Carnot group on Rn with m ≤ n generators. Suppose
f ∈ C∞(B1 ×R × Rn) is a positive function, monotone increasing with respect to u. Then
there exists R ∈ (0, 1) and a F- admissible viscosity solution u to the equation
(11)

F(x,u,Du,D2u) := −
(

det
(
Am(x) D2u AT

m(x)+Qm(x,Du)
)) 1

m
+ f (x,u,Dgu) = 0 in BR,

such that u is Lipschitz continuous with respect to the Carnot Carathéodory distance in
BR and u < C1,β

X,dCC
(BR) for any β > 1 − 2

m .

Moreover, in that case, by analogy with the classical Monge-Ampère equations
(see for instance [8, Section 5.4]), we expect that if the boundary data φ ∈ C1,β(∂BR)
for β > 1 − 2

m , then the viscosity solutions u of (11) is strictly H-convex and Xu
is β- Hölder continuous with respect to the Carnot Carathéodory distance for all
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X ∈ HG. This would be an optimal regularity property and it will be the topic of
future studies.

Our paper is organized as follows. Section 2 contains comparison principles for
F-admissible viscosity solutions. In Section 3, we show existence of F-admissible
Lipschitz continuous viscosity solutions in small balls. Section 4 contains basic
definitions of spaces of Hölder continuous functions and some well known facts
in Sub-Riemannian geometry. In Section 5 we prove our main theorem. In Section
6 we exhibit examples.

2. Comparison principle for viscosity solutions

We first recall the definition of sub- and super-solution in the viscosity sense.

Definition 2.1. Let us consider the equation

(12) F(x,u,Du,D2u) = 0, in Ω,

We say that a function u ∈ USC(Ω) is a viscosity sub-solution for (12) if for every
ϕ ∈ C2(Ω), it holds the following: if x0 ∈ Ω is a local maximum for the function u − ϕ,
then ϕ is F-admissible at x0 and

(13) F
(
x0,u(x0),Dϕ(x0),D2ϕ(x0)

)
≤ 0

We say that a function u ∈ LSC(Ω) is a viscosity super-solution for (12) if for every
ϕ ∈ C2(Ω), it holds the following: if x0 ∈ Ω is a local minimum for the function u − ϕ,
then either ϕ is F-admissible at x0 and

(14) F
(
x0,u(x0),Dϕ(x0),D2ϕ(x0)

)
≥ 0

or ϕ is not F-admissible at x0.

A continuous function u is a viscosity solution for (12) if it is either a viscosity sub-solution
and a viscosity super-solution for (12).
We say that a function u ∈ USC(Ω) is a viscosity sub-solution for (8) if u is a viscosity
sub-solution for (12) and in addition u ≤ φ on ∂Ω.
We say that a function u ∈ LSC(Ω) is a viscosity super-solution for (8) if u is a viscosity
super-solution for (12) and in addition u ≥ φ on ∂Ω.
A viscosity solution for (8) is either a viscosity sub-solution and a viscosity super-solution
for (8).
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The following comparison result plays a crucial role in the proof of Theorem
1.1.

Theorem 2.1. Let u be a viscosity subsolution and let v be a viscosity supersolution to
the equation F = 0 in a bounded open set Ω ⊂ Rn. If f is continuous, positive and strictly
increasing with respect to u and

lim sup
x→x0

u(x) ≤ lim inf
x→x0

v(x) for every x0 ∈ ∂Ω,

then u ≤ v in Ω.

This Comparison Principle is proved in [14, Proposition 4.1].
A comparison principle in the class of uniformly horizontal convex sub- and

super-solution of the Monge-Ampère equation in homogeneous Carnot groups
has been proved in [2].

Here we would like to have a comparison principle for F also when f is only
increasing with respect to u. In order to adapt the proof for the strictly monotone
case in this situation, one needs to find (for instance) a strictly sub-solution for F,
and we can choose R > 0 such that the defining function ρ(x) = (‖x‖2 −R2)/2 of BR

is a a strictly sub-solution for F in BR. Precisely, we have

Theorem 2.2. Let f be continuous, positive and increasing with respect to u. Then, there
is R > 0 such that, if u is a viscosity subsolution and v is a viscosity supersolution to the
equation F = 0 in BR and

lim sup
x→x0

u(x) ≤ lim inf
x→x0

v(x) for every x0 ∈ ∂BR,

then u ≤ v in BR.

3. A preliminary existence result

In this section we assume that f is increasing with respect to u. Let us fix R > 0
such that BR is strictly F-admissible and

(15)
(
σk

(
Am(x) AT

m(x) + Qm(x, x)
)) 1

k
> 1/2, for every x ∈ BR,

We define the following function

f∞ : B̄R ×R ×R
n
→ R, f∞(x, r,P) := lim

λ→∞

f (x, λr, λP)
λ

.
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Let us suppose that f∞ exists at every point and that for the defining function
ρ(x) = (‖x‖2 − R2)/2 of BR it holds

(16) f∞(x, ρ(x),Dgρ(x)) < 1/2, for every x ∈ B̄R.

This restriction on the growth of the function f and the Lie group structure arise
in [14] through the consideration of gradient estimates.

By [14, Theorem 1.1] we have the following existence result for the Dirichlet
problem (8)

Theorem 3.1. Let us fix R > 0 such that BR is strictly F-admissible and such that (15)
holds true. Let f ∈ C1 be a non negative function, increasing with respect to u, and such
that that f∞ exists and it satisfies condition (16) and that at least one of the following two
conditions holds true:

• f does not depend on its first argument x
• inf ∂ f

∂u > 0.

Then, for every boundary data φ ∈ C1,1, there exists a viscosity solution u ∈ Lip(BR) of
the problem (8).

Moreover, let us fix a positive constant c such that

(17) f (x, (sup
∂BR

φ), cDgρ(x)) < c/2, for every x ∈ B̄R.

Then

• if f does not depend on its first argument x, then ‖u‖Lip(BR) only depends on R,
‖φ‖C1,1(BR), c.

• If inf ∂ f
∂u > 0, then ‖u‖Lip(BR) only depends on R, ‖φ‖C1,1(BR), c, and on

sup
BR×[inf∂BR φ+cρ(x),sup∂BRφ]×Rn

|Dg f |
fu

.

The following remark shows that if the boundary data is convex, on small balls
we can relax the growth condition (16)

Remark 3.1. If the boundary data φ ∈ Lip(B̄1) is convex in B1 and cR < 1 then

f (x, (sup
∂BR

φ), cDgρ(x)) = f (x, (sup
∂BR

φ), cW(x)x) ≤ sup
(x,p)∈B1×B1

f (x, (sup
∂B1

φ),W(x)p).
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Now we choose c such that sup(x,p)∈B1×B1
f (x, (sup∂B1

φ),W(x)p) < c/2 and R < 1/c and
we get that (17) is always satisfied in BR without assuming the growth condition (16)

In this section we prove the existence of a Lipschitz-continuous viscosity solution
to a Dirichlet problem for F on the ball BR, for R sufficiently small. The boundary
data will be the restriction to ∂BR of a convex function φ in BR satisfying the
equation F = 0 in BR. The crucial point of this preliminary existence result is the
dependence of the gradient of the solution only on the gradient of φ. The proof is
a refinement of Theorem 3.1

To prove our existence result, Proposition 3.1, we show the following lemma,
which provides a strict subsolution to F = 0 independent of the second derivatives
of the boundary data.

In this section 0 < R < 1 is fixed such that (15) holds true.

Lemma 3.1. Let φ ∈ C2(B1) ∩ Lip(B̄1) be a convex function. For each λ > 0 define

uλ(x) := φ(x) + λρ(x), x ∈ B1,

where ρ(x) = (‖x‖2 − r2)/2. Then, there exists 0 < r < R < 1 and λ∗ > 0, only depending
on supBR

|Dφ|, such that

(18) F(x,uλ,Duλ,D2uλ) < 0 in Br, for every λ > λ∗.

Proof. Since φ is a convex function,

Am(x)D2uλAT
m(x) + Qm(x,uλ) ≥ λ

(
Am(x)AT

m(x) + Qm(x, x) + Qm(x,Dφ/λ)
)
.

Let us choose λ̃∗ = λ̃∗(r, sup∂BR
|Dφ|) > 0 such that for every λ > λ̃∗ and for any

x ∈ Br (
Am(x)AT

m(x) + Qm(x, x) + Qm(x,Dφ/λ)
)
>

1
2

Idm.

In particular uλ is F-admissible in Br for every λ > λ̃∗.Moreover, as a consequence
of the monotonicity of the function A → σ1/k

k (A) and of its homogeneity, i.e.
σ1/k

k (λA) = λσ1/k
k (A) for every λ > λ̃∗, we get

F(x,uλ,Duλ,D2uλ) ≤ −λσ1/k
k

(
Am(x)AT

m(x) + Qm(x, x) + Qm(x,Dφ/λ)
)

+ f (x,uλ,Dguλ)

≤ −
1
2
λ + f (x,uλ,Dguλ)



12 VITTORIO MARTINO & ANNAMARIA MONTANARI

Then, since Duλ(x) = λ

(
Dφ
λ

+ x
)
, by recalling Remark 3.1 we can fix λ∗ > λ̃∗ > 0

and a small r, only depending on sup∂B1
|Dφ|, such that

f (x,uλ,Dguλ)
λ

<
1
2

for every λ > λ∗.
This inequality easily implies that (18) holds for every λ > λ∗ and for all

x ∈ Br. �

Using the previous lemma and by Theorem 3.1, we obtain the main result of
this section.

Proposition 3.1. Assume the conditions of Theorem 1.1. If φ ∈ C2
∩ Lip(B̄1) is a convex

function such that F ≥ 0 in B1, then there is 0 < r < R < 1 such that lthe Dirichlet
problem

(19) F = 0, in Br, u = φ on ∂Br

has a viscosity solution u ∈ Lip (Br) satisfying

(20) ‖u‖L∞(Br) + ‖u‖Lip (Br) ≤ C,

where

• if f does not depend on x, C only depends on r, ‖φ‖L∞(BR), ‖Dφ‖L∞(BR)

• if fu > 0, C only depends on r, ‖φ‖L∞(BR), ‖Dφ‖L∞(BR) and on

sup
BR×[inf∂BR φ+cρ(x),sup∂BRφ]×Rn

|Dg f |
fu

with c as in Remark 3.1.

Proof. Let uλ = φ + λρ be the function given by the previous lemma with λ > λ∗.
Then uλ ∈ C2(Br) and it is a classical subsolution to F = 0 in Br. Moreover,
uλ = φ on ∂Br. On the other hand, since F(x, φ,Dφ,D2φ) ≥ 0 in B1, φ is a classical
supersolution to F = 0 in Br.

Then, by Theorem 3.1, the Dirichlet problem (19) has a viscosity solution u ∈
C(Br) and by the comparison principle we have uλ ≤ u ≤ φ in Br. Hence supBr

|u| ≤
supBr

|φ| + λr. On the other hand, by Lemma 3.1, supBr
|Duλ| can be bounded by a

constant only depending on r and supBR
|Dφ|. By the interior gradient estimates
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in Theorem 3.1, we can conclude that u ∈ Lip(Br) with ‖u‖Lip(Br) bounded by a
constant C > 0, where

• if f does not depend on x, C only depends on r, ‖φ‖L∞(BR), ‖Dφ‖L∞(BR)

• if fu > 0, C only depends on r, ‖φ‖L∞(BR), ‖Dφ‖L∞(BR) and on

sup
BR×[inf∂BR φ+cρ(x),sup∂BRφ]×Rn

|Dg f |
fu

.

�

4. Basic definitions: Hölder Spaces, Hörmander vector fields, Carnot
Carathéodory distance, Carnot group

In this section we fix notation and we briefly recall some well known facts.
Let X1, . . . ,Xm be a system of real smooth vector fields defined in some bounded
connected open subset Ω of Rn, with m ≤ n.

Definition 4.1. For any β ∈ (0, 1) we set

Cβ(Ω) =
{
u : Ω→ R : ‖u‖Cβ(Ω) < ∞

}
where

‖u‖Cβ(Ω) = sup
{
|u(x) − u(y)|

d(x, y)β
: x, y ∈ Ω, x , y

}
and d is the Euclidean distance.

Moreover, let

C1,β
X (Ω) =

{
u : Ω→ R : ‖u‖C1,β

X (Ω) < ∞
}

where

‖u‖C1,β
X (Ω) =

m∑
j=1

‖X ju‖Cβ(Ω).

For any multi index I = (i1, i2, . . . , i j), 1 ≤ i j ≤ m, we set

XI = [Xi1 , [Xi2 , . . . [Xi j−1 ,Xi j] . . . ]],

where [X,Y] = XY − YX. We say that XI is a commutator of length |I| = j.
We say that X1, . . . ,Xm satisfy Hörmander condition at step s in Ω if the vector

fields, together with their commutators of length ≤ s, span the tangent space at
every point in Ω. The vector fields induce onRn a metric dCC in the following way
(see [17]).
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Definition 4.2 (Carnot Carathéodory metric). A Lipschitz continuous curve γ :
[0,T] → Rn, T ≥ 0, is subunit if there exists a vector of measurable functions h :
[0,T]→ Rn such that γ′(τ) =

∑m
j=1 h j(τ)X j(γ(τ)) and

∑m
j=1 h2

j (τ) ≤ 1 for a.e. τ ∈ [0,T].
Define the Carnot Carathéodory distance dCC : Rn

×Rn
→ [0,+∞) by setting

dCC(x, y) = inf{T ≥ 0 : there exists a subunit curveγ : [0,T]→ Rn

such thatγ(0) = x andγ(T) = y}.

It is well-known that if the vector fields are smooth and satisfy Hörmander
condition then dCC(x, y) is finite for all x, y (see [3], [17]). Moreover, if X1, . . . ,Xm

satisfy Hörmander condition at step s in Ω, then if K ⊂⊂ Ω is any compact set,
there are positive constants c,C so that if x, y ∈ K

(21) cd(x, y) ≤ dCC(x, y) ≤ Cd(x, y)1/s.

Definition 4.3. Let X1, . . . ,Xm be a system of real smooth vector fields satisfying
Hörmander condition in some bounded connected subset Ω of Rn, with m ≤ n. For
any β ∈ (0, 1) we set

Cβ

dCC
(Ω) =

{
u : Ω→ R : ‖u‖CβdCC

(Ω) < ∞
}

where

‖u‖CβdCC
(Ω) = sup

{
|u(x) − u(y)|

dCC(x, y)β
: x, y ∈ Ω, x , y

}
Moreover, let

C1,β
X,dCC

(Ω) =
{
u : Ω→ R : ‖u‖C1,β

X,dCC
(Ω) < ∞

}
where

‖u‖C1,β
X,dCC

(Ω) =

m∑
j=1

‖X ju‖CβdCC
(Ω).

We explicitly remark here that, if X1, . . . ,Xm is a system of real smooth vector
fields satisfying Hörmander condition at step s in Ω, then by (21) we have

Cβ(Ω) ⊂ Cβ

dCC
(Ω) ⊂ Cβ/s(Ω).

A remarkable example of a system of real smooth vector fields satisfying
Hörmander condition at step s is furnished by the Jacobian basis of a stratified
Lie group. For reader convenience, we recall here the definition of stratified Lie
group.
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Definition 4.4. A stratified Lie group (or Carnot group) H is a simple connected Lie
group whose Lie algebra l admits a stratification, i.e. a direct sum decomposition l =

V1 ⊕ V2 ⊕ · · · ⊕ Vs such that [V1,Vi−1] = Vi for 2 ≤ i ≤ s, and [V1,Vs] = {0}.
In this case we say that H has step (of nilpotency) s and has m generators, where

m = dim(V1).

5. Existence of nonsmooth solutions

Proof of Theorem 1.1. First of all remark that if condition (H`) holds true for some
` ≥ k − 1 then in particular (H`) holds true for ` = k − 1. Throughout this section
we then fix k/2 < ` ≤ k − 1 such that condition (H`) holds true, and we denote by
x = (x′, x′′), x′ = (x1, . . . , x`) ∈ R`, x′′ = (x`+1, . . . , xk) ∈ Rk−` with x ∈ Rk. We denote
by ξ = (x, t) points of Rn, with x ∈ Rk and t ∈ Rn−k.

For 0 ≤ ε < 1 and 0 < r < R such that Proposition 3.1 holds true, we define

(22) wε(x) = wε(x′, x′′) := (r2 + |x′′|2)(ε + |x′|2)α, α =
`
k
,

and

ψε(ξ) = ψε(x, t) := Mwε(x), φε(ξ) = φε(x, t) := 2M(ε + |x′|2)α,

with M a positive constant that will be determined later. We have

ψ0 ≤ ψε ≤ φε, in B1.

Since ` > k/2, the exponent α = `
k >

1
2 and so that φε is convex in Rn for ε ≥ 0.

Moreover, φε is smooth for ε > 0, and independent of x′′ and t. From condition
(H`) we then obtain for ε > 0

Am(ξ)D2φεAT
m(ξ) + Qm(ξ,Dφε) = Am(ξ)D2φεAT

m(ξ) ≥ 0

and it has m − ` null eigenvalues. This means that φε is F admissible and since
m − ` ≥ m − k + 1

σk

(
Am(ξ)D2φεAT

m(ξ) + Qm(ξ,Dφε)
)

= 0.

Therefore:

(23) F(ξ, φε,Dφε,D2φε) = f (ξ, φε,Dgφε) > 0 in B1, ∀ ε ∈]0, 1[.

Thus, applying Proposition 3.1, there exists 0 < r < R such that the Dirichlet
problem

F = 0 in Br, u = φε on ∂Br,
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with ε ∈]0, 1[, has a viscosity solution uε such that

‖ uε ‖L∞(Br) + ‖ uε ‖Lip (Br) ≤ C(r, ε,M)

with C(r, ε,M) depending on ε only through C(φε) :=‖ φε ‖L∞(Br) + ‖ Dφε ‖L∞(Br).
On the other hand, an elementary computation shows that C(φε) ≤ 8M. Then, we
can choose C(r, ε,M) independent of ε, and so

(24) ‖ uε ‖L∞(Br) + ‖ uε ‖Lip (Br) ≤ C(r,M).

Now we claim that, if 0 < r� R, we can fix M = M(r) such that

(25) F(ξ, ψε,Dψε,D2ψε) < 0 in Br, ∀ ε ∈]0, r2[.

Assuming this claim for a moment, we can use the Comparison Principle of
Section 2 to compare uε with ψε and φε. Indeed, by (23) and (25), φε and ψε are,
respectively, classical supersolution and subsolution to F = 0 in Br. On the other
hand ψε ≤ φε in B1, in particular, ψε ≤ φε on ∂Br. Thus, by the Comparison
Principle,

(26) ψε ≤ uε ≤ φε in Br, ∀ε ∈]0, r2[.

The uniform estimate (24) implies the existence of a sequence ε j ↘ 0 such that
(uε j) j∈N uniformly converges to a viscosity solution u ∈ Lip(Br) to the Dirichlet
problem

F = 0 in Br, u = φ0 on ∂Br;

the proof of this fact is given in [14, Lemma 3.1]. Moreover, from the comparison
principle, we get

(27) ψ0 ≤ u ≤ φ0 in Br.

In particular

(28) Mr2
|x1|

2α
≤ u(x1, 0, . . . , 0) ≤ 2M|x1|

2α.

As in the proof of [9, Theorem 1] inequalities in (28) imply:

∂x1u < Cβ, for every β > 2α − 1 =
2`
k
− 1 if 2α > 1 (i.e. ` > k/2).

Moreover, inequalities (27) imply that

X1u < Cβ, for every β > 2α − 1 =
2`
k
− 1 if 2α > 1 (i.e. ` > k/2).
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Indeed, let us denote by exp(sX1)(0) = γ(s) the integral curve of the vector field
X1 starting at the origin, i.e. γ′(s) = X1γ(s), γ(0) = 0. Remark that γ is a smooth
function, whose first order Taylor expansion in a neighborhood of the origin is
(see also [3, section 1.12])

γ(s) = sX1(0) + o(s) = se1 + o(s), as s→ 0,

where e1 = (1, 0, . . . , 0) and o(s)/s→ 0 as s→ 0.
If 2α > 1, then (X1u)(0) = ∂x1u(0) = 0 = u(0) so that, if X1u was Cβ, with β > 2α−1,

we would have u(exp(x1X1)(0)) ≤ C|x1|
1+β for a suitable C > 0 and for every x1

sufficiently small. Hence, by denoting π′ : Rn
→ R` the usual projection operator

associating to a vector ξ = (x′, x′′, t) ∈ Rn its first variables x′ ∈ R`, by the first
inequality in (27), we would have the existence of a positive constant c such that

(29) c|x1|
2α
≤Mr2

|π′(exp(x1X1)(0))|2α ≤ ψ0((exp(x1X1)(0)) ≤ C|x1|
1+β

and it would be β ≤ 2α − 1, a contradiction.
To complete the proof of the theorem, we are left with the proof of Claim (25).

By condition (H`) and by the smooth regularity of the functions ξ → Am(ξ), ξ →
Qm(ξ, ·) and by the linearity of p→ Qm(·, p) we get

Am(ξ)D2wεAT
m(ξ) + Qm(ξ,Dwε) = Am(ξ)D2wεAT

m(ξ) + Qm(ξ,Dx′′wε)

= Am(0)D2wεAT
m(0)(1 + ω1(ξ)) + 2(ε + |x′|2)αQm(ξ, x′′)

= IdmD2wε(x)Idm(1 + ω1(ξ)) + ω2(ξ)(ε + |x′|2)αIdm

(30)

where, for j = 1, 2, ω j(ξ) → 0 uniformly in ε as ξ → 0. Moreover, IdmD2wε(x)Idm

has m − k null rows by construction. Therefore

(31) σk(IdmD2wεIdm) = det D2
xwε.

Direct computations show that

(32) det D2
xwε(x) = 22k fε(x)

with

fε(x) = α`+1(r2 + |x′′|2)`−1 r2(α−1ε + |x′|2) + α−1ε(|x′|2)
(ε + |x′|2)

.

For convenience of the reader we include the proof of (32).



18 VITTORIO MARTINO & ANNAMARIA MONTANARI

We have

D2
xwε(x) =4(ε + |x′|2)α−1

 (r2 + |x′′|2)
(
αId` + α(α − 1) x′⊗x′

ε+|x′|2

)
αx′ ⊗ x′′

αx′′ ⊗ x′ (ε + |x′|2)Idk−`


Since (α − 1)k = ` − k, we get

det D2
xwε(x) =4k(ε + |x′|2)`−k det

 (r2 + |x′′|2)
(
αId` + α(α − 1) x′⊗x′

ε+|x′|2

)
αx′ ⊗ x′′

αx′′ ⊗ x′ (ε + |x′|2)Idk−`


=4k det

 (r2 + |x′′|2)
(
αId` + α(α − 1) x′⊗x′

ε+|x′|2

)
α x′⊗x′′

(ε+|x′|2)1/2

α x′′⊗x′
(ε+|x′|2)1/2 Idk−`


=4k det

 (r2 + |x′′|2)
(
αId` + α(α − 1) x′⊗x′

ε+|x′|2

)
− α2
|x′′|2 x′⊗x′

(ε+|x′|2)1/2 0

α x′′⊗x′
(ε+|x′|2)1/2 Idk−`


=4k det

(
(r2 + |x′′|2)

(
αId` + α(α − 1) x′⊗x′

ε+|x′|2

)
− α2
|x′′|2 x′⊗x′

(ε+|x′|2)1/2

)
:=4k det Γ,

where Γ is a ` × ` symmetric matrix. It is easy to see that λ1 = α(r2 + |x′′|2) is an
eigenvalue of Γ with multiplicity ` − 1. Now, trace Γ = (` − 1)λ1 + λ2 with

λ2 =(r2 + |x′′|2)
(
α + α(α − 1)

|x′|2

ε + |x′|2

)
− α2
|x′′|2

|x′|2

ε + |x′|2

=α2
r2

(
ε
α + |x′|2

)
+ ε

α |x
′
|
2

ε + |x′|2

Thus, det Γ = λ`−1
1 λ2 = α`+1(r2 + |x′′|2)`−1 r2( εα+|x′|2)+ ε

α |x
′
|
2

ε+|x′|2 = fε, which completes the
proof of (32). In particular, fε ≥ α`+1r2` > α`r2`/2.

Keeping in mind that ψε = Mwε and (30), (31), we can choose r small, 0 < r < R,
such that

ε1/k
k

(
Am(ξ)D2ψεAT

m(ξ) + Qm(ξ,Dψε)
)
> ααr2αM.

On the other side, direct computations show that

|Dwε|
2 = 4

(
|x′′|2(ε + |x′|2)2α + α2

|x′|2(r2 + |x′′|2)2(ε + |x′|2)2(α−1)
)

and for every ε ∈]0, r2[,

(33) |Dwε|
2
≤ 22α+3r4α+2 in Br.
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From (33), we obtain

(34) |Dψε| ≤ 2α+3/2Mr4α+2 in Br.

Choosing M = 2−α−(3/2)r−2α−1, the right hand side of (34) equals 1, and ψε ≤

2−α−1/2r < 1. The strategy now is to take a smaller r such that

sup
(ξ,p)∈B1×B1

f (ξ, 1,W(ξ)p) < αα2−α−(3/2)r−1.

Then, by the increasing monotonicity of s→ f (·, s, ·), in Br we obtain

F(ξ, ψε,Dψε,D2ψε) < −αα2−α−(3/2)r−1 + f (ξ, ψε,W(ξ)Dψε)

< −αα2−α−(3/2)r−1 + f (ξ, 1,W(ξ)Dψε) < 0.

This proves claim (25) and completes the proof of the theorem. �

Remark 5.1. If the vector fields X1, . . . ,Xm satisfy Hörmander condition in BR, then
dCC(exp(x1X1)(0), 0) = x1 and from inequality (29) we get u < C1,β

X,dCC
(BR).

6. Examples

Here we will show some examples on which the condition (H`) is fulfilled. First
we consider the case of a homogeneous Carnot group. We refer to [3, Section 1.4]
for a full detailed exposition on the theory of homogeneous Carnot groups.

Example 6.1. Let us consider a homogeneous Carnot group on Rn with m generators:
then condition (H`) is satisfied with ` = m. Indeed, let us consider the Jacobian basis El

for Lie algebra l of the left-invariant vector fields. Let us suppose that the first layer of the
stratification Vm

1 has dimension m ≤ n and it is spanned by the first m vector fields of the
basis, namely El

m = {X1, . . . ,Xm}. We know that such vector fields read in coordinates as

Xi =
∂
∂xi

+

n∑
k=m+1

τik(x)
∂
∂xk

, i = 1, . . . ,m

where τik are smooth (polynomial) functions defined on the whole Rn. In particular,
Qm(x, p) is independent of p1, · · · , pm and condition (H`) is satisfied for ` = m.

Next we show an example of a Lie group that is not Carnot, but for which
elementary symmetric functions in the eigenvalues of the Hessian Hg,m, for some
m, still satisfy condition (H`).
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Example 6.2. We consider the Lie group inRn+1 given by the following group law ◦: for
any (x, y), (t, s) ∈ Rn

×R

(x, y) ◦ (t, s) = (x1, . . . , xn, y) ◦ (t1, . . . , tn, s) = (x1 + t1, . . . , xn + tn, s + yet1+...+tn).

A basis for l is given by the left invariant vector fields

X j =
∂
∂x j

+ y
∂
∂y
, Y =

∂
∂y
, j = 1, . . . ,n

having the following commutation properties:

[Xi,X j] = 0, [X j,Y] = −Y, i, j = 1, . . . ,n.

Hence, the relevant Lie algebra is not nilpotent and the Lie group is not stratified. We
consider the metric g that makes orthonormal the vector fields X j,Y for any j = 1, . . . ,n
and we denote by ∇ the Levi-Civita connection for g. We will prove that for any m ≤ n,
the condition (H`) holds true with ` = n. Indeed, we have that

Hg,mu(Xi,X j) = XiX ju − (∇XiX j)u, i, j = 1, . . . ,m

and

∇XiX j =

n∑
k=1

g(∇XiX j,Xk)Xk + g(∇XiX j,Y)Y

Now, since the coefficients of the metric in this basis are constants, we know that for any
vector fields V,W,Z in this basis:

g(∇VW,Z) =
1
2

(
g([V,W],Z) − g([W,Z],V) + g([Z,V],W)

)
By the previous formula we get:

g(∇XiX j,Xk) = g(∇XiX j,Y) = 0, i, j = 1, . . . ,m, k = 1, . . . ,n

Therefore the Hessian reads in local coordinates as

Hg,mu(Xi,X j) = XiX ju = uxix j + yuxi y + yuyx j + y2uyy + yuy

Hence, keeping in mind the formulas (2) and (6), we see that there is no dependance on
the first n components of the gradient of u, that is (H`) holds true with ` = n.

Remark 6.1. We note that in the previous example, with m = n + 1, the condition (H`)
never holds true. Indeed, for any k = 1, . . . ,n we have

2g(∇YY,Xk) = g([Y,Y],Xk) − g([Y,Xk],Y) + g([Xk,Y],Y) = −2
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and g(∇YY,Y) = 0. This means that

Hgu(Y,Y) = YYu − (∇YY)u = uyy +

n∑
k=1

Xku = uyy + nyuy +

n∑
k=1

uxk .

In particular, Qn+1(x,Du) depends on all variables ux1 , . . . ,uxn ,uy.

Moreover, if one considers the symmetrized Hessian Hsu (see formula (3)), since there
are no Christoffel symbols involved, then one realizes that in Hsu the only gradient term
appearing is uy, for any m = 1, . . . ,n + 1. Hence, for Hsu the condition (H`) would be
satisfied with any ` ≤ n, and for any m = 1, . . . ,n + 1. However, we explicitly remind
that the eigenvalues (and thus their elementary symmetric functions) of Hsu are not
intrinsic, namely: they depend on the particular choice of the vector fields; if one changes
the coordinates, giving rise to another basis of vector fields, the eigenvalues of the new
symmetrized Hessian will change in general.
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