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Abstract. We prove interior gradient estimates of viscosity solutions of the prescribed
Levi mean curvature equation.

1. Introduction

Starting from the existence results of Slodkowski Tomassini [17] and Debiard Gaveau [6],
Citti Lanconelli and the second author in [5] proved the local smoothness of Lipschitz con-
tinuous graphs in C2, with prescribed smooth and non vanishing Levi curvature. However,
these results left open the question of existence of Lipschitz continuous viscosity solutions
under sharp conditions on the boundary data. In a recent work [14], by using the techniques
of viscosity solutions, we proved the existence and uniqueness of continuous viscosity solu-
tion of the prescribed Levi mean curvature equation for every continuous boundary data.
In this paper we give a sufficient condition on the prescribed Levi mean curvature which
guarantees that such a solution is locally Lipschitz continuous.

Let us introduce some notations. For every p = (p1, . . . , pN+1) ∈ CN+1 we denote by
pj̄ = p̄j for every j = 1, . . . , N + 1 and for every Hermitian matrix r = (rij̄)

N+1
i,j=1 we define

the Levi determinant (see [1])

(1.1) Li,j(p, p̄, r) = −det




0 pī pj̄

pi rīi rij̄

pj rjī rjj̄


 .

With these notations the prescribed Levi mean curvature equation of an oriented hypersur-
face with a defining function f : CN+1 → R and with outward unit normal ∇f/|∇f |, writes
as (see [15])

(1.2) k(z) =
1
N

1
|∂f |3 L(∂f, ∂̄f, ∂∂̄f), L(∂f, ∂̄f, ∂∂̄f) =

∑

1≤i<j≤N+1

Li,j(∂f, ∂̄f, ∂∂̄f)

where k : CN+1 → R is a prescribed function.
If the hypersurface is locally the graph of a function u : Ω → R with Ω ⊂ Rn, n = 2N +1

then by identifying z = (z1, . . . , zN+1) = (x1 + ixN+1, . . . , xN + ix2N , x2N+1 + it) with
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(x, t) ∈ Rn × R and writing f(z) = u(x) − t, the prescribed Levi mean curvature equation
(1.2) writes as

(1.3) k(x, u) =
1
N

23

(1 + |Du|2)3/2
F (Du, D2u)

where Du and D2u are the Euclidean gradient and the Hessian matrix of u respectively and
F is explicitly defined in (2.1). Let us stress that (1.3) is a quasilinear degenerate elliptic
PDE (see Proposition 2.4). However, in spite of the lack of ellipticity of F in one direction,
in this paper we prove the following regularity result.

Theorem 1.1. Let Ω be a bounded open set in Rn and let u ∈ C(Ω̄) be a viscosity solution
of (1.3) with k ∈ C1(Ω̄× R) and non negative. If

∂k

∂u
≥ α > 0

then u is locally Lipschitz continuous.
Moreover, if u ∈ C1(Ω) then for all x ∈ Ω

|Du(x)| ≤ c

d2(x, ∂Ω)
where d(·, ∂Ω) is the boundary distance and c is a positive constant depending on the di-
ameter of Ω and on M = supΩ̄ |u|, α = infΩ̄×[−M,M ]

∂k
∂u , M1 = supΩ̄×[−M,M ] k, M2 =

supΩ̄×[−M̃,M̃ ]

∣∣∂k
∂x

∣∣ and M̃ only depending on M, M1.

The key tool in the proof of Theorem 1.1 is a surprising differential property of Levi
determinants, which is proved in Section 2. Roughly speaking, this property allows us
to apply the maximum principle to |Du|2 times a cut-off function, because it permits to
handle the remainder term. In Section 3 we prove Theorem 1.1 by using an approximation
argument and uniform Lipschitz estimates.

The idea to use the maximum principle approach to get gradient estimates go back
to Bernstein [2], [3]. Bernstein method was then developed by Ladyzhenskaya [10] and
Ladyzhenskaya and Ural’tseva [11], [12] to yield both global and interior gradient estimates
for uniformly elliptic equations. Later Serrin [16] extended these results to the prescribed
classical mean curvature equation.

Let us stress that for the classical mean curvature equation an interior gradient bound
holds without assumptions on the strictly monotonicity of the prescribed curvature function
with respect to u. We recall that for the minimal surface equation an interior gradient bound
with right hand side in exponential form was discovered, in the case of two variables, by
Finn [8] and in the general case by Bombieri, De Giorgi and Miranda [4]. The method of
the paper [4] depends upon an isoperimetric inequality of Federer and Fleming [7] and a
resulting Sobolev inequality. This method was then used by Ladyzhenskaya and Ural’tseva
in [13] to establish an interior gradient bounds for the general prescribed mean curvature
equation.

For the prescribed mean Levi curvature equation (1.3) with k = 0 we cannot expect
that a similar interior gradient bound holds. Indeed, in the appendix we show that for
every continuous function U : A → R, A ⊆ R, u(x) = U(xn) is a viscosity solution of
F (Du, D2u) = 0.
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2. A differential property of the Levi determinant

In this section we differentiate the Levi determinant (1.1). We start with the case N = 1.

Proposition 2.1. If N = 1 then

∣∣∣∂L

∂p

∣∣∣
2

=
2∑

j,k,l=1

∂L

∂rjk̄

rjl̄rlk̄

where
∣∣∣∂L

∂p

∣∣∣
2

:=
N+1∑

j=1

∂L

∂pj

∂L

∂pj̄

Proof. If N = 1 then

L(p, p̄, r) = L1,2(p, p̄, r) = −det




0 p1̄ p2̄

p1 r11̄ r12̄

p2 r21̄ r22̄




A direct computation shows that

∂L

∂p1
= p1̄r22̄ − p2̄r21̄,

∂L

∂p2
= p2̄r11̄ − p1̄r12̄

∣∣∣∣
∂L

∂p1̄

∣∣∣∣
2

= p2̄p2r21̄r12̄ + p1̄p1r22̄r22̄ − p2̄p1r21̄r22̄ − p1̄p2r22̄r12̄

∣∣∣∣
∂L

∂p2̄

∣∣∣∣
2

= p1̄p1r12̄r21̄ + p2̄p2r11̄r11̄ − p1̄p2r12̄r11̄ − p2̄p1r11̄r21̄

∂L

∂r11̄

= p2̄p2,
∂L

∂r12̄

= −p1̄p2,

∂L

∂r21̄

= −p2̄p1,
∂L

∂r22̄

= p1̄p1

and by substituting we get
∣∣∣∂L

∂p

∣∣∣
2

= + p2̄p2(r11̄r11̄ + r12̄r21̄)− p1̄p2(r11̄r12̄ + r12̄r22̄)

− p2̄p1(r21̄r11̄ + r22̄r21̄) + p1̄p1(r21̄r12̄ + r22̄r22̄)

= +
∂L

∂r11̄

(r11̄r11̄ + r12̄r21̄) +
∂L

∂r12̄

(r11̄r12̄ + r12̄r22̄)

+
∂L

∂r21̄

(r21̄r11̄ + r22̄r21̄) +
∂L

∂r22̄

(r21̄r12̄ + r22̄r22̄)

=
2∑

j,k,l=1

∂L

∂rjk̄

rjl̄rlk̄

¤

We now use Proposition 2.1 to handle the general case N ∈ IN.
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Proposition 2.2. For all N ∈ IN we have

∣∣∣∂L

∂p

∣∣∣
2
≤ N

N+1∑

m,q,t=1

∂L

∂rmq̄
rmt̄rtq̄

Proof. Since L(p, p̄, r) =
∑

1≤i<j≤N+1 Li,j(p, p̄, r) and for all 1 ≤ ` ≤ N + 1, Li,j depends
on p` iff i = ` or j = `, we have

∂L

∂p`
=

∑

1≤i<`

∂Li,`

∂p`
+

∑

`<j≤N+1

∂L`,j

∂p`

and by the triangle inequality

∣∣∣ ∂L

∂p`

∣∣∣ ≤
∑

1≤i<`

∣∣∣∂Li,`

∂p`

∣∣∣ +
∑

`<j≤N+1

∣∣∣∂L`,j

∂p`

∣∣∣.

By Proposition 2.1 we have

∣∣∣∂L

∂p

∣∣∣
2

=
N+1∑

`=1

∣∣∣ ∂L

∂p`

∣∣∣
2
≤

N+1∑

`=1

( ∑

1≤i<`

∣∣∣∂Li,`

∂p`

∣∣∣ +
∑

`<j≤N+1

∣∣∣∂L`,j

∂p`

∣∣∣
)2

≤ N
N+1∑

`=1

( ∑

1≤i<`

∣∣∣∂Li,`

∂p`

∣∣∣
2
+

∑

`<j≤N+1

∣∣∣∂L`,j

∂p`

∣∣∣
2)

= N
N+1∑

i=1

∑

` 6=i

(∣∣∣∂Li,`

∂p`

∣∣∣
2
+

∣∣∣∂Li,`

∂pi

∣∣∣
2)

= N
N+1∑

i=1

∑

` 6=i

∑

m,q,t∈{i,`}

∂Li,`

∂rmq̄
rmt̄rtq̄

= N
N+1∑

m,q,t=1

∂L

∂rmq̄
rmt̄rtq̄

¤

Corollary 2.1. The Hermitian matrix
(

∂L
∂rmq̄

)N+1

m,q=1
is non negative definite.
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Proof. For every ζ ∈ CN+1 we have
N+1∑

m,q=1

∂L

∂rmq̄
ζq ζ̄m =

N+1∑

m,q=1


 ∑

1≤i<j≤N+1

∂Li,j

∂rmq̄


 ζq ζ̄m

=
N+1∑

m,q=1


 ∑

1≤i<j≤N+1

(|pj |2δimδiq + |pi|2δjmδjq − pipj̄δmjδiq − pjpīδmiδjq)


 ζq ζ̄m

=
∑

1≤i<j≤N+1

(|pj |2ζiζ̄i + |pi|2ζj ζ̄j − pipj̄ζiζ̄j − pjpīζj ζ̄i

)

=
∑

1≤i<j≤N+1

∣∣pj ζ̄i − piζ̄j

∣∣2 ≥ 0

¤
For the function F in (2.1) similar properties hold. We first explicitly write the definition

of F in terms of L and of a change of variable. For every ξ ∈ Rn and for every n × n
symmetric matrix X = (Xij)n

i,j=1

(2.1) F (ξ,X) = L(p, p̄, r)

where for 1 ≤ j ≤ N

pj =
1
2

(
ξj − iξN+j

)
, pN+1 =

1
2

(
ξ2N+1 + i

)
,(2.2)

and the matrix r is

(2.3) r =
1
4
J

T
XJ, with J =




IN 0
iIN 0
0 1




Proposition 2.3. Let F be the function in (2.1). Then
∣∣∣∂F

∂ξ

∣∣∣
2
≤ N

2

n∑

i,j,k=1

∂F

∂Xij
XikXkj

with n = 2N + 1

Proof. By the change of variable (2.2) we have for 1 ≤ j ≤ N

∂F

∂ξj
=

1
2

( ∂L

∂pj
+

∂L

∂p̄j

)
= Re

∂L

∂pj

∂F

∂ξj+N
= − i

2

( ∂L

∂pj
− ∂L

∂p̄j

)
= Im

∂L

∂pj

∂F

∂ξn
=

1
2

( ∂L

∂pN
+

∂L

∂p̄N

)
= Re

∂L

∂pN

Hence ∣∣∣∂F

∂ξ

∣∣∣
2

=
n∑

j=1

(∂F

∂ξj

)2
=

N∑

j=1

∣∣∣ ∂L

∂pj

∣∣∣
2
+

(
Re

∂L

∂pN

)2
≤

∣∣∣∂L

∂p

∣∣∣
2
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and by Proposition 2.2 and the change of variable (2.3)
∣∣∣∂L

∂p

∣∣∣
2
≤ N

N+1∑

m,q,t=1

∂L

∂rmq̄
rmt̄rtq̄ = N Tr

((
∂L

∂r̄

)T

rr

)

=
N

16
Tr

((
∂L

∂r̄

)T

J
T
XJJ

T
XJ

)

Since XJ
(

∂L
∂r̄

)T
J

T
X is a non negative definite Hermitian matrix and

0 ≤ JJ
T =




IN −iIN 0
iIN IN 0
0 0 1


 ≤ 2In

we have
∣∣∣∂F

∂ξ

∣∣∣
2
≤

∣∣∣∂L

∂p

∣∣∣
2
≤ N

16
Tr

(
XJ

(
∂L

∂r̄

)T

J
T
XJJ

T

)

≤ N

8
Tr

(
XJ

(
∂L

∂r̄

)T

J
T
X

)
.

(2.4)

We now use again (2.3) to estimate the righthand side in (2.4). We have

(2.5)
∂F

∂Xij
=

N+1∑

l,p=1

∂L

∂rlp̄

∂rlp̄

∂Xij
=

1
4

N+1∑

l,p=1

∂L

∂rlp̄
J

T
liJjp

and

Tr

((
∂F

∂X

)T

XX

)
=

n∑

i,j,k=1

∂F

∂Xij
XikXkj =

1
4

n∑

i,j,k




N+1∑

l,p=1

∂L

∂rlp̄
J

T
liJjpXikXkj




=
1
4

n∑

i,j,k




N+1∑

l,p=1

XkjJjp
∂L

∂rlp̄
J

T
liXik




=
1
4

Tr

(
XJ

(
∂L

∂r̄

)T

J
T
X

)
.

(2.6)

By substituting (2.6) in (2.4) we finally obtain
∣∣∣∂F

∂ξ

∣∣∣
2
≤ N

2

n∑

i,j,k=1

∂F

∂Xij
XikXkj .

¤

Proposition 2.4. The matrix
(

∂F
∂Xij

)n

i,j=1
is non negative definite and

n∑

j=1

∂F

∂Xjj
(ξ, X) ≤ N

8
(1 + |ξ|2)
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Proof. The first assertion follows by (2.5) and by Corollary 2.1. Moreover, by (2.3) and
(2.2)

n∑

j=1

∂F

∂Xjj
=

1
4

n∑

j=1

N+1∑

l,q=1

∂L

∂rlq̄
J̄T

lj Jjq

=
1
2

N∑

l=1

∂L

∂rll̄

+
1
4

∂L

∂rN+1N+1

=
1
2

N∑

l=1

(|p|2 − |pl|2) +
1
4
((|p|2 − |pN+1|2))

≤N

2
|p|2 =

N

8
(|ξ|2 + 1)

¤

3. Interior gradient estimate

In this section we shall prove Theorem 1.1 by using an approximation argument and
uniform a priori estimates.

We denote by x a point in Rn and by S(n) the space of all n × n symmetric matrices.
For every (ξ,X) ∈ Rn × S(n) and ε > 0 we define

F ε(ξ, X) = F (ξ,X) + εTrX,

with F as in (2.1).

Proof of Theorem 1.1. If u ∈ C(Ω̄) is a viscosity solution of (1.3) with k ∈ C1(Ω×R), then
for every ball B ⊂⊂ Ω we consider a solution uε ∈ C3(B) of the elliptic PDE

(3.1) F ε(Duε, D2uε) =
N

23
(1 + |Duε|2)3/2k(x, uε)

with boundary data u on ∂B. Let us recall that the existence of a solution uε ∈ C2(B)
of (3.1) for every continuous boundary data is guaranteed by [9, Theorem 15.18]. The C3

regularity follows by the uniform ellipticity of F ε for every ε > 0. Moreover, if M = supΩ̄ |u|
and k is non negative then F ε(DM, D2M) = 0 ≤ F ε(Duε, D2uε) and by the comparison
principle supB uε ≤ M. By [14, estimate (4.2)] we also have

(3.2) sup
B
|uε| ≤ M̃ = M + C,

with C only depending on supΩ̄×[−M,M ] k. We shall prove that if inf ∂k
∂u = α > 0 then

w := |Duε|2
2 is locally bounded by a constant independent of ε. For ε → 0, uε will uniformly

converge to a Lipschitz continuous viscosity solution ũ of (1.3), which agrees with u on ∂B.
The comparison principle in [14] will guarantee that ũ = u is Lipschitz continuous on B
and the thesis of Theorem 1.1 will follow.

We start by differentiating the equality (3.1) with respect to xl. For a sake of simplicity
in the sequel we shall denote by uj = ∂u

∂xj
, uij = ∂2u

∂xj∂xi
, and use a similar notation for third
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order partial derivatives. We get

n∑

i,j=1

∂F ε

∂Xij
uε

ijl +
n∑

i=1

∂F ε

∂ζi
uε

il =
3N

23
(2w + 1)

1
2

n∑

i=1

uε
iu

ε
ilk(x, uε) +

N

23
(2w + 1)

3
2

( ∂k

∂xl
+

∂k

∂u
uε

l

)
(3.3)

By multiplying (3.3) by uε
l and summing up in l we get

n∑

i,j,l=1

∂F ε

∂Xij
uε

ijlu
ε
l +

n∑

i,l=1

∂F ε

∂ζi
uε

ilu
ε
l =

3N

23
(2w + 1)

1
2 k(x, uε)

n∑

i,l=1

uε
iu

ε
ilu

ε
l

+
N

23
(2w + 1)

3
2

(
2
∂k

∂u
w +

n∑

l=1

∂k

∂xl
uε

l

)(3.4)

Since wi =
∑n

l=1 uε
l u

ε
il and wij =

∑n
l=1(u

ε
lju

ε
il + uε

l u
ε
ijl) we can rewrite equation (3.4) as

n∑

i,j,l=1

∂F ε

∂Xij
(wij − uε

ilu
ε
lj) +

n∑

i,l=1

∂F ε

∂ζi
wi =

3N

23
(2w + 1)

1
2 k(x, uε)

n∑

i

uε
iwi

+
N

23
(2w + 1)

3
2

(
2
∂k

∂u
w +

n∑

l=1

∂k

∂xl
uε

l

)
.

(3.5)

Let L be the following second order elliptic operator

L =
n∑

i,j=1

∂F ε

∂Xij
∂ij +

n∑

i=1

∂F ε

∂ζi
∂i − 3N

23
(2w + 1)

1
2 k(x, uε)

n∑

i=1

uε
i∂i.

Then equation (3.5) writes as

L(w) =
n∑

i,j,l=1

∂F ε

∂Xij
uε

ilu
ε
lj +

N

23
(2w + 1)

3
2

(
2
∂k

∂u
w +

n∑

l=1

∂k

∂xl
uε

l

)

For every x ∈ Ω let R > 0 such that B = B(x,R) ⊆ Ω and a test function ϕ ∈ C2(B̄) such
that 0 ≤ ϕ ≤ 1 in B̄, ϕ = 0 on ∂B and ϕ > 0 in B. We shall choose such a function below.
We shall apply L to the product v = wϕ. We have

vi = wiϕ + wϕi

vij = wijϕ + wiϕj + wjϕi + wϕij

We now apply L to v. By remarking that
∂F ε

∂Xij
is a symmetric matrix we get

L(v) = L(w)ϕ + wL(ϕ) + 2
n∑

i,j=1

∂F ε

∂Xij
ϕjwi

= L(w)ϕ + wL(ϕ) + 2
n∑

i,j=1

∂F ε

∂Xij
ϕj

(vi − wϕi)
ϕ
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We now consider the elliptic PDO

H = L − 2
n∑

i,j=1

∂F ε

∂Xij

ϕj

ϕ
∂i

and define

E =
n∑

i,j,l=1

∂F ε

∂Xij
uε

ilu
ε
lj =

n∑

i,j,l=1

∂F

∂Xij
uε

ilu
ε
lj + ε

n∑

i,l=1

uε
ilu

ε
li

≥
n∑

i,j,l=1

∂F

∂Xij
uε

ilu
ε
lj .

We have

H(v) = ϕ

(
E +

N

23
(2w + 1)

3
2

(
2
∂k

∂u
w +

n∑

l=1

∂k

∂xl
uε

l

))
+


L(ϕ)− 2

n∑

i,j=1

∂F ε

∂Xij

ϕiϕj

ϕ


w.

Let x be a local maximum point for v, then H(v)(x) ≤ 0 and at x

0 ≥ ϕ

(
E +

N

23
(2w + 1)

3
2

(
2
∂k

∂u
w +

n∑

l=1

∂k

∂xl
uε

l

))
+


L(ϕ)− 2

n∑

i,j=1

∂F ε

∂Xij

ϕiϕj

ϕ


 w

Since

L(ϕ) =
n∑

i,j=1

∂F ε

∂Xij
ϕij +

n∑

i=1

∂F ε

∂ζi
ϕi − 3N

23
(2w + 1)

1
2 k(x, uε)

n∑

i,l=1

uε
iϕi

and by Proposition 2.3
n∑

i=1

∂F ε

∂ζi
ϕi ≥ −|Dϕ|

∣∣∣∂F ε

∂ζ

∣∣∣ ≥ −
√

N√
2
|Dϕ|

√
E

at x we have the inequality

0 ≥ϕ E −
√

N√
2
|Dϕ|

√
Ew + ϕ

(N

23
(2w + 1)

3
2

(
2
∂k

∂u
w +

n∑

l=1

∂k

∂xl
uε

l

))

+ w
( n∑

i,j=1

∂F ε

∂Xij

(
ϕij − 2

ϕiϕj

ϕ

)
− 3N

23
(2w + 1)

1
2 k(x, uε)

n∑

i,l=1

uε
iϕi

)

≥− Nw2|Dϕ|2
8ϕ

+ ϕ
(N

23
(2w + 1)

3
2

(
2
∂k

∂u
w +

n∑

l=1

∂k

∂xl
uε

l

))

+ w
( n∑

i,j=1

∂F ε

∂Xij

(
ϕij − 2

ϕiϕj

ϕ

)
− 3N

23
(2w + 1)

1
2 k(x, uε)

n∑

i,l=1

uε
iϕi

)
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which reads as

N

4
ϕ(2w + 1)

3
2
∂k

∂u
w ≤Nw2|Dϕ|2

8ϕ
− N

23
ϕ(2w + 1)

3
2

n∑

l=1

∂k

∂xl
uε

l +
N

23
w(2w + 1)

1
2 k(x, uε)

n∑

i,l=1

uε
iϕi

+ w
n∑

i,j=1

∂F ε

∂Xij

(
2
ϕiϕj

ϕ
− ϕij

)

≤N

23

(
w2|Dϕ|2

ϕ
+ ϕ(2w + 1)

3
2
√

wM2 + w(2w + 1)
1
2 M1|Dϕ|√w

)

+ w

n∑

i,j=1

∂F ε

∂Xij

(
2
ϕiϕj

ϕ
− ϕij

)

(3.6)

where M1 =
√

2maxΩ×[−M,M ] |k|,M2 =
√

2maxΩ×[−M̃,M̃ ] |∂xk|, with M = maxΩ̄ |u| and M̃

as in (3.2). Since 0 < α ≤ ∂k
∂u we can divide equation (3.6) by N

4

√
ϕ(2w + 1)

3
2 α
√

w and we
get

√
ϕw ≤ C1

|Dϕ|2
ϕ

3
2

+ C2ϕ
1
2 + C3

|Dϕ|
ϕ

1
2

+ C4(2w + 1)−1
n∑

i,j=1

∂F ε

∂Xij

(
2
ϕiϕj

ϕ
3
2

− ϕij

ϕ
1
2

)

≤ C1
|Dϕ|2
ϕ

3
2

+ C2ϕ
1
2 + C3

|Dϕ|
ϕ

1
2

+ C4

√
w

(2w + 1)3/2

n∑

i,j=1

∂F ε

∂Xij

(
2
ϕiϕj

ϕ
3
2

− ϕij

ϕ
1
2

)(3.7)

where C1, C2, C3, C4 are non negative constants depending on α, M1,M2.
We now choose ϕ = (R2 − |x|2)4 and compute its derivatives

ϕi = −8(R2 − |x|2)3xi

|Dϕ| = 8(R2 − |x|2)3|x|
ϕij = 48(R2 − |x|2)2xjxi − 8(R2 − |x|2)3δij

and we have the following estimates

|Dϕ|2
ϕ

3
2

=
64(R2 − |x|2)6|x|2

(R2 − |x|2)6 ≤ 64R2

ϕ
1
2 = (R2 − |x|2)2 ≤ R4

|Dϕ|
ϕ

1
2

=
8(R2 − |x|2)3|x|

(R2 − |x|2)2 ≤ 8R3

2
ϕiϕj

ϕ
3
2

− ϕij

ϕ
1
2

= 128
(R2 − |x|2)6xixj

(R2 − |x|2)6 − 48(R2 − |x|2)2xjxi − 8(R2 − |x|2)3δij

(R2 − |x|2)2
= 80xixj + 8(R2 − |x|2)δij ≤ 88R2δij
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Since the symmetric matrix
∂F ε

∂Xij
is non negative definite and by Proposition 2.4 with

|ξ|2 = 2w
n∑

j=1

∂F ε

∂Xjj
=

n∑

j=1

∂F

∂Xjj
+ nε ≤ N

8
(2w + 1) + nε

by redefining constants we get

(3.8)
√

v =
√

ϕw ≤ C1R
2 + C2R

4 + C3R
3 + C4R

2 ≤ C0

where C0 depends on α, M1,M2 and on the diameter of the bounded set Ω. Since x is a
local maximum of v, for every x0 ∈ B(x,R) we have v(x0) ≤ v(x) and by (3.8)

√
ϕ(x0)w(x0) ≤

√
ϕ(x)w(x) ≤ C0.

Hence
|Duε(x0)|√

2
≤ C0√

ϕ(x0)
=

C0

(R2 − |x0|2)2 =
C0

(R− |x0|)2(R + |x0|)2
and we can conclude that

|Duε(x0)| ≤ C

d2(x0, ∂B)
where d(·, ∂B) is the boundary distance. ¤

4. Appendix

In this section we show that, for every continuous function U : A → R, A ⊆ R, the
function u(x) = u(x1, . . . , x2N , xn) = U(xn) is a viscosity solution of F (Du,D2u) = 0 in
Ω = A×B, for every B ⊆ R2N .

For every x ∈ Ω and φ ∈ C2(Ω) such that u − φ has a local maximum at x, we have
φj(x) = uj(x) = 0 for every j = 1, . . . , 2N, and for every η ∈ R2N

0 =
2N∑

i,j=1

uij(x)ηiηj ≤
2N∑

i,j=1

φij(x)ηiηj .

By (2.1) with ξ = Dφ(x) and X = D2φ(x) we find

F (Dφ(x), D2φ(x)) =
1 + (φn(x))2

23

2N∑

j=1

φjj(x) ≥ 0,

and we can conclude that u is a viscosity subsolution of F = 0 at x ∈ Ω.
Analogously, for every φ ∈ C2(Ω) such that u − φ has a local minimum at x, we have

φj(x) = uj(x) = 0 for every j = 1, . . . , 2N, and for every η ∈ R2N

0 =
2N∑

i,j=1

uij(x)ηiηj ≥
2N∑

i,j=1

φij(x)ηiηj ,

then

F (Dφ(x), D2φ(x)) =
1 + (φn(x))2

23

2N∑

j=1

φjj(x) ≤ 0,



LOCAL LIPSCHITZ CONTINUITY OF GRAPHS WITH PRESCRIBED LEVI MEAN CURVATURE 12

and we can conclude that u is a viscosity supersolution of F = 0 at x ∈ Ω.
Thus, u is a viscosity solution of F = 0 in Ω.
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