LOCAL LIPSCHITZ CONTINUITY OF GRAPHS
WITH PRESCRIBED LEVI MEAN CURVATURE

VITTORIO MARTINO AND ANNAMARIA MONTANARI

ABSTRACT. We prove interior gradient estimates of viscosity solutions of the prescribed
Levi mean curvature equation.

1. INTRODUCTION

Starting from the existence results of Slodkowski Tomassini [17] and Debiard Gaveau [6],
Citti Lanconelli and the second author in [5] proved the local smoothness of Lipschitz con-
tinuous graphs in C2, with prescribed smooth and non vanishing Levi curvature. However,
these results left open the question of existence of Lipschitz continuous viscosity solutions
under sharp conditions on the boundary data. In a recent work [14], by using the techniques
of viscosity solutions, we proved the existence and uniqueness of continuous viscosity solu-
tion of the prescribed Levi mean curvature equation for every continuous boundary data.
In this paper we give a sufficient condition on the prescribed Levi mean curvature which
guarantees that such a solution is locally Lipschitz continuous.

Let us introduce some notations. For every p = (p1,...,pn+1) € CVH we denote by
p; = pj for every j =1,..., N + 1 and for every Hermitian matrix r = (rzj)fvj;ll we define
the Levi determinant (see [1])

0 p;i pj
(11) LZ,](pa D, T‘) = —det bi T T

pi i Tjj
With these notations the prescribed Levi mean curvature equation of an oriented hypersur-
face with a defining function f : CV*! — R and with outward unit normal V f/|V f|, writes
as (see [15])
1 1

(1.2)  k(z)= NofF

L(0f,0f,00f), L(0f,0f,00f)= >  Li;(0f,0f,00f)

1<i<j<N+1

where k : CN*1 — R is a prescribed function.
If the hypersurface is locally the graph of a function v : @ — R with Q C R™",n =2N +1
then by identifying z = (z1,...,2nv+1) = (1 + iTN41, ..., TN + iToN, Ton41 + i) with

Date: January 19, 2006.
1991 Mathematics Subject Classification. Primary 35J70, Secondary 35B45.
Key words and phrases. Levi mean curvature, quasilinear degenerate elliptic pde’s, local Lipschitz
estimates.
The second author was partially supported by Indam, within the interdisciplinary project “Nonlinear
subelliptic equations of variational origin in contact geometry”.
1



LOCAL LIPSCHITZ CONTINUITY OF GRAPHS WITH PRESCRIBED LEVI MEAN CURVATURE 2

(z,t) € R" x R and writing f(z) = u(z) — ¢, the prescribed Levi mean curvature equation
(1.2)) writes as

1 23
1.3 kr,u)= ——

where Du and D?u are the Euclidean gradient and the Hessian matrix of u respectively and
F is explicitly defined in (2.1). Let us stress that (1.3) is a quasilinear degenerate elliptic
PDE (see Proposition 2.4). However, in spite of the lack of ellipticity of F' in one direction,
in this paper we prove the following regularity result.

F(Du, D*u)

Theorem 1.1. Let 2 be a bounded open set in R" and let u € C(Q) be a viscosity solution
of (1.3) with k € C1(Q x R) and non negative. If

ok
— > 0
8u_a>

then u s locally Lipschitz continuous.

Moreover, if u € C*(Q) then for all z € Q
c

[Du(z)| < 2z, 09)
where d(-,00) is the boundary distance and ¢ is a positive constant depending on the di-
ameter of Q@ and on M = supq |u|, o = infg, [y g—ﬁ, My = supgu—man ks M2 =
SUDG [ 17, 7] ’%‘ and M only depending on M, M.

The key tool in the proof of Theorem (1.1l is a surprising differential property of Levi
determinants, which is proved in Section 2. Roughly speaking, this property allows us
to apply the maximum principle to |Du|? times a cut-off function, because it permits to
handle the remainder term. In Section 3 we prove Theorem [1.1/ by using an approximation
argument and uniform Lipschitz estimates.

The idea to use the maximum principle approach to get gradient estimates go back
to Bernstein [2], [3]. Bernstein method was then developed by Ladyzhenskaya [10] and
Ladyzhenskaya and Ural’tseva [11], [12] to yield both global and interior gradient estimates
for uniformly elliptic equations. Later Serrin [16] extended these results to the prescribed
classical mean curvature equation.

Let us stress that for the classical mean curvature equation an interior gradient bound
holds without assumptions on the strictly monotonicity of the prescribed curvature function
with respect to u. We recall that for the minimal surface equation an interior gradient bound
with right hand side in exponential form was discovered, in the case of two variables, by
Finn [§8] and in the general case by Bombieri, De Giorgi and Miranda [4]. The method of
the paper [4] depends upon an isoperimetric inequality of Federer and Fleming [7] and a
resulting Sobolev inequality. This method was then used by Ladyzhenskaya and Ural’tseva
in [13] to establish an interior gradient bounds for the general prescribed mean curvature
equation.

For the prescribed mean Levi curvature equation (1.3) with & = 0 we cannot expect
that a similar interior gradient bound holds. Indeed, in the appendix we show that for
every continuous function U : A — R, A C R, u(x) = U(x,) is a viscosity solution of
F(Du, D*u) = 0.
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2. A DIFFERENTIAL PROPERTY OF THE LEVI DETERMINANT

In this section we differentiate the Levi determinant (1.1). We start with the case N = 1.
Proposition 2.1. If N =1 then

0L |2 oL

oL _ oL
_ gl lk

ol i Orin

N+1

2
where a—L Z OL OL

dp; Op;
Proof. If N =1 then
0 p1 p3
L(p7ﬁ7 T) = L1,2(p7ﬁ7 T) = —det p1 71 Ti12
P2 To1 T3

A direct computation shows that
oL oL

—— = Pi{T95 — P3T971, —— = P5T11 — PiT15
a1 D122 — Pa’21 O DPaTi1 — P12

oL |?

opy| — PeperaiTi + P1P17T93723 — PaP1T21723 — P1P2T23T12
1

oL |?

Op,|  PPIT1aTA + Pap2T1iT11 — PiP2T13T11 — PaP1T1iT21
2

oL oL

O = P3Db2, B pib2,

oL oL

Dot p3p1, O3 =Prin

and by substituting we get

oL |2
’ =+ papa(r11711 + T1a791) — Pip2(r11m12 + T12T3)

— Pap1(ra1ri1 + Teare1) + P1P1(r21T13 + reaTo3)

(9L
8 o (11711 + T1a7e1) + 913 (111713 + 713793)
oL
O (o171 + ToaTe1) + Dros 72— (721713 + T23793)
2
oL
- >
7,k I=1 ]

We now use Proposition 2.1 to handle the general case N € IN.
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Proposition 2.2. For all N € IN we have

oL 2 ™oL
87) <N 9y ImiTta

P myqt=1 "4
Proof. Since L(p,p,r) = 21§i<j§N+1 Li;(p,p,r) and for all 1 < ¢ < N +1, L; ; depends
on py iff i = £ or j = £, we have

oL _ ~ OLis 0Ly
Ips - Z + Z

1<i<t Ope (<j<N+1 Ope
and by the triangle inequality
Z ‘ 8[/7, A 8.[/( OLy,j ‘
32?12 Ipe b= N L Ope
By Proposition 2.1/ we have
@2 Z’aL ( Z ‘8[/1[ 8_[/@,]“)2
op Ope! — Ope Ipe
12
<Nz<z 13;“ > |ael)
—1 1<ice 9P <N+1 be
oL; Y, OL; 1|2
=S (1% 1 \ )
Z Z e | o,
N+1
0L,
=N D DL g tmia
=1 (£ maefiy "
N+1
=N Y 5 Tmit
m,q,t= 1
O
oL N+1
Corollary 2.1. The Hermitian matriz <8T q) ) is non negative definite.
m/ m,q=
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Proof. For every ¢ € CN*! we have

N+1 N+1

OLij \ . -
a chcm— > P KIS

m,q=1 'm myg=1 \1<i<j<N+1 "™

N+1
= > > (piPPoimbiq + pil*6jmiq — PipiOmidiq — PiPiOmidia) | Calm

m,g=1 \1<i<j<N+1
= Z (Ipi GG + 1pil GG — pipGil — pipiGiGi)

1<i<j<N+1

> =2

= Z IpiCi — piG5|” =0

1<i<yj<N+1

O

For the function F' in (2.1)) similar properties hold. We first explicitly write the definition
of ' in terms of L and of a change of variable. For every £ € R"™ and for every n x n
symmetric matrix X = (X;;);';_,

(2.1) F(&,X) = L(p,p,r)
where for 1 < j < N
1 . 1 )

(2.2) pi=35 (fj - Z€N+j), PN+1 = §<§2N+1 + Z),
and the matrix r is

1r Iy O
(2.3) r= ZJ XJ, withJ=| iy 0

0 1

Proposition 2.3. Let F' be the function in (2.1). Then
OF 12 N - OF
<o Y S XaX,
‘ - 2i'k— 8Xw iktk

withn = 2N + 1
Proof. By the change of variable (2.2) we have for 1 < j < N

@j_}@i 3L) re2L
o5 2\0p;  Op; Ip;
oF _ i(%_aj) m 2k
9N dp;  Op; Ip;
oF 1, 0L oL OL
55, = 3 (opw * pw) = " opm

Hence

oL oL
‘ <a§]> Z‘ap] <8pN>2§ap2
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and by Proposition 2.2/ and the change of variable (2.3))
N+1

0L |2 oL oL
<N — N Tr
dp ’ - Z Ormg Tmiltq = (( or ) W)

m,q,t=1

N OINT —r 1
_16Tr<<8r) J XJJ XJ>

T =T . . . .- .
Since X J ( a77) J~ X is a non negative definite Hermitian matrix and

i In —ily 0
0<JJ =1 iy In 0 | <2I,
0 0 1
we have
2 2 _
’aF ai <Ny (xg(2k "I
Op 16 oF
(2.4)

N oL T—T
< = = .
_8Tr<XJ<8T> JX)

We now use again (2.3) to estimate the righthand side in (2.4). We have

N+1 N+1

OL Ory oL T
2.5 = —JJ
(25) Z O 0Xy; 4 Z O
and
oF\" " 9F 1 (& oL —r
Tr<<8X> XX) - o, N = X By i TR ik X
i,5,k=1 id,k \Lp=1
n N+1
oL T
(2:6) *Z Z Xij. Jpa JuX
1,7,k \Il,p=1

1 OL\" =r
_4Tr<XJ<8r> JX).
By substituting (2.6) in (2.4) we ﬁnally obtain

‘8F 2 OF

X X
,‘,kzlaXU Y

n
Proposition 2.4. The matrix (aa)f) . is mon negative definite and
1, Z J
oF N
8

n

8Tjj(§’X) (1+¢)
j=1
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Proof. The first assertion follows by (2.5) and by Corollary 2.1. Moreover, by (2.3) and
(2.2)

n OF n N+1
> g% =1 2 g
7=1 j=11,4=1
N
1 oL 1 oL
_ishob 1 OF
1 1
=2 S 1) + (b = lpvsal)
=1
N 2 N 2
<— = — 1
<o lpl? = S (g + 1)

3. INTERIOR GRADIENT ESTIMATE

In this section we shall prove Theorem [1.1] by using an approximation argument and
uniform a priori estimates.

We denote by z a point in R™ and by S(n) the space of all n x n symmetric matrices.
For every (£, X) € R” x S(n) and £ > 0 we define

FE(¢,X) = F(¢,X) + eTr X,
with F' as in (2.1).

Proof of Theorem 1.1. If u € C(Q) is a viscosity solution of (1.3) with k¥ € C(Q x R), then
for every ball B CC € we consider a solution u* € C3(B) of the elliptic PDE

N
(3.1) F&(Du®, D*uf) = H(+ |Du®|?)3 2 k(2 u)

with boundary data u on dB. Let us recall that the existence of a solution u® € C?(B)
of (3.1) for every continuous boundary data is guaranteed by [9, Theorem 15.18]. The C3
regularity follows by the uniform ellipticity of F** for every ¢ > 0. Moreover, if M = supg |u|
and k is non negative then F*(DM,D*M) = 0 < F°(Duf, D*u) and by the comparison
principle supg u® < M. By [14, estimate (4.2)] we also have

(3.2) sup [uf| < M = M + C,
B

with C only depending on SUPQ  [— M, M] k. We shall prove that if inf % = «a > 0 then

w = 1PEE g locally bounded by a constant independent of €. For ¢ — 0, u* will uniformly

converge to a Lipschitz continuous viscosity solution @ of (1.3), which agrees with u on 0B.
The comparison principle in [14] will guarantee that & = w is Lipschitz continuous on B
and the thesis of Theorem [1.1! will follow.

We start by differentiating the equality (3.1) with respect to ;. For a sake of simplicity

. 2 o . .
in the sequel we shall denote by u; = %, Ujj = ﬁ, and use a similar notation for third
J J T



LOCAL LIPSCHITZ CONTINUITY OF GRAPHS WITH PRESCRIBED LEVI MEAN CURVATURE 8

order partial derivatives. We get

(3.3)

n

Njw

7+7

(e + )

3N N
fjl Z fl =35 2w+1)2 Zu ugk(z,u®) + 2—3(211)—1—1)
ij= 0 i=1

By multiplying (3.3) by «; and summing up in [ we get

oF¢ 3N ;
Z 8X Uz up + Z o, ujup =—= (2w + 1)2k(z, v’ Zu u Uy
1,5,0=1 i,l=1 v i,l=1

(3.4)

N 3
+ =Qw+1)2(2—w+

28 3( gi - aa:fl“a)

Since w; = YLy ujug and wi; = YL (uf;ug + ujug;) we can rewrite equation (3.4) as

—~ OF OF° ~_ 3N 1
Z ox, (wij — uguj;) +Z 3@ 53 — 2w+ 1)2k(x, u) Zu w;

,7,l=1 i,l=1 7

Let £ be the following second order elliptic operator

8F€ 1 € . €
L= ]ZlaXU Z 2w+1)2k(aru);ui8i.
Then equation (3.5) writes as
OF® N s 0k = Ok
- 2w+1)8 (25 )
L(w) 2 lan uzup; + o3 53 5 (2w +1)2 8uw+ 2 &rlul

For every z € Q let R > 0 such that B = B(z, R) C Q and a test function ¢ € C?(B) such
that 0 < ¢ <1in B, ¢ =0 on 0B and ¢ > 0 in B. We shall choose such a function below.
We shall apply £ to the product v = wp. We have
Vi = Wip + W,
Vij = Wi + wipj + wjpi + weij
€

We now apply £ to v. By remarking that
aXij

is a symmetric matrix we get
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We now consider the elliptic PDO

H=L— zzaF Pig;

i,j=1 0Xij ¢
and define
" OF° .
= 2 aTijuilulj Z 6X ugug; + € Z uzug;
7‘)]7121 ,],l 1 ’Ll 1
"\ OF
=3, Wijuilulaj
1,7,l=1
We have
N ok "~ Ok OF® @ip;
Hw E + 2w+ 1)2 (2—10 + —u‘E) -2 J
R (O CRIC e o) B LEREp oF e
Let x be a local maximum point for v, then H(v)(z) <0 and at z
N ok " Ok OF® ©ip;
0> B+ (2w +1)3 (2— I —2 ;
_<P< + 552w+ 1)2 8uw+l:1 8xlm)> ”Z:laX” -

Since

oF¢ OF¢ 3N 1
-y Xy, Z oo = 3w+ k) 3 i
i,j=1 6XZ] ag i,l=1
and by Proposition 2.3

OF* oF* VN
i > —|Dol|——| > —~=|Dp|VE
Zaciso_ D¢l e | 2 =51

at x we have the inequality

VN N Ok "\ Ok .
0>pF — \[\Dcp]fw+<p<23(2w+l) <28— +Z@xlul>>

n

OF® iP; N 1 =
+w< Z 87” <90ij —2('0;0]> - %(2 +1)2k(x,u) Z ufgpz>

ij=1 il=1

Nw?| Dgl? N s Ok "ok .
- +tp<23(2w+1)2<2auw+llaxlul>)

" OFF ey 3N -
+ w( Z Pij — 92 Pi%i ) —5 (2w + 1)%1’6(%’ u®) Z ufgpl)
ij=1 8X” ® 2% il=1
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which reads as

(3.6)

N 30k _ Nw?Dyg|> N 3 Ok N 1 -
= i,l=

o Z 09X, ( 257 )

4,j=1 14
N (wiIDel® | (2w + 1)2 /wMy + w(2w + 1)2 My |Do|v/w
<33 - + (2w wMsy + w(2w 1| Dplvw
N
+’LUZ 8X”( _901]>

where M; = \/imaXQX[_MVM] |k|, My = \@maXQX[_M N1 |0,.k|, with M = maxg |u| and M

as in (3.2). Since 0 < o < % we can divide equation (3.6) by %\/@(210 + 1)304\/5 and we
get

Dyl|? " QF¢ Y .
2 Al gt IR oy a3 O ()
g05 305 ij:l 8XZ]

P2 P2
0 |Def? D Vo
Dy 1 DS@ YiP;  Pij
<C + Cop? + C +C (2 - 7)
= 2% s 2w+ 1)372 Z OXi\T G o
where C1, (9, C3, Cy are non negative constants depending on «a, My, M.
We now choose ¢ = (R? — |z|?)* and compute its derivatives
pi = —8(R* — |z*)’x
|Dy| = 8(R* — |z[*)*|«
Vij = 48(R? — |x\2)2xjxi — 8(R? — |z|*)3;
and we have the following estimates
D 2 64 R2 _ 2\6 2
IDel? _ G4 ol el _ o
o2 (R? — |z]?)
o2 = (R*—[a])* < B!
2 1..12\3
IDel _ 8 — el _ g
o2 (R? — |z]?)
2 PiPI _ Pii _ _ g (B — [2) wimy  A8(R? —|af®)’wjm; — 8(R? — [z]*)*dy
(,0% 4,02 (R2 - ’x‘Q)G (R2 - |$‘2)2

= 80z;x; + 8(R? — |2[*)d;; < 88R*S;;
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e

Since the symmetric matrix is non negative definite and by Proposition 2.4 with

8Xij
€12 = 2w
", QF¢ " OF N <N(2 s
= ne < — (2w ne
= anj = anj 8

by redefining constants we get
(3.8) VU = /pw < C1R? + CuR* + C3R® + C4R* < ()

where Cy depends on «, M1, My and on the diameter of the bounded set 2. Since z is a
local maximum of v, for every zp € B(z, R) we have v(z¢) < v(x) and by (3.8)

Veo(zo)w(zo) < Ve(z)w(z) < Co.

Hence
’Dua(l‘o)’ < Co _ Co _ Co
V2 T Ve(me) (B2 —mol?)? (R —|wol)*(R+ [xo])?
and we can conclude that o
| Duf(z0)| < P(z0,0B)
where d(-,0B) is the boundary distance. O

4. APPENDIX

In this section we show that, for every continuous function U : A — R, A C R, the
function u(z) = u(z1,...,zon,7n) = U(xy,) is a viscosity solution of F(Du, D?u) = 0 in
Q= A x B, for every B C R?VN

For every € Q and ¢ € C%(Q) such that v — ¢ has a local maximum at x, we have
¢i(r) = uj(z) = 0 for every j = 1,...,2N, and for every n € R2Y

ON oN
0="> ug(@mm; <> dij(x)nim;.
ij=1 ij—1

By (2.1) with ¢ = D¢(x) and X = D?¢(x) we find

F(Do(@), D2(x)) = 0D Z«zm

and we can conclude that u is a viscosity subsolution of F=0atzec
Analogously, for every ¢ € C?(Q) such that u — ¢ has a local minimum at x, we have
¢i(w) = uj(z) =0 for every j = 1,...,2N, and for every n € RZY

2N
0= Z Uzg 77277] = Z ¢1] 77277]7

,j=1 i,j=1

then
2 2N

F(Do(x), D%6(x)) = 0DV Z%
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and we can conclude that u is a viscosity supersolution of F' =0 at = € Q2.
Thus, w is a viscosity solution of F' =0 in €.

1]
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