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Abstract In this paper we prove that the CR-Yamabe equation on the sphere

has infinitely many sign changing solutions. The problem is variational but the re-

lated functional does not satisfy the Palais-Smale condition, therefore the standard

topological methods fail to apply directly. To overcome this lack of compactness,

we will exploit different group actions on the sphere in order to find suitable closed

subspaces, on which the restricted functional is Palais-Smale: this will allow us to

use the minimax argument of Ambrosetti-Rabinowitz to find critical points. By a

classification of the positive solutions and by considerations on the energy blow-up,

we will get the desired result.

AMS Subject Classifications: 35J20, 35B33, 58E40.

1 Introduction

In this paper we prove the existence of infinitely many sign changing solu-
tions of the following sub-Riemannian Yamabe equation on the Heisenberg
group Hn

−∆Hu = |u|
4

Q−2u, u ∈ S1
0 (Hn), (1)

1Department of mathematics and natural sciences, American University of
Ras Al Khaimah, PO Box 10021, Ras Al Khaimah, UAE. E-mail address:
ali.maalaoui@aurak.ae

2Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5,
40127 Bologna, Italy. E-mail address: vittorio.martino3@unibo.it
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where ∆H denotes the sub-Laplacian of the group, Q = 2n + 2 is the ho-
mogenous dimension of Hn, and S1

0 (Hn) is the Folland-Stein Sobolev type
space on Hn.

The problem is variational but, as in the Riemannian case, the functional
associated with the equation (1) fails to satisfy the Palais-Smale compact-
ness condition.
For the classical Yamabe equation on Rn, after the classification for the
positive solutions in [4], the first result about sign changing solutions was
proved by Ding in [8]. Following the analysis by Ambrosetti and Rabinowitz
[1], Ding found a suitable subspace X of the space of the variations for the
related functional on which he performed the minimax argument.
Later on, many authors proved the existence of infinitely many sign changing
solutions using other kinds of variational methods (see [2], [3] and the refer-
ences therein). Finally in a couple of recent works [6], [7], del Pino, Musso,
Pacard, and Pistoia found sign changing solutions, different from those of
Ding, by using a superposition of positive and negative bubbles arranged on
some special sets.
In the CR case, the positive solutions to the equation (1) were completely
classified by Jerison and Lee in [14]. Now, using the Cayley transform one
can set the problem on the sphere S2n+1.
In [16], two of the authors proved that there exist solutions to (1) using a
very particular group of isometries, namely the one generated by the Reeb
vector field of the standard contact form on S2n+1. Using the standard Hopf
fibration on the sphere, they showed that the restricted functional satisfies
the Palais-Smale condition by showing that the new space of variation is
identified with a Sobolev space on a complex projective space: in particular,
due to the very special symmetry, they were able to switch from a critical
subelliptic problem to a subcritical elliptic one.
Here we will show that there exist many complex group actions that lead to
sign changing solutions, each of them having different symmetries. Moreover
in these general cases one cannot use any analogue of the Hopf fibration,
therefore we will prove the compactness condition by using a general bub-
bling behavior of the Palais-Smale sequences, that in our situation will lead
to a contradiction (see Lemma (3.2)).
Finally, we recall that in literature there are many other existence and multi-
plicity results about Yamabe type equations in different settings: we address
the reader for instance to the papers [11], [22], [18], [17], [19], [20], [12] [15]
and the references therein.
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2 Structure of the equation and group actions

Let Hn = Cn × R ≃ R2n+1 be the Heisenberg group. If we denote by
ξ = (z, t) = (x + iy, t) ≃ (x, y, t) ∈ (Rn × Rn × R) then the group law is
given by

ξ0 � ξ = (x+ x0, y + y0, t+ t0 + 2(⟨x, y0⟩ − ⟨x0, y⟩)), ∀ξ, ξ0 ∈ Hn,

where ⟨·, ·⟩ denotes the inner product in Rn. The left translations are defined
by

τξ0(ξ) := ξ0 � ξ.

Finally the dilations of the group are

δλ : Hn → Hn, δλ(ξ) = (λx, λy, λ2t)

for any λ > 0. The canonical left-invariant vector fields are

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n.

The horizontal (or intrinsic) gradient of the group is

DH = (X1, . . . , Xn, Y1, . . . , Yn).

Let us now set

q∗ =
2Q

Q− 2
,

then the following Sobolev-type inequality holds

∥φ∥2q∗ =
(∫

Hn

|φ|q∗
) 2

q∗ ≤ C

∫
Hn

|DHφ|2 = C∥DHφ∥22, ∀φ ∈ C∞
0 (Hn),

with C a positive constant.

Definition 2.1. For every domain Ω ⊆ Hn, the Folland-Stein Sobolev space
S1
0 (Ω) (see [9]) is defined as the completion of C∞

0 (Ω) with respect to the
norm

∥ · ∥ = ∥DH · ∥2.
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The exponent q∗ is called critical since the embedding

S1
0 (Ω) ↪→ Lq∗(Ω)

is continuous but not compact for every domain Ω.
The Kohn Laplacian (or sub-Laplacian) on Hn is the following second order
operator invariant with respect to the left translations and homogeneous of
degree two with respect to the dilations:

∆H =

n∑
j=1

X2
j + Y 2

j .

Let us now consider the following Yamabe type problem on the Heisenberg
group Hn

−∆Hu = |u|
4

Q−2u, u ∈ S1
0 (Hn). (2)

We recall that a solution of the problem (2) on Hn can be found as critical
point of the following functional

J : S1
0 (Hn) → R, J (u) =

1

2

∫
Hn

|DHu|2 −
1

q∗

∫
Hn

|u|q∗ .

Since q∗ is the critical exponent for the Sobolev embedding then J does not
satisfy the Palais-Smale condition.
Moreover any variational solution is actually a classical solution ([9], [10]).
We will prove the following

Theorem 2.2. There exists a sequence of solutions {uk} of (2), with∫
Hn

|DHuk|2 −→ ∞, as k → ∞.

Theorem 2.2 will imply that equation (2) has infinitely many sign changing
solutions: in fact, by a classification result by Jerison and Lee [14], all the
positive solutions of the equation (2) are in the form

ωλ,ξ = λ
2−Q
2 ω ◦ δ 1

λ
◦ τξ−1

for some λ > 0 and ξ ∈ Hn, where

ω(x, y, t) =
c0(

(1 + |x|2 + |y|2)2 + t2
)Q−2

4
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with c0 a positive constant. In particular all the solutions ωλ,ξ have the
same energy.
The idea is to consider the problem, after the Cayley transform, on the
sphere S2n+1. In that setting we will be able to find a suitable closed sub-
spaces on which the restricted functional satisfies Palais-Smale.
Let us consider the sphere S2n+1 ⊆ Cn+1 defined by

S2n+1 = {(z1, . . . , zn+1) ∈ Cn+1 s.t. |z1|2 + . . .+ |zn+1|2 = 1}.

The Cayley transform F is the analogous of the stereographic projection,
namely it is a CR-diffeomorphism between the sphere minus a point and the
Heisenberg group

F : S2n+1 \ {0, . . . , 0,−1} → Hn

F (z1, . . . , zn+1) =
( z1
1 + zn+1

, . . . ,
zn

1 + zn+1
, Re

(
i
1− zn+1

1 + zn+1

))
.

So, if we denote by θ the standard contact form on S2n+1, and by ∆θ the re-
lated sub-Laplacian, a direct computation shows that equation (2) becomes

−∆θv + c(n)v = |v|
4

Q−2 v, v ∈ S1(S2n+1), (3)

with c(n) a suitable positive constant related to the (constant) Webster
curvature of the sphere (see [13] for a full detailed exposition).
In particular, by setting

u = φv (4)

(where φ is the function that gives the conformal factor in the change of the
contact form), we have that every solution u of (2) corresponds to a solution
v of (3) and it holds ∫

Hn

|DHu|2 =
∫
S2n+1

|v|q∗ .

We can consider now the variational problem on the sphere

I : S1(S2n+1) → R, I(v) =
1

2

∫
S2n+1

(
|Dθv|2 + c(n)v2

)
− 1

q∗

∫
S2n+1

|v|q∗ .

Here |Dθv| stands for the Webster norm (that in this particular case it
coincides with the Euclidean one) of the contact gradient Dθv, namely Dθ =
{X1, Y1, . . . , Xn, Yn} is an orthonormal basis of ker(θ); moreover for any
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j = 1, . . . , n we defined Yj = JXj where J the standard complex structure
on Cn+1. If we identify Cn+1 ≃ R2n+2 with

z = (z1, . . . , zn+1) ≃ (x1, y1, . . . , xn+1, yn+1),

then J is the block matrix

J =



0 −1
1 0

02×2 . . . 02×2

02×2
0 −1
1 0

. . . 02×2

... 02×2 . . .
0 −1
1 0

 .

Remark 2.3. We explicitly note that with the notation

z = (z1, . . . , zn+1) ≃ (x1, . . . , xn+1, y1, . . . , yn+1) = (x, y)

one get J in the canonical form

J =

(
0 −In+1

In+1 0

)
.

We used a different formalism since the notations will be better in the sequel.

Now, let us denote

U(n+ 1) = {g ∈ O(2n+ 2), gJ = Jg},

where O(2n+ 2) is the group of real valued (2n+ 2)× (2n+ 2) orthogonal
matrices.

Remark 2.4. The functional I is invariant under the linear action of the
group U(n+ 1), i.e.

I(v) = I(v ◦ g), ∀ g ∈ U(n+ 1).

As a matter of fact, the matrices in U(n+1), being orthogonal, define isome-
tries of the sphere. On the other hand, they also bring the orthonormal bases
for ker(θ) into each others; in particular the norm of Dθ is independent of
the choice of one of such a basis.

If G is a subgroup of U(n+ 1), we define

XG = {v ∈ S1(S2n+1) : v ◦ g = v, ∀ g ∈ G}.

We are going to make the following assumptions on G:
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(H1) XG is an infinite dimensional real vector space;

(H2) for any z0 ∈ S2n+1, the G-orbit of z0 has at least one accumulation
point.

Example 2.5. By mimicking Ding we can consider, for any k ∈ {1, . . . , n},
the subgroups Gk = U(k)× U(n+ 1− k) formed by the matrices(

g1 02k×2(n+1−k)

02(n+1−k)×2k g2

)
with g1 ∈ U(k) and g2 ∈ U(n+ 1− k).
The functions in S1(S2n+1) depending only on |z1| , |z2| (with z = (z1, z2),
z1 ∈ Ck, z2 ∈ Cn+1−k) belong to XGk

. Thus we immediately get that XGk
is

infinite dimensional. Moreover, the Gk-orbits of any point contain at least
a circle. Therefore Gk satisfies (H1) and (H2).

We explicitly notice that, differently from Ding, we allow the case k = 1:
basically this is related to the fact that the orbit of any point under the
action of U(1) is the circle S1, instead the orbits related to O(1) are Z2.
The following is a more general situation than can happen in this direction.

Counterexample 2.6. For any m ∈ N, let us consider the subgroups Gm =
Zm × U(n) formed by the matrices (

cos(2πjm ) sin(−2πj
m )

sin(2πjm ) cos(2πjm )

)
02×2n

02n×2 g

 ,

with j ∈ {0, . . . ,m − 1} and g ∈ U(n). These are subgroups of the group
G1 defined in the previous example. Thus, XGm are infinite dimensional.
On the other hand, if we fix a point z0 = (eit0 , 0) ∈ Cn+1, its Gm-orbit
contains exactly m points. Therefore, the groups Gm don’t satisfy our main
assumption (H2).

Example 2.7. In [16] it has been considered the case of the one-parameter
group GT generated by the flow of the Reeb vector field T of θ. In our
notations, GT is formed by the matrices exp(tJ), t ∈ R, and it is a sub-group
of any Gk. The orbits are always great circles and our assumptions (H1)
and (H2) are thus satisfied for GT : in particular considering the following
Hopf fibration

S1 ↪→ S2n+1 π−→ CPn

where the fibers are exactly the orbits of T , we have the identification XGT
≃

S1(CPn).
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So far, all the groups we have showed are formed by block diagonal matrices.
We can provide other examples in which this does not occur.

Example 2.8. Let us consider the case n = 1, i.e. the case of S3, and let
us define the vector fields

X̃ = x2∂x1 + y2∂y1 − x1∂x2 − y1∂y2

and
Ỹ = −y2∂x1 + x2∂y1 − y1∂x2 + x1∂y2.

Now we consider the one-parameter groups (GX̃ and GỸ , respectively) gen-

erated by X̃ and Ỹ : in other words,

GX̃ = {exp(tX̃) : t ∈ R}, GỸ = {exp(tỸ ) : t ∈ R}

where with some abuse of notation we can identify the vector fields with the
matrices

X̃ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 and Ỹ =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

Such groups are contained in U(2) since X̃ and Ỹ are skew-symmetric and
they commute with J . Moreover, the vector fields are well-defined and non-
vanishing everywhere in S3, and their integral curves are always great circles.
This proves in particular that GX̃ and GỸ satisfy our hypotheses (H1) and
(H2).

Let us still examine the case n = 1: we can describe more precisely which
are the symmetries we are referring to.
The Lie algebra of U(2) is a four dimensional real vector space. Let us fix
the following basis:

J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , J̃ =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 ,

X̃ =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , Ỹ =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .
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Any matrix A in the Lie algebra gives rise to a linear isometry ϕA
t of S3 in

the following sense 
d

dt
ϕA
t (z) = AϕA

t (z)

ϕA
0 (z) = z.

By the examples 2.7 and 2.8, the one-parameter groups generated by J, X̃, Ỹ
satisfy hypotheses (H1) and (H2). One can prove that also for the group
generated by J̃ our assumptions hold true.
Geometrically, the isometry ϕJ

t is given by the integral curves of the Reeb
vector field T and the functions which are constant along T are the ones
considered in [16]; whereas the isometry ϕJ̃

t is given by the integral curves of
T̃ which is the Reeb vector field of the “dual” contact form θ̃ (the one with J̃
as complex structure instead of J). We note that also a linear combination
of J and J̃ still satisfies (H1) and (H2).

Finally, the isometries ϕX̃
t and ϕỸ

t are given by the integral curves of the
vector fields X̃ and Ỹ which are right-invariant with respect to the standard
group structure in S3. In particular they commute with the left-invariant
vector fields X and Y : one can think that is exactly this commutation
property that makes the functional I invariant under the action of the groups
GX̃ and GỸ .

3 Proof of the Theorem 2.2

The proof is based on the following lemma by Ambrosetti and Rabinowitz,
which gives a condition on some particular subspaces of the space of varia-
tions on which it is allowed to perform the minimax argument; we will omit
the proof (see Theorems 3.13 and 3.14 in [1]).

Lemma 3.1. Let X be a closed subspace of S1(S2n+1). Suppose that:

(i) X is infinite-dimensional;

(ii) I|X , the restriction of I on X, satisfies Palais-Smale on X.

Then I|X has a sequence of critical points {vk} in X, such that∫
S2n+1

|vk|q
∗ −→ ∞, as k → ∞.

9



Now, suppose we are given G such that XG satisfies (H1) and (H2). In
order to apply the previous Lemma we need to show that the restricted
functional I|XG is Palais-Smale. We will argue by contradiction, namely: we
will consider a general Palais-Smale sequence and, since there is a precise
characterization for these last ones, we will see that if Palais-Smale is vio-
lated then bubbling occurs, and the concentration set is finite and discrete,
therefore the hypothesis (H2) and the invariance given by the group action
will lead to a contradiction on the boundedness of the energy.
Hence, we have the following

Lemma 3.2. Let G be a subgroup of U(n+1) that satisfies (H2). Then I|XG,
the restriction of I on XG, satisfies the Palais-Smale compactness condition
on XG.

Proof. Let us first recall a general bubbling behavior of the Palais-Smale
sequences (P-S) of the functional I, studied by Citti in [5]. Let {vk} be a
(P-S)c sequence, that is

I(vk) → c, and dI(vk) → 0, as k → ∞.

Then there exist m ≥ 0, m sequences zjk → zj ∈ S2n+1 (for 1 ≤ j ≤ m), a

sequence of numbers Rj
k converging to zero, and a solution v∞ ∈ S1(S2n+1),

such that up to a subsequence

vk = v∞ +

m∑
j=1

vk,j + o(1) in S1(S2n+1),

where, by (4)

uk,j = φvk,j , uk,j = (Rj
k)

−Q−2
2 ϕjuj ◦ δ 1

R
j
k

◦ τ
F (zjk)

−1

with uj a solution of

−∆Huj = |uj |
4

Q−2uj in Hn

and ϕj is a cut-off function supported in B2(zj) and equals to 1 in B1(zj).
Moreover,

I(vk) = I(v∞) +

m∑
j=1

I(vj) + o(1) as k → ∞. (5)

In [5] the author proved this characterization result in an open set of Hn: the
same proof works for what we stated above. In fact, the proof in this case is
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easier since here there is no boundary and hence in the blow-up procedure
the case of the upper half space cannot occur.
The important claim for what we need is that the blow-up set

Θ = {zj ∈ S2n+1, 1 ≤ j ≤ m}

is discrete and finite. Now we are looking at the functional I|XG , so we have
that our (P-S) sequence is invariant under the action of G and this means
that if z ∈ Θ is a concentration point, then the whole orbit of z would be,
which is impossible under our assumption. In particular this would contra-
dict the energy quantization (5).
Indeed, let us assume for the sake of simplicity that we have only one con-
centration point z0 ∈ Θ and let (gi)1≤i≤l be l elements in G: then gi · z0 are
also concentration points in Θ. In particular

c = lim
k→∞

I(vk) = I(v∞) +
l∑

i=1

I(v0) = I(v∞) + lI(v0) (6)

with v0 the bubble concentrating at z0. Now we notice that I(v0) ̸= 0 since
from the equation satisfied by v0 we have that∫

S2n+1

|Dθv0|2 + c(n)v20 =

∫
S2n+1

|v0|q
∗
.

Therefore

I(v0) =
(1
2
− 1

q∗

)∫
S2n+1

|v0|q
∗

and this last quantity is different from zero if bubbling occurs.
Finally, since G satisfies the hypothesis (H2), the orbit of z0 has at least
one accumulation point on the sphere, therefore Θ contains infinitely many
points: hence, by letting l → ∞ in (6), we get a contradiction.

Now we will prove the main theorem.

Proof. (of Theorem 2.2)
Let us take any G subgroup of U(n + 1) that satisfies assumptions (H1)
and (H2): the examples in Section 2 provide the existence of a large class
of such groups. By the previous lemma, we have that I|XG satisfies Palais-
Smale on XG. Therefore XG satisfies conditions (i) and (ii) in the lemma
by Ambrosetti and Rabinowitz, so that I|XG has a sequence of critical points
{vk} in XG, such that∫

S2n+1

|vk|q
∗ −→ ∞, as k → ∞.
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On the other hand, by Remark (2.4) we have that the functional I is invariant
under the action of G. By the Principle of Symmetric Criticality [21], this
implies that any critical point of the restriction I|XG is also a critical point
of I on the whole space of variations S1(S2n+1). This ends the proof.
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