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Abstract In this paper we aim at characterizing the gauge balls in the Heisenberg group Hn

as the only domains where suitable overdetermined problems of Serrin type can be solved. We

discuss a one parameter family of overdetermined problems where both the source functions and

the Neumann-like data are non-constant and they are related to the geometry of the underlying

setting. The uniqueness results are established in the class of domains in Hn having partial

symmetries of cylindrical type for any n ≥ 1, and they are sharper in the lowest dimensional

cases of H1 and H2 where we can respectively treat domains with S1 and S1 × S1 invariances.

Keywords: overdetermined problems, Heisenberg Laplacian, symmetry via integral identities.

2020 MSC. Primary: 35N25. Secondary: 35R03, 35B06.

1 Introduction

The main interest of the present work is to establish symmetry results for solutions of

overdetermined problems in R2n+1 (with n ≥ 1, and generic point ξ = (x, t) ∈ R2n × R)

such as 
∆xu+ 4|x|2∂2

ttu+ 4 〈Jx,∇x∂tu〉 = (2n+ 2) |x|2√
|x|4+t2

in Ω,

u = 0 on ∂Ω,(∑2n
j=1(∂xju+ 2(Jx)j∂tu)2

) 1
2

= c |x|
(|x|4+t2)

1
4

on ∂Ω.
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Here, and in what follows, c is a positive constant, 〈·, ·〉 and | · | denote the standard inner

product and norm in R2n, and J stands for the following standard symplectic matrix in

R2n

J =

(
0 −In
In 0

)
. (2)

Despite being a far-reaching (and maybe weird-looking) generalization of the classical

overdetermined problem for the torsion function studied by Serrin in [35], the problem

(1) should first be looked with the eyes and the notations proper of the Heisenberg group.

As we postpone to Subsection 1.1 the description of our motivations for studying (1), we

proceed in recalling the geometric setting and stating the main results.

The Heisenberg group Hn can be identified with R2n+1 once we fix the group law

ξ ◦ ξ′ = (x, t) ◦ (x′, t′) = (x+ x′, t+ t′ + 2〈Jx, x′〉), for ξ, ξ′ ∈ Hn.

The 1-parameter family of group homomorphisms {δλ}λ>0 defined as

δλ : Hn → Hn, δλ(x, t) = (λx, λ2t)

plays the role of the homogeneous dilations, and it displays the non-isotropy of the setting

under discussion. Such non-isotropy is also reflected by the so-called gauge function

ρ(ξ) =
(
|x|4 + t2

) 1
4 , ξ ∈ Hn. (3)

The function ρ defined in (3) sits at the center stage of our analysis. On one hand, it

defines a norm which is 1-homogeneous with respect to δλ, and it endows Hn with the

structure of a metric space where the metric balls centered at ξ0 ∈ Hn and radius R > 0

are given by

BR(ξ0) =
{
ξ ∈ Hn : ρ(ξ−1

0 ◦ ξ) < R
}
. (4)

The balls BR(ξ0) in (4) are called gauge balls or Korányi balls in the literature, as they

first appeared in [25] in the study of singular integrals on homogeneous spaces. On

the other hand, the gauge function is very much related with the sub-elliptic partial

differential operator we work with. The canonical basis of left invariant vector fields on

Hn is given by

Xj =
∂

∂xj
+ 2(Jx)j

∂

∂t
, T =

∂

∂t
, j = 1, . . . , 2n.

The vector fields {X1, . . . , X2n} are called horizontal: they are 1-homogeneous with re-

spect to δλ and they span the kernel of the contact form of the underlying CR structure.
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The second order partial differential operator defined by

∆H =
2n∑
j=1

X2
j (5)

is called Heisenberg subLaplacian. It is a direct computation to recognize that

∆H = ∆xu+ 4|x|2∂2
ttu+ 4 〈Jx,∇x∂tu〉 , (6)

namely the operator appearing in (1). From (5) and the properties of the vector fields, it

is clear that ∆H is left-invariant and δλ-homogeneous of degree 2. It is also hypoelliptic

(even if never elliptic, at any point) thanks to the non-commutation relation [Xj , Xi] =

4JijT . Since [12, Theorem 2] it is well-known that the fundamental solution of ∆H is

gauge-symmetric. More precisely, for any ξ0 ∈ Hn the function

ξ 7→ β

ρQ−2(ξ−1
0 ◦ ξ)

is the fundamental solution of ∆Hn with pole at ξ0, (7)

where β > 0 is a renormalizing constant. Here, as well as in what follows, we have

indicated by

Q = 2n+ 2

the homogeneous dimension of the group. Denoting by DHu the so-called horizontal

gradient of a given function u which is described by the R2n-vector

DHu = (X1u, . . . ,X2nu) ,

a straightforward computation which exploits the skew-symmetry of the matrix J ensures

that

|DHρ(ξ)| = |x|
ρ(ξ)

for any ξ ∈ Hn, ξ 6= 0. (8)

The last notation we need concerns the nonnegative function

Fα(ξ) = |x|2ρα−4(ξ) (9)

= |DHρ(ξ)|2ρα−2(ξ),

where α is a positive constant which will be settled in a moment in some range contained

in (0, 4]. We are thus ready to declare the overdetermined system depending on the

parameter α which constitutes the core of our work
∆Hu = (Q+ α− 2)Fα in Ω,

u = 0 on ∂Ω,

|DHu| = c F
1
2
α on ∂Ω.

(10)
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We postpone to Section 2 the discussion about the precise meaning of solution u to the

system (10), and for the assumptions on the class of bounded opens sets Ω where we

seek to solve (10). We explicitly note that, according to our notations, the case α = 2

corresponds to the desired system (1). The case α = 2 occupies a special position also

for another reason: as the function Fα is δλ-homogeneous of degree α − 2 (see (8)), in

the (α = 2)−system (1) both the source function and the Neumann-like datum are δλ-

homogeneous of degree 0 (just like the constants) and in this respect (1) represents a true

generalization of the classical Serrin overdetermined problem for the torsion function.

For any α > 0, a direct computation based on (7)-(8) shows that in Ω = BR(0) for any

R > 0 the unique solution uα (in the sense of Section 2) to (10) is given by

uα(ξ) =
ρα(ξ)−Rα

α
, and in such case c = R

α
2 . (11)

In the particular case α = 4 the system (10) inherits an extra degree of freedom as the

function F4(ξ) = |x|2 is independent of the t-variable: this fact is responsible for the

existence of gauge-symmetric solutions in Ω = BR((0, t0)) for any t0 ∈ R and R > 0

which are given by u4(ξ) = 1
4(|x|4 + (t − t0)2 − R4). Similar symmetry problems in Hn

with weights depending just on |x| (like F4) have been recently addressed in a companion

paper [18]1, where we proved that the gauge spheres ∂BR((0, t0)) are the unique smooth

closed hypersurfaces in Hn with horizontal mean curvature proportional to |x| in the class

of domains which are cylindrically symmetric with respect to the t-axis (see, e.g., [18,

Corollary 3.6]). Here, in contrast with [18], we allow the weights Fα(x, t) to be possibly

t-dependent via the presence of the function ρα−4(x, t).

The aim of the present work is to prove that the gauge balls are the unique domains

Ω in a class of competitor sets with cylindrical-type symmetries where (10) admits a

solution for some positive constant c and some positive parameter α in a suitable range.

The requirement for the domains to have an a-priori symmetry assumption is not new

in the literature: due to the known difficulties in performing symmetrizations, moving

plane techniques, and Bochner-type identities in sub-Riemannian settings, this type of

axially symmetric assumption already appeared in a number of notable contributions by

many authors such as [22, 14, 3, 19, 34, 31, 30] (to the best of our knowledge, the only

symmetry results available in Hn without hypotheses concerning partial symmetries are

the important classifications of global solutions/minima in [23, 6, 13, 28] strongly based

on the underlying conformal invariances). More precisely, we shall say that a bounded

1the content of the present paper was in fact announced in [18] in July 2022 (see reference [28] therein)
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open set Ω ⊂ Hn is cylindrically symmetric (with respect to the t-axis) if

(x, t) ∈ Ω =⇒ (x′, t) ∈ Ω for every x′ ∈ R2n with |x′| = |x|. (12)

In this respect, our main result is the following

Theorem 1.1. Fix n ≥ 1, and α ∈ (αn, 4] where αn = 3
4 for n ≥ 2 and α1 = 2. Fix also

c > 0. Let Ω be a subset of Hn satisfying the assumptions in Section 2, and suppose that

Ω is cylindrically symmetric. If there exists a solution u to (10), then Ω is a gauge ball

of radius R = c
2
α .

For a refined statement of Theorem 1.1, we refer the reader to Theorem 4.1, Corollary

4.1, and Theorem 4.2 below. In Theorem 4.1 we deal with the characterization of the

gauge balls centered at the origin BR(0) for every α in (0, 4) under an extra-assumption

concerning the local behaviour of an auxiliary function (see Corollary 4.1 for the case

α ∈ (αn, 4)), whereas in Theorem 4.2 we deal with the characterization of the gauge balls

centered on the t-axis BR((0, t0)) in case2 α = 4. The strategy we adopt for the proof

of Theorem 1.1 follows the one pioneered by Weinberger in [39] for the classical Serrin

overdetermined problem which is based on integral identities, maximum principles, and

sharp matrix inequalities of Newton-type. The main difference with the elegant argument

in [39], as well as the main novelty of the present paper at a technical level, is that the

scope of the proof is not to ensure that some Hessian matrix is a multiple of the identity

(as it is not even true for the candidate solution uα in (11)). To specify better this

difficulty, we should stress again the difference between the simpler situation α = 4

(for which the candidate solution u4 possesses, at least in the cylindrical coordinates

(σ, t) ∈ R+ ×R with σ = |x|2, an Hessian matrix which is equal to the identity) and the

case 0 < α < 4 (for which the function (σ2 + t2)
α
4 is radial but of course not a quadratic

polynomial). Therefore, in order to detect the gauge-symmetry of the solutions, we are

going to construct a special function v (a so-called P-function) which is singular on the

t-axis and with the property that ∆Hv measures the distance from the solution u to

the candidate solution uα in terms of a rather long list of second-order and first-order

quantities. Having this in mind, it is worth noticing that we manage to show the validity

of Theorem 1.1 for a non-trivial interval of parameters α with a common approach à la

Weinberger as it is known that the Weinberger’s proof in RN is very rigid with respect

to the choice of the source function and the Neumann data (as far as we know, in the

2concerning only α = 4, the content of Theorem 4.2 is also discussed in a very recent preprint [16]

where the authors provide a number of conjectures via some interesting and formal analogies with classical

symmetry problems in RN for possibly non-integers N
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elliptic framework the interesting uniqueness results for overdetermined problems with

position-dependent data are achieved with approaches very different than the one in [39],

see, e.g., [7, 8, 33, 11]). The crucial property that comes to rescue us is the fact that

the a-priori symmetry assumptions allow us to work in a low-dimensional space and the

approaches via integral identities and sharp inequalities are less rigid in 2-dimensions

(this phenomenon seems unnoticed in the literature for the Weinberger’s proof, but it

appears for other symmetry results in the plane such as [10, 27]).

With the intention of enlarging the class of Ω for which we have a uniqueness result,

we are going to work with domains with some a-priori symmetry assumptions which are

weaker than (12). We shall say that a bounded open set Ω ⊂ Hn is toric symmetric (with

respect to the symplectic matrix J (2), and the t-axis) if

(x, t) ∈ Ω =⇒ (x′, t) ∈ Ω for every x′ ∈ R2n such that (13)

(x′)2
k + (x′)2

n+k = x2
k + x2

n+k with k ∈ {1, . . . , n}.

For n = 1, (13) coincides with the S1-invariance described in (12). However, for n ≥ 2,

(13) constitutes a weaker requirement than (12): (13) is equivalent of saying that the

sections {x ∈ R2n : (x, t) ∈ Ω} are Reinhardt domains in Cn = (R2n, J) (and not just

balls as for (12)). In Section 3 we are going to introduce the P-function v associated to a

solution of the overdetermined system (10), and we will see that v is going to be effective

as a detector of the gauge-symmetry not just in the case of cylindrically symmetric sets

for any n ≥ 1 but also in the case of toric symmetric sets in H2. We summarize the

latter result in the following theorem, which we feel is close (at least in spirit) with the

Aleksandrov-type theorem for the Levi curvature in the class of Reinhardt and circular

domains in C2 obtained in [19, 30].

Theorem 1.2. Fix n = 2, α ∈ (3
4 , 4], and c > 0. Let Ω be a subset of H2 satisfying

the assumptions in Section 2, and suppose that Ω is toric symmetric. If there exists a

solution u to (10), then Ω is a gauge ball of radius R = c
2
α .

As before, we refer the reader to Theorem 4.3, Corollary 4.2, and Theorem 4.4 below

for a refined statement of Theorem 1.2 accordingly to the values of α.

The paper is organized as follows. In Section 2 we set the required hypotheses for the

class of competitors Ω, we settle the definition of solution to the system (10), and we

derive some preliminary integral identities. In Section 3 we introduce the P-function v

and we show a crucial pointwise identity involving ∆Hv in case of domains with toric
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symmetries. We proceed by discussing both the subharmonicity and local integrability

properties of v with respect to the values of the parameter α. In Section 4 we provide

the complete details for the proof of Theorems 1.1 and 1.2.

1.1 Motivations

Our interest for studying the specific overdetermined problem in (1) comes from a natural

inverse problem in potential theory. It is in fact known since a celebrated paper by Gaveau

[17, Théorème 3] (see also the general treatment in [4, Theorems 5.5.4 and Theorem

5.6.1]) the validity of Gauss-Koebe type theorems in Hn stating that the pointwise value

of every ∆H-harmonic function can be represented as a weighted average of the values

of h on gauge balls BR and on gauge spheres ∂BR. More precisely, if we have a solution

h to ∆Hnh = 0 in BR(0) (which is continuous up to the closure of BR(0)) we then have

that

h(0) =
Q(Q− 2)β

RQ

∫
BR(0)

h(ξ)|DHρ(ξ)|2dξ (14)

=
(Q− 2)β

RQ−1

∫
∂BR(0)

h(ξ)
|DHρ(ξ)|2

|Dρ(ξ)|
dσ(ξ).

Here, and in what follows, we have indicated by dξ the Lebesgue measure, by dσ(ξ) the

surface measure for smooth hypersurfaces, and by D the Euclidean gradient. The positive

constant β is the same constant appearing in (7). As a matter of fact, the validity of

(14) is mainly due to (7) (being the gauge balls the superlevel sets of the fundamental

solution) and to the variational structure of ∆H (being the horizontal vector fields Xj

divergence-free with respect to the Lebesgue measure), see in this respect also [5]. When

we refer to inverse problems we intend the characterization of the domains where mean

value properties might hold, see the very insightful survey [32]. Lanconelli proved in

[26] a Kuran-type theorem by characterizing the gauge balls in Hn as the only domains

where the pointwise value of ∆H-harmonic functions coincides with the weighted solid-

average displayed in (14) and given by the weight |DHρ(ξ)|2 (the proof in [26] relies on

the identification of the fundamental solution from equilibrium potentials constructed via

group convolutions, see also [1] for the case of classical Newtonian potentials). On the

other hand, it is known (see, e.g., [36]) that the classical Serrin overdetermined problem
∆u = N in D,

u = 0 on ∂D,

|Du| = c on ∂D
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is related with the characterizations of domains D in RN for which the solid average and

the surface average of harmonic functions do coincide. We would like to convince the

reader that the same applies for the weighted averages in (14) and our overdetermined

system (1) (namely the case α = 2 of (10)) which we can rewrite in our notations as
∆Hu = Q |DHρ|2 in Ω,

u = 0 on ∂Ω,

|DHu| = c |DHρ| on ∂Ω.

(15)

The fact that the gauge-function ρ does not satisfy the relevant eikonal equation (i.e.

|DHρ(ξ)| = |x|
ρ(ξ) 6≡ 1) appears then as the subtle difference between the two systems.

In order to do so, we need a few more notations. The horizontal divergence of a vector

field (V1, . . . , V2n) is given by

divH(V ) =
2n∑
j=1

Xj(Vj),

so that one has ∆Hu = divH(DHu). For a given bounded open set Ω ⊆ Hn with smooth

boundary, we say that f is a defining function for Ω if f is smooth in a neighborhood of

∂Ω and

Ω = {ξ ∈ Hn : f(ξ) < 0}, ∂Ω = {ξ ∈ Hn : f(ξ) = 0}, Df 6= 0 on ∂Ω.

We denote by ν the Euclidean outer normal to ∂Ω, and we define the horizontal outer

normal to ∂Ω as follows

νH(ξ) :=
DHf(ξ)

|DHf(ξ)|
, for any ξ ∈ ∂Ω such that DHf(ξ) 6= 0.

A point ξ ∈ ∂Ω, such that DHf(ξ) = 0, is called characteristic. In the literature there is

a well-established notion of horizontal perimeter measure of ∂Ω (see, e.g., [9]) which can

be defined as dσH = |DHf |
|Df | dσ. In particular, for smooth enough functions v, one has∫

Ω
Xj(v)(ξ) dξ =

∫
∂Ω
v(ξ)

Xjf(ξ)

|Df(ξ)|
dσ(ξ) =

∫
∂Ω
v(ξ) νHj (ξ) dσH(ξ), j = 1, . . . , 2n.

Hence, since f(ξ) = ρ(ξ)−R works as a defining function for ∂BR(0), we can rewrite the

surface average in (14) as

(Q− 2)β

RQ−1

∫
∂BR(0)

h(ξ)
|DHρ(ξ)|2

|Dρ(ξ)|
dσ(ξ) =

(Q− 2)β

RQ−1

∫
∂BR(0)

h(ξ)|DHρ(ξ)|dσH(ξ).
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Denoting (for Ω such that 0 6∈ ∂Ω)

Asolid(Ω) =

∫
Ω
|DHρ(ξ)|2dξ and Asurface(∂Ω) =

∫
∂Ω
|DHρ(ξ)|dσH(ξ)

and using the fact that 1 is ∆H-harmonic, it is clear from (14) that

1

Asolid(BR(0))

∫
BR(0)

h(ξ)|DHρ(ξ)|2dξ =
1

Asurface(∂BR(0))

∫
∂BR(0)

h(ξ)|DHρ(ξ)|dσH(ξ)

for any ∆H-harmonic function h in BR(0) (continuous up to the boundary). Let us

now consider a solution u to our overdetermined system (15) in Ω (assume for now that

everything is smooth enough in order to be well-defined, and 0 ∈ Ω) and consider any

∆H-harmonic function h in Ω (smooth up to the boundary), we can deduce that∫
Ω
h(ξ)|DHρ(ξ)|2dξ =

1

Q

∫
Ω
h(ξ)∆Hu(ξ)dξ =

1

Q

∫
Ω

(h(ξ)∆Hu(ξ)− u(ξ)∆Hh(ξ)) dξ

=
1

Q

∫
Ω

divH (hDHu− uDHh) (ξ)dξ =
1

Q

∫
∂Ω
h(ξ)|DHu(ξ)|dσH(ξ)

=
c

Q

∫
∂Ω
h(ξ)|DHρ(ξ)|dσH(ξ) (16)

where we exploited the fact that u is also a defining function for Ω (see (22) below for

more details). In particular, by plugging h ≡ 1 in (16) it yields

c

Q
=

Asolid(Ω)

Asurface(∂Ω)
.

Substituting in (16) the previous relationship, we finally obtain

1

Asolid(Ω)

∫
Ω
h(ξ)|DHρ(ξ)|2dξ =

1

Asurface(∂Ω)

∫
∂Ω
h(ξ)|DHρ(ξ)|dσH(ξ)

for any smooth Ω admitting a solution to our overdetermined system.

2 Preliminaries: assumptions and integral identities

Let us now define, for α > 0, our meaning for competitor sets Ω and for solutions to the

overdetermined system (10). We consider an open, bounded and connected set Ω ⊂ Hn

with smooth boundary, we assume that around characteristic points of the boundary

(defined in the previous section) the set Ω has interior and exterior tangent gauge-balls,

and we ask that the unique weak solutions to∆Hu = (Q+ α− 2)Fα in Ω,

u = 0 on ∂Ω
(17)
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are also smooth in a neighborhood of the boundary of Ω. For such Ω, we say that u

solves (10), if u is the unique weak solution to (17) and satisfies

|DHu(ξ)| = c F
1
2
α (ξ) for ξ ∈ ∂Ω (18)

for some positive constant c. We recall that a weak solution u to (17) is a function in the

Folland-Stein space H1
0 (Ω, X) (of functions in L2 with horizontal gradient in L2) such

that ∫
Ω
〈DHu,DHψ〉+ (Q+ α− 2)

∫
Ω
Fαψ = 0 for all ψ ∈ C∞0 (Ω).

To summarize the assumptions and notations discussed here, we shall say that

Ω is a competitor set (19)

and

u is solution to (10) in Ω. (20)

It is safe to remark that the gauge balls are competitor sets and the function uα in (11)

is solution to (10) in a gauge ball for any α > 0.

Some comments are in order. Being the function Fα non-smooth at ξ = 0 (whenever

α < 4), we assume 0 ∈ Ω (whenever α < 4) in order to fix the ideas. We can then

understand the assumptions by splitting the discussion into interior and boundary issues.

Since

Fα ∈ C∞(Ω r {0}) and Fα ∈

L∞(Ω) if α ≥ 2,

Lp(Ω) for some p > Q
2 if 0 < α < 2

which is a consequence of the boundedness of the term |DHρ| in (9), it is known (see, e.g.,

[4, 38]) that weak solutions to (17) satisfy u ∈ C∞(Ωr {0})∩C(Ω) (actually more than

just continuous). Moreover, as the boundary data are smooth, from the results [24, 20]

we know that u is smooth up to every boundary point which is not characteristic. At

characteristic boundary points the solutions exhibit a more delicate behaviour (in the

sense that they might be non-regular for smooth ∂Ω) and sharp geometric conditions

which ensure regularity properties are not fully understood yet: we refer to [21] for suffi-

cient conditions for regularity of first and second derivatives at characteristic boundary

points. On the other hand, the situation concerning the continuity and the oscillation

of the solution at such points is more clear. The exterior gauge-ball condition ensures
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always the Hölder-continuity at the boundary (see e.g. [37], and also [38] for a Moser-

iteration up to the boundary in more general settings). Since (Q + α − 2)Fα ≥ 0 and

u ∈ C(Ω), we can exploit the weak maximum principle to infer that

u < 0 in Ω and u ≡ 0 in a pointwise sense on ∂Ω. (21)

The assumption concerning the interior gauge-ball condition at the characteristic point

yields also the validity of the so-called Hopf-lemma at every boundary point, i.e. a

boundary comparison principle (see [2, 29]). In particular, since u is assumed to be

regular and by (18) the characteristic points might arise only on {|x| = 0} where the

normal has to be parallel to the the t-axis, we have

|Du| > 0 on ∂Ω.

The previous property combined with (21) is telling us that under our assumptions we

have that

u is a defining function for Ω. (22)

Let us now write some pointwise relationships concerning the function Fα, which will

be useful in the sequel: for any ξ 6= 0 we have

DHFα(ξ) = 2xρα−4(ξ) + (α− 4)|x|2ρα−8(ξ)
(
x|x|2 + (Jx)t

)
, (23)

|DHFα(ξ)|2 = 4|x|2ρ2α−8(ξ) + α(α− 4)|x|6ρ2α−12(ξ),

TFα(ξ) =
1

2
(α− 4)|x|2ρα−8(ξ)t,

∆HFα(ξ) = 2(Q− 2)ρα−4(ξ) + (α− 4)(Q+ α− 2)|x|4ρα−8(ξ).

The following crucial integral identity concerns the interplay between the function Fα

and the solutions u of the overdetermined systems under discussion: we stress here the

double role of Fα as a source function and as a Neumann datum.

Lemma 2.1. Fix c, α > 0. Let u be a solution of (10) in Ω according to (19)-(20). Then

we have

(Q+ 2α− 2)

∫
Ω
u Fα dξ = −c2

∫
Ω
Fα dξ. (24)

Proof. The proof of (24) is based on Pohozaev-type identities, which were first established

in this context in [15]. To this aim, we in fact consider as in [15] the vector field generating

the group dilations

Z =

2n∑
j=1

xj
∂

∂xj
+ 2t

∂

∂t
=

2n∑
j=1

xjXj + 2tT.
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A direct computation shows that

∆H(Z(u)) = 2∆Hu+ Z(∆Hu) = α(Q+ α− 2)Fα almost everywhere in Ω,

where we exploited the fact that Z(Fα) = (α − 2)Fα (recall that Fα is δλ-homogeneous

of degree α− 2). By means of integration by parts, we then obtain∫
Ω

{
α(Q+ α− 2)uFα − (Q+ α− 2)Z(u)Fα

}
dξ (25)

=

∫
Ω

{
∆H(Z(u))u− Z(u)∆H(u)

}
dξ =

=

∫
∂Ω

{
u 〈Z(u), νH〉 − Z(u) 〈DHu, ν

H〉
}
dσH = −

∫
∂Ω
Z(u) |DHu| dσH

where we used (22). Now, since

Z(u) |DHu| = (〈x,DHu〉+ 2t Tu) |DHu| =
(
〈x, νH〉+ 2t

Tu

|DHu|

)
|DHu|2,

and exploiting (18), we get∫
∂Ω
Z(u) |DHu| dσH = c2

∫
Ω

{
QFα + Z(Fα)

}
dξ = c2(Q+ α− 2)

∫
Ω
Fα dξ. (26)

On the other hand, we also have

(α− 2)

∫
Ω
uFα dξ =

∫
Ω
uZ(Fα) dξ = (27)∫

Ω

{
Z(uFα)− Z(u)Fα

}
dξ =−Q

∫
Ω
uFα dξ −

∫
Ω
Z(u)Fα dξ.

By putting together the three integral identities (25)-(26)-(27) and using Q+ α− 2 > 0,

we get the desired formula (24).

3 Weighted P-functions for domains with toric symmetries

For any solution u to (10) in a competitor set Ω, we introduce the function

v =
1

Fα
|DHu|2 − αu. (28)

It is clear that v is defined in a pointwise sense in Ω r {|x| = 0}. Moreover, thanks to

the Dirichlet and Neumann conditions for u, we know that v approaches the constant c2

12



at ∂Ω (at least at the points of the boundary which are not on the t-axis).

On the other hand, since∫
Ω
|DHu|2 = −

∫
Ω
u∆Hu = −(Q+ α− 2)

∫
Ω
uFα,

we obtain from (24) that ∫
Ω
v Fα dξ = c2

∫
Ω
Fα dξ. (29)

This is saying that, with respect to the weight Fα, the function v is in average with its

boundary datum c2. In order to claim that v is the so-called P-function we are looking

for, we need to show some form of sub-harmonicity properties for v. We recall that, in

the context of the Heisenberg group, the only Obata-type arguments available are in the

whole space Hn and in this respect the first appearance of such auxiliary functions is in the

celebrated paper by Jerison and Lee [22, Theorem 7.8] dealing with cylindrical solutions

of the CR-Yamabe equation. Recently, auxiliary functions of rather different nature but

displaying similar singularities as v on the t-axis appeared in our work [18]. The function

v deals instead with solutions to the overdetermined systems (10) in bounded domains,

and in the next lemma we want to study its behaviour for solutions with toric symmetries.

Lemma 3.1. Fix α ∈ R. Let u be a smooth solution to ∆Hu = (Q + α − 2)Fα in the

open set Ω r {|x| = 0} with Ω ⊂ Hn being toric symmetric. Assume that

u(x, t) = U(x2
1 + x2

n+1, . . . , x
2
n + x2

2n, t)

for some smooth function U , and denote v = 1
Fα
|DHu|2−αu. For n ≥ 2, in Ωr{|x| = 0}

we have

Fα
16

∆Hv = 2

(
‖M‖2 − 1

n+ 1
(trace(M))2

)
+

2n+ α

n2(n+ 1)

 n∑
j=1

Uj −
n

2
Fα

2

(30)

+
(4− α)(2n+ α)(n− 1)

4n+ 4

|x|4

ρ8

 n∑
j=1

(x2
j + x2

n+j)Uj + tUt −
1

2
ρα

2

+
(2n+ α)(n− 2)

2n(n+ 1)

n∑
j=1

(
1− n

x2
j + x2

n+j

|x|2

)(
Uj −

1

2
Fα

)2

+
4− α

4

n∑
j=1

(
(n− 1)(2n+ 4)

n+ 1

|x|2(x2
j + x2

n+j)

ρ8
+

4− 2n

n+ 1

x2
j + x2

n+j

|x|2ρ4

)(
|x|2Ut − tUj

)2
+

4− α
8(n2 − 1)

1

ρ4

∑
i 6=j

(
tUi + tUj − 2|x|2Ut

)2
13



+
∑
i 6=j

(Ui − Uj)2

[
(4− α)(n− 2)2

8n2(n2 − 1)
+

8 + 4n− n2

4n2(n+ 1)
+

3n− 6

4n+ 4

(x2
i + x2

n+i)(x
2
j + x2

n+j)

|x|4

− 3

4n+ 4

x2
i + x2

n+i + x2
j + x2

n+j

|x|2
+

4− α
4n+ 4

|x|2(x2
i + x2

n+i + x2
j + x2

n+j)

ρ4

+
(4− α)(4− 2n)

4n+ 4

(x2
i + x2

n+i)(x
2
j + x2

n+j)

ρ4
− 4− α

8(n2 − 1)

|x|4

ρ4

+
(4− α)(n− 1)(n+ 2)

4n+ 4

|x|4(x2
i + x2

n+i)(x
2
j + x2

n+j)

ρ8

]
.

Concerning the case n = 1, in Ω r {|x| = 0} we have

Fα
16

∆Hv = 2

(
‖M‖2 − 1

2
(trace(M))2

)
+

2 + α

2

(
U1 −

1

2
Fα

)2

(31)

+
4− α

2

1

ρ4

(
|x|2Ut − tU1

)2
.

The (n+ 1)× (n+ 1) symmetric matrix M appearing in both (30) and (31) is defined in

(33) below, and it involves first and second derivatives of U .

Proof. Let us fix some notations: for n ≥ 1 and x ∈ R2n we denote

s = (s1, . . . , sn) with sj = x2
j + x2

n+j for j ∈ {1, . . . , n}

and

σ =
n∑
j=1

sj = |x|2.

With this choice for the change of variables and recalling the assumption u(x, t) = U(s, t),

we have
1

4
|DHu|2 = σU2

t +
n∑
j=1

sjU
2
j

and
1

4
∆Hu = σUtt +

n∑
j=1

(sjUjj + Uj) =: LU

where Uj stands for Usj and similar notations hold for the second derivatives. If we keep

denoting by Fα and v these functions after the change of variables, it yields

Fα = σ(σ2 + t2)
α−4
4

14



and

v = 4
σU2

t +
∑n

j=1 sjU
2
j

σ(σ2 + t2)
α−4
4

− αU

for any σ > 0. With the notation

g(s, t) =
σU2

t (s, t) +
∑n

j=1 sjU
2
j (s, t)

σ(σ2 + t2)
α−4
4

,

we get
Fα
16

∆Hv = σ(σ2 + t2)
α−4
4 Lg − α

4
σ(σ2 + t2)

α−4
4 LU. (32)

For σ > 0 let us now introduce the matrix

M = D2 −D1 (33)

where

D1 = E1 +
2σ

σ2 + t2
α− 4

4
E2

and the (n+ 1)× (n+ 1) symmetric matrices D2, E1, and E2 are defined by

(D2)ij =


√
sisj Uij if i, j ∈ {1, . . . , n},
√
siσ Uit if i ∈ {1, . . . , n} and j = n+ 1,

σUtt if i = j = n+ 1,

(E1)ij =


√
sisj
σ

Ui+Uj
2 − 1

2Uiδij if i, j ∈ {1, . . . , n},

0 if i ∈ {1, . . . , n} and j = n+ 1,∑n
j=1 sjUj

2σ if i = j = n+ 1,

(E2)ij =


√
sisj

Ui+Uj
2 if i, j ∈ {1, . . . , n},√

si
σ
σUt+tUi

2 if i ∈ {1, . . . , n} and j = n+ 1,

tUt if i = j = n+ 1.

A straightforward (yet very painful) computation shows that

σ(σ2 + t2)
α−4
4 Lg = 2‖D2 −D1‖2 − 2‖D1‖2 + 2σUt∂t (LU) + 2

n∑
j=1

sjUj∂sj (LU)

+ |∇sU |2 + nU2
t − (n+ 2)

σU2
t +

n∑
j=1

sjU
2
j

( 1

σ
− 4− α

4

2σ

σ2 + t2

)

15



+ σ

σU2
t +

n∑
j=1

sjU
2
j

( 2

σ2
− (4− α)α

16

4σ2

(σ2 + t2)2
− (4− α)α

16

4t2

(σ2 + t2)2

)
.

Plugging the previous identity in (32), keeping in mind the definition of the previously

defined matrices, and using ∆Hu = (2n+ α)Fα outside of {|x| = 0}, we obtain

Fα
16

∆Hv = 2

(
‖M‖2 − 1

n+ 1
(trace(M))2

)
+

2

n+ 1
(trace(M))2 (34)

− 2

∥∥∥∥E1 +
2σ

σ2 + t2
α− 4

4
E2

∥∥∥∥2

+ 2σUt∂t

(
2n+ α

4
σ(σ2 + t2)

α−4
4

)
+ 2

n∑
j=1

sjUj∂sj

(
2n+ α

4
σ(σ2 + t2)

α−4
4

)

+ |∇sU |2 + nU2
t − (n+ 2)

σU2
t +

n∑
j=1

sjU
2
j

( 1

σ
− 4− α

4

2σ

σ2 + t2

)

+ σ

σU2
t +

n∑
j=1

sjU
2
j

( 2

σ2
− (4− α)α

16

4σ2

(σ2 + t2)2
− (4− α)α

16

4t2

(σ2 + t2)2

)

− α(2n+ α)

16
σ2(σ2 + t2)

2α−8
4 .

If we now substitute into (34) the following two identities

trace(M) = trace(D2)− trace(E1)− 2σ

σ2 + t2
α− 4

4
trace(E2) (35)

= LU +

n∑
j=1

Uj

(
−1

2
− 3

2

sj
σ
− 2σsj
σ2 + t2

α− 4

4

)
− 2σt

σ2 + t2
α− 4

4
Ut

=
2n+ α

4
σ(σ2 + t2)

α−4
4 +

1

2

n∑
j=1

Uj

(
2sj

(
4− α

4

2σ

σ2 + t2
− 3

2σ

)
− 1

)
+

4− α
4

2σt

σ2 + t2
Ut,

∥∥∥∥E1 +
2σ

σ2 + t2
α− 4

4
E2

∥∥∥∥2

= ‖E1‖2 +
4σ2

(σ2 + t2)2

(
4− α

4

)2

‖E2‖2 −
4− α

4

4σ

σ2 + t2
trace(E1E2)

=
n∑

i,j=1

(√
sisj

σ

Ui + Uj
2

− 1

2
Uiδij

)2

+

(∑n
j=1 sjUj

)2

4σ2

16



+
4σ2

(σ2 + t2)2

(
4− α

4

)2
 n∑
i,j=1

sisj
4

(Ui + Uj)
2 +

1

2

n∑
j=1

sj
σ

(σUt + tUj)
2 + t2U2

t


− 4− α

4

4σ

σ2 + t2

 n∑
i,j=1

(
sisj
4σ

(Ui + Uj)
2 −
√
sisj

4
δijUi(Ui + Uj)

)
+

t

2σ
Ut

n∑
j=1

sjUj

 ,
and we keep track of all the constants involved, a long (yet very direct) computation

shows that

Fα
16

∆Hv = 2

(
‖M‖2 − 1

n+ 1
(trace(M))2

)
+

2n+ α

n2(n+ 1)

 n∑
j=1

Uj −
n

2
σ(σ2 + t2)

α−4
4

2

+
(4− α)(2n+ α)(n− 1)

4n+ 4

σ2

(σ2 + t2)2

 n∑
j=1

sjUj + tUt −
1

2
(σ2 + t2)

α
4

2

+
(2n+ α)(n− 2)

2n(n+ 1)

n∑
j=1

(
1− nsj

σ

)(
Uj −

1

2
σ(σ2 + t2)

α−4
4

)2

+
4− α

4

n∑
j=1

(
(n− 1)(2n+ 4)

n+ 1

σsj
(σ2 + t2)2

+
4− 2n

n+ 1

sj
σ(σ2 + t2)

)
(σUt − tUj)2

+
4− α

8(n2 − 1)

1

σ2 + t2

∑
i 6=j

(tUi + tUj − 2σUt)
2

+
∑
i 6=j

(Ui − Uj)2

[
(4− α)(n− 2)2

8n2(n2 − 1)
+

8 + 4n− n2

4n2(n+ 1)
+

3n− 6

4n+ 4

sisj
σ2

− 3

4n+ 4

si + sj
σ

+
4− α
4n+ 4

σ(si + sj)

σ2 + t2
+

(4− α)(4− 2n)

4n+ 4

sisj
σ2 + t2

− 4− α
8(n2 − 1)

σ2

σ2 + t2
+

(4− α)(n− 1)(n+ 2)

4n+ 4

σ2sisj
(σ2 + t2)2

]
.

The previous identity coincides with (30) once we recall our fixed notations. We stress

explicitly that the previous formula makes sense for n ≥ 2 (whereas for n = 1 the last

terms involving a summation over the indices {i 6= j} lose their meaning). When n = 1,

the same computation leading to the previous formula gives the following substitute

formula

Fα
16

∆Hv = 2

(
‖M‖2 − 1

2
(trace(M))2

)
+

2 + α

2

(
U1 −

1

2
σ(σ2 + t2)

α−4
4

)2

+
4− α

2

1

σ2 + t2
(σUt − tU1)2

17



which coincides with (31). The proof is thus complete.

The right hand side in (30) displays a long list of sum of squares: a careful check of the

constants involved leads to the desired sub-harmonicity of the function v for 0 < α ≤ 4

at least in the cases of cylindrically symmetric sets in Hn and toric symmetric sets in H2.

Corollary 3.1. Fix c > 0 and 0 < α ≤ 4. Let u be a solution of (10) in Ω according

to (19)-(20). Then the function v in (28) is ∆H-subharmonic in Ω r {|x| = 0} in the

following cases

(i) Ω is cylindrically symmetric, for any n ≥ 1;

(ii) Ω is toric symmetric, for n ∈ {1, 2}.

Proof. We first notice that the symmetries of the domain Ω (either toric or cylindrical) are

inherited by the solution u of (10). As a matter of fact, if Ω is toric symmetric and (x, t) ∈
Ω (with |x| 6= 0), one can consider any (x′, t) with the property that (x′)2

k + (x′)2
n+k =

x2
k + x2

n+k for each k ∈ {1, . . . , n} and one can look at the orthogonal transformation

from R2n onto R2n such that it acts blockwise and the k-th block consists of the rotation

sending (xk, xn+k) 7→ (x′k, x
′
n+k). Since such linear transformation commutes with the

matrix J in (2) and preserves the norms in R2n, then it commutes with the subLaplacian

∆H (see (6)). Hence, the composition of the solution u with this rotation solves the same

problem (10) (since Ω is toric symmetric, and the source and Neumann data depend on x

as a function of |x|): the uniqueness of the solutions to (17) implies that u(x, t) = u(x′, t)

and yields the toric symmetry of the solution. The same holds for cylindrically symmetric

sets Ω, as for (x, t) ∈ Ω (with |x| 6= 0) and any (x′, t) with |x| = |x′| one can find an

orthogonal transformation from R2n onto R2n which commutes with J and sends x 7→ x′

(the same argument applies and also in this case u(x, t) = u(x′, t) from the uniqueness

of the solutions). In both scenarios we can then consider symmetric solutions and apply

Lemma 3.1.

We first deal with case (ii). Since Ω is toric symmetric, from the smoothness of u outside

of the t-axis we can write u(x, t) = U(s, t) for some function U which is smooth outside

of {s = 0} (we use the notations settled in the proof of Lemma 3.1). If n = 1 we have

the formula (31). For n = 2 (so s = (s1, s2)), by formula (30) we have instead

Fα
16

∆Hv = 2

(
‖M‖2 − 1

3
(trace(M))2

)
+

4 + α

12
(U1 + U2 − Fα)2 (36)

+
(4− α)(4 + α)

12

|x|4

ρ8

 2∑
j=1

(x2
j + x2

2+j)Uj + tUt −
1

2
ρα

2
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+
4− α

4

2∑
j=1

8|x|2(x2
j + x2

2+j)

3ρ8

(
|x|2Ut − tUj

)2
+

4− α
12ρ4

(
tU1 + tU2 − 2|x|2Ut

)2
+ 2 (U1 − U2)2

[
4− α

24

|x|4

ρ4
+

4− α
3

|x|4(x2
1 + x2

2+1)(x2
2 + x2

2+2)

ρ8

]
.

Keeping in mind that

‖M‖2 ≥ 1

n+ 1
(trace(M))2 for any (n+ 1)× (n+ 1) symmetric matrix M, (37)

it is clear that the right hand sides in (31) and (36) are nonnegative when α lies in the

interval (0, 4].

We not turn the attention to the case (i), and we fix n ≥ 1. Since Ω ⊂ Hn is cylindrically

symmetric, from the smoothness of u outside of the t-axis we can write u(x, t) = W (σ, t)

for some function W which is smooth in {σ > 0} (as in the proof of Lemma 3.1 we use

the notation σ = |x|2). We can then exploit (30) once we have in mind that

σ =
n∑
j=1

sj and Wσ = Ui for each i ∈ {1, . . . , n}

where U(s, t) = W (σ, t). Plugging this information in (30) and performing a straightfor-

ward computation, we obtain

Fα
16

∆Hv = 2

(
‖M‖2 − 1

n+ 1
(trace(M))2

)
+

2n+ α

n+ 1

(
Wσ −

1

2
Fα

)2

(38)

+
(4− α)(2n+ α)(n− 1)

4n+ 4

|x|4

ρ8

(
|x|2Wσ + tWt −

1

2
ρα
)2

+
4− α
4ρ4

(
|x|2Wt − tWσ

)2((n− 1)(2n+ 4)

n+ 1

|x|4

ρ4
+

4

n+ 1

)
.

We remark that (38) coincides (as it should) with (31) for n = 1. Exactly as before, by

(37), the right-hand side of (38) is nonnegative when α ∈ (0, 4].

We now want to discuss the local behaviour of the function v around the singular set

provided by the t-axis.

Lemma 3.2. Let n ≥ 1 and α > 0. Let u be a weak solution to (17) in a competitor set

Ω, and denote v = 1
Fα
|DHu|2 − αu. Then we have

i) for n ≥ 2, v is locally in L1 for any α ∈ (0, 4];

ii) for n ≥ 2, ∆Hv is locally in L1 for any α ∈ (3
4 , 4];
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iii) for n ≥ 1, if Ω is toric symmetric, then v is locally bounded for α ∈ (2, 4].

Proof. Since u is bounded and ∆Hu ∈ Lp for any p < Q
2−α (if 0 < α < 2) or just any

p <∞ (if α ≥ 2), the statement concerns the behaviour of the function

g =
1

Fα
|DHu|2.

We recall that, by the subelliptic counterpart of the classical Calderon-Zygmund theory,

all the second derivatives of u along the horizontal direction Xj ’s as well as Tu belong

locally to Lp for any p < Q
2−α (if 0 < α < 2, and any p otherwise). Moreover, by the

Sobolev embedding of the Folland-Stein spaces we then have

|DHu| belongs locally to

L∞ if α > 1,

Lq for any q < Q
1−α if 0 < α ≤ 1.

Hence, item i) (i.e. g ∈ L1) easily follows from Hölder’s inequality once we notice that,

for n ≥ 2 the function |x|−2 is locally in Lp for p ∈ (1, n) and

1

n
+

2

Q
< 1.

Let us now turn the attention on item ii). To this aim, we should first compute

∆Hg =
2

Fα

[∥∥∥∥1

2
(XiXj +XjXi)i,j

∥∥∥∥2

+ 4(Tu)2 ‖J‖2 + 〈DHu,DH (∆Hu)〉+ 8 〈DHu, JDHTu〉

]

−
4
∑

j,k=1n XkFαXkXjuXju

F 2
α

+
|DHu|2

F 3
α

(
2|DHFα|2 − Fα∆HFα

)
,

where we exploited the non-commutativity relation [Xj , Xi] = 4JijT . In order to check

whether ∆Hg is locally in L1 we just use the previously mentioned integrability properties

for the derivatives of u, together with the explicit expressions in (23), and Hölder’s

inequality. We separately mention the presence of the term DHTu which is a third

derivative in terms of horizontal derivatives and belongs locally to Lp for any p < Q
3−α

since this is the threshold for the integrability of DHFα. We also mention that the

condition α > 3
4 comes from the term (Fα)−2XkFαXkXjuXju: as a matter of fact such

term is locally bounded above by |x|−3|XkXju||Xju| which is integrable for α > 3
4 since

3

2n
+

2− 3
4

Q
+

1− 3
4

Q
≤ 1 for n ≥ 2.

We are thus left with the proof of item iii) which concerns the local boundedness of g

for n ≥ 1. As in the proof of Corollary 3.1, since Ω is toric symmetric, the function u
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inherits such symmetry and we can write u in terms of the function U . We know from

(the notations of) Lemma 3.1 that the function g is described by

4
σU2

t (s, t) +
∑n

j=1 sjU
2
j (s, t)

σ(σ2 + t2)
α−4
4

= 4(σ2 + t2)
4−α
4

U2
t (s, t) +

n∑
j=1

sj
σ
U2
j (s, t)

 .

Since u and U are C∞-smooth away from 0, we deduce that g is locally bounded around

any point in Ω r {0} if α ≤ 4. If we have α > 2 then we claim that the function g is

bounded also around 0 (whenever 0 ∈ Ω). As a matter of fact, for α > 2 the function

Fα is Hölder continuous and by the subelliptic analogue of the classical interior Schauder

theory we have that the horizontal second derivatives of u are also Hölder continuous.

Therefore Tu = Ut and Uj are both well-defined and bounded in 0 (this can be seen from

a Taylor expansion of u around 0, see e.g. [4, Theorem 20.3.2]).

4 Main results

In this section we provide the details for Theorem 1.1 and Theorem 1.2. We start

by providing a more general version of Theorem 1.1 where we assume the cylindrical

symmetry for the set Ω and some a-priori knowledge for the behaviour of v around 0.

Theorem 4.1. Fix n ≥ 1, α ∈ (0, 4), and c > 0. Let Ω ⊂ Hn be a competitor set in the

sense of (19). Assume that Ω is cylindrically symmetric, and 0 ∈ Ω. Assume also that

at least one of the following condition holds true in a neighborhood of 0: ∆Hv ∈ L1 or v

bounded. If there exists a solution u to (10) in the sense of (20), then

Ω = BR(0) with R = c
2
α

and

u(x, t) =

(
|x|4 + t2

)α
4 − c2

α
.

Proof. As in the proof of Corollary 3.1 (we keep using the same notations fixed there),

we can assume that u(x, t) = W (σ, t). In such variables, the function v in (28) takes the

form

4(σ2 + t2)
4−α
4 (W 2

σ +W 2
t )− αW.

We notice that v is C∞(Ω r {0}) and it is smooth up to the boundary (since 0 ∈ Ω).

From the boundary data for u, we have that

v ≡ c2 on ∂Ω (39)
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Let us assume first that ∆Hv is locally in L1 around 0, which implies ∆Hv ∈ L1(Ω).

Thanks to this fact, and recalling that u solves (10), we can obtain from (39) and the

integral identity (29)∫
Ω

(−u)∆Hv =

∫
Ω

(v∆Hu− u∆Hv)−
∫

Ω
v∆Hu

=

∫
Ω

(v∆Hu− u∆Hv)− (Q+ α− 2)

∫
Ω
vFα

=

∫
Ω

divH (vDHu− uDHv)− (Q+ α− 2)

∫
Ω
vFα

=

∫
∂Ω
v|DHu|dσH − (Q+ α− 2)

∫
Ω
vFα

= c2

∫
∂Ω
|DHu|dσH − (Q+ α− 2)

∫
Ω
vFα

= c2

∫
Ω

∆Hu− (Q+ α− 2)

∫
Ω
vFα

= (Q+ α− 2)

(
c2

∫
Ω
Fα −

∫
Ω
vFα

)
= 0.

On the other hand, since u ∈ C(Ω) and u < 0 in Ω by (21) and ∆Hv is nonnegative

almost everywhere by Corollary 3.1 (item (i)), we deduce that ∆Hv needs to vanish

almost everywhere. In particular we have

∆Hv ≡ 0 in Ω r {|x| = 0}.

Let us now assume the second possibility: v is locally bounded around 0, which implies

v ∈ L∞(Ω). Since v is smooth outside the single point 0, the inequality ∆Hv ≥ 0 holds

true in Ωr {0}. Moreover, since 0 ∈ Ω, the boundary of Ωr {0} is nothing bu ∂Ω∪{0}.
Hence, (39) is saying that v attains the boundary datum c2 for any point of ∂ (Ω r {0})
except from {0}. Since v is bounded and a set formed by a single point is a ∆H-polar

set, we can exploit the maximum principle in [4, Theorem 11.2.7] to infer that v ≤ c2 in

Ω r {0}. Inserting this information in the integral identity (29), and recalling that Fα is

positive outside of {|x| = 0}, we deduce that v ≡ c2 in Ω r {|x| = 0}.
Under both the circumstances we considered, we have reached the conclusion

∆Hv ≡ 0 in Ω r {|x| = 0}. (40)

We can now invoke (38): recalling that the equality case in the matrix inequality (37)

arises just for matrices which are multiple of the identity, and exploiting α < 4, if we
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substitute (40) in (38) we infer 
M = trace(M)

n+1 In+1,

Wσ = 1
2Fα,

|x|2Wt − tWσ = 0,

for any point in Ω with σ > 0. Hence we haveWσ(σ, t) = 1
2σ(σ2 + t2)

α−4
4 ,

Wt(σ, t) = 1
2 t(σ

2 + t2)
α−4
4 .

This implies the existence of a constant k such that W (σ, t) = 1
α(σ2 + t2)

α
4 + k, which

means

u(x, t) =
1

α
(|x|4 + t2)

α
4 + k.

Since u is continuous the previous identity holds true not only for |x| > 0 but for any

(x, t) ∈ Ω. It is then easy to conclude that Ω is a gauge-ball centered at the origin, and

to complete the proof of the desired statement.

The next two results complete the proof of Theorem 1.1.

Corollary 4.1. Fix either n ≥ 2 and α ∈ (3
4 , 4), or n = 1 and α ∈ (2, 4). Fix also c > 0.

Let Ω ⊂ Hn be a competitor set in the sense of (19). Assume that Ω is cylindrically

symmetric, and 0 ∈ Ω. If there exists a solution u to (10) in the sense of (20), then

Ω = BR(0) with R = c
2
α

and

u(x, t) =

(
|x|4 + t2

)α
4 − c2

α
.

Proof. The case n ≥ 2 and α ∈ (3
4 , 4) follows from Theorem 4.1 and item ii) in Lemma

3.2. The case n = 1 and α ∈ (2, 4) follows from Theorem 4.1 and item iii) in Lemma

3.2.

Theorem 4.2. Fix n ≥ 1, α = 4, and c > 0. Let Ω ⊂ Hn be a competitor set in the

sense of (19). Assume that Ω is cylindrically symmetric. If there exists a solution u to

(10) in the sense of (20), then there exists t0 ∈ R such that

Ω = B√c((0, t0)) and u(x, t) =
|x|4 + (t− t0)2 − c2

4
.
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Proof. Since α = 4 we are in the simpler situation of u being C∞-smooth in Ω. In

particular, exploiting the cylndrical symmetry, also the function v is smooth in Ω as

it coincides with 4(W 2
σ + W 2

t ) − 4W . We can then proceed verbatim as in the proof

of Theorem (4.1) (both proofs provided there work smoothly) in order to reach the

conclusion (40). Since α = 4, when we substitute (40) in (38), we infer the identitiesM = trace(M)
n+1 In+1,

Wσ = 1
2F4,

(41)

for any point in Ω with σ > 0. Since (see (35))

trace(M) =
2n+ 4

4
σ − 3 + n

2
Wσ for α = 4,

if we insert the information Wσ(σ, t) = 1
2F4 = 1

2σ in the definition of M we deduce from

(41) that Wσ(σ, t) = 1
2σ,

Wtt(σ, t) = 1
2 .

This implies the existence of two constants t0, k ∈ R such that

W (σ, t) =
σ2 + (t− t0)2

4
+ k

for all points (σ, t) with σ > 0 such that (x, t) ∈ Ω. Similarly to the proof of Theorem

(4.1), this shows that Ω is a gauge-ball centered at (0, t0) and completes the proof.

We now consider the case of toric symmetric sets in H2. In the following theorem we

treat the full range (0, 4) for the parameter α under a local integrability requirement for

∆Hv.

Theorem 4.3. Fix n = 2, α ∈ (0, 4), and c > 0. Let Ω ⊂ H2 be a competitor set in the

sense of (19). Assume that Ω is toric symmetric, and 0 ∈ Ω. Assume also that ∆Hv is

locally in L1 around the points Ω ∩ {|x| = 0}. If there exists a solution u to (10) in the

sense of (20), then

Ω = BR(0) with R = c
2
α

and

u(x, t) =

(
|x|4 + t2

)α
4 − c2

α
.
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Proof. As in the proof of Corollary 3.1, we can assume that u(x, t) = U(s, t) using our

notations. Since u is smooth outside of 0 ∈ Ω, the same holds for U . As noted above, in

such variables the function v in (28) takes the form

4(σ2 + t2)
4−α
4

U2
t (s, t) +

n∑
j=1

sj
σ
U2
j (s, t)

− αU.
In particular such function is smooth outside of the t-axis, it is bounded in a neighborhood

of ∂Ω, and it is continuous up to the points of the boundary sitting outside of the t-axis

where it attains the constant value c2.

Moreover, we know from item i) in Lemma 3.2 that v ∈ L1
loc(Ω). Since by assumption

also ∆Hv ∈ L1
loc(Ω) and we know from item (ii) in Corollary 3.1 that ∆Hv ≥ 0 holds in

a pointwise sense in Ωr {|x| = 0}, then ∆Hv ≥ 0 in Ω in the weak sense of distributions.

By Theorem [4, Theorem 8.2.15] we have the existence of a function ṽ such that ṽ = v

almost everywhere and ṽ is ∆H-subharmonic (in the sense of potential theory, i.e. it is

upper semi-continuous and it stays below its solid average in the sense of (14); see [4,

Chapter 8]). The function ṽ coincides with v where v is continuous, and in particular

ṽ attains with continuity the boundary datum c2 at every point in ∂Ω r {|x| = 0}.
Furthermore, we notice that ṽ is bounded in Ω: around interior points the boundedness

is a consequence of being sub-average (and v ∈ L1), whereas in a neighborhood of the

boundary we can exploit the fact that v is bounded in order to bound uniformly the solid

average of v. Lastly, we stress that the set ∂Ωr{|x| = 0} is formed by a finite number of

isolated points: as a matter of fact, if we could take a sequence of points in ∂Ωr{|x| = 0}
we would have by compactness a point in ∂Ωr{|x| = 0} with ∂t as a tangential direction

and this is not possible since these points have to be characteristic for ∂Ω and ∂t has

to be the normal direction at these points (recall that u is a defining function (22), and

at these points |DHu| = 0). We can then apply the maximum principle in [4, Theorem

11.2.7] (recall that countable sets are ∆H-polar) to the function ṽ, and we deduce that

ṽ ≤ c2 in Ω.

On the other hand, we know from (29) that∫
Ω

(ṽ − c2)Fα =

∫
Ω

(v − c2)Fα = 0.

As in the proof of Theorem 4.1, we deduce that ṽ ≡ v ≡ c2 in Ωr{|x| = 0}. In particular

∆Hv ≡ 0 in Ω r {|x| = 0}. (42)
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We can then plug (42) in (36), and (using α < 4) we conclude the validity of

M = trace(M)
3 I3,

U1 + U2 = Fα,

(x2
1 + x2

2+1)U1 + (x2
2 + x2

2+2)U2 + tUt = 1
2ρ

α

tU1 + tU2 = 2|x|2Ut,

U1 = U2,

(43)

for the points with s1 + s2 > 0. Since (43) implies that U1(s, t) = U2(s, t) = s1+s2
2 ((s1 +

s2)2 + t2)
α−4
4 and Ut(s, t) = t

2((s1 +s2)2 + t2)
α−4
4 , we can conclude as in Theorem 4.1.

With the next two final results we finish the proof of Theorem 1.2.

Corollary 4.2. Fix n = 2, α ∈ (3
4 , 4), and c > 0. Let Ω ⊂ H2 be a competitor set in the

sense of (19). Assume that Ω is toric symmetric, and 0 ∈ Ω. If there exists a solution u

to (10) in the sense of (20), then

Ω = BR(0) with R = c
2
α

and

u(x, t) =

(
|x|4 + t2

)α
4 − c2

α
.

Proof. It follows by combining Theorem 4.3 with item ii) in Lemma 3.2.

Theorem 4.4. Fix n = 2, α = 4, and c > 0. Let Ω ⊂ H2 be a competitor set in the

sense of (19). Assume that Ω is toric symmetric. If there exists a solution u to (10) in

the sense of (20), then there exists t0 ∈ R such that

Ω = B√c((0, t0)) and u(x, t) =
|x|4 + (t− t0)2 − c2

4
.

Proof. Verbatim proceeding as in the proof of Theorem 4.3, we establish the validity of

∆Hv ≡ 0 in Ω r {|x| = 0}. Since α = 4, when we exploit the identity ∆Hv = 0 in (36),

we obtain M = trace(M)
3 I3,

U1 + U2 = F4.
(44)

If we now use U1(s, t) + U2(s, t) = s1 + s2 in (35), we have

trace(M) =
3

2

(
σ − s1U1 + s2U2

σ

)
.
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Hence, the matrix equality in (44) reads ass1

(
U11 − 1

2

)
+ 1

2U1
√
s1s2

(
U12 − 1

2

) √
s1σU1t√

s1s2

(
U12 − 1

2

)
s2

(
U22 − 1

2

)
+ 1

2U2
√
s2σU2t√

s1σU1t
√
s2σU2t σUtt − s1U1+s2U2

2σ


=

(
σ

2
− s1U1 + s2U2

2σ

)1 0 0

0 1 0

0 0 1

 .

The combination of the previous matrix identity with the relation U1(s, t) + U2(s, t) =

s1 + s2 (and the smoothness of U) yields U11 = U22 = U12 = 1
2 and we finally obtain the

validity of 
U1(s, t) = s1+s2

2 ,

U2(s, t) = s1+s2
2 ,

Utt(s, t) = 1
2 .

We can then finish the proof as in Theorem 4.2.

References

[1] D. Aharonov, M. M. Schiffer, L. Zalcman, Potato kugel, Israel J. Math. 40 (1981)

331-339.

[2] I. Birindelli, A. Cutr̀ı, A semi-linear problem for the Heisenberg Laplacian, Rend.

Sem. Mat. Univ. Padova 94 (1995) 137–153.

[3] I. Birindelli, J. Prajapat, Nonlinear Liouville theorems in the Heisenberg group via

the moving plane method, Comm. Partial Differential Equations 24 (1999) 1875–

1890.

[4] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory

for their sub-Laplacians, Springer Monographs in Mathematics (2007), Springer,

Berlin.

[5] A. Bonfiglioli, E. Lanconelli, Subharmonic functions in sub-Riemannian settings, J.

Eur. Math. Soc. (JEMS) 15 (2013) 387–441.

[6] T. P. Branson, L. Fontana, C. Morpurgo, Moser-Trudinger and Beckner-Onofri’s

inequalities on the CR sphere, Ann. of Math. (2) 177 (2013) 1–52.

27



[7] F. Brock, A. Henrot, A symmetry result for an overdetermined elliptic problem using

continuous rearrangement and domain derivative, Rend. Circ. Mat. Palermo (2) 51

(2002) 375–390.

[8] F. Brock, Symmetry for a general class of overdetermined elliptic problems, NoDEA

Nonlinear Differential Equations Appl. 23 (2016), art. 36.

[9] L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An introduction to the Heisenberg

group and the sub-Riemannian isoperimetric problem, Progress in Mathematics 259
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