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Abstract

In this paper we discuss the validity of the Hopf lemma at boundary points
which are characteristic with respect to certain degenerate-elliptic equations.
In the literature there are some positive results under the assumption that
the boundary of the domain reflects the underlying geometry of the specific
operator. We focus here on conditions on the boundary which are suitable for
some families of degenerate operators, also in presence of first order terms.
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1 Introduction

Let Ω be a bounded open set in RN with smooth (at least of class C2) boundary,
y ∈ ∂Ω, and ν the inner unit normal to ∂Ω at y. We say that a second-order linear
partial differential operator L satisfies the Hopf lemma in Ω at y ∈ ∂Ω if, for any
u ∈ C2(Ω ∩W ) ∩ C1 ((Ω ∩W ) ∪ {y}), we have

Lu ≤ 0 in Ω ∩W,
u > 0 in Ω ∩W,
u(y) = 0

⇒ ∂u

∂ν
(y) > 0, (1)

where W is an open neighborhood of y.
This principle, in its various forms, had enormous influences in the study of linear and
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non-linear second order (most of all elliptic) equations, and the literature around it
is really huge. Let us just mention, without any aim of completeness, the pioneering
study by Zaremba for the Laplacian [33], the work by Giraud [9], and the celebrated
and independent papers by Hopf [10] and Oleinik [29] for uniformly elliptic operators.
We also address the reader to the rich historical perspective about the argument
present in [2]. Besides the classical works, “Hopf lemmas” have also been studied
under several point of views: among the others the issue of the sharpness of the
domain [12, 17, 2, 4], and the issues about the presence of a singular drift term [2, 27].
Historically, one of the main applications has probably concerned symmetry results:
Hopf lemma is, indeed, a crucial tool in the moving planes technique [1, 30, 15, 16].

In this paper we would like to study the following problem. We want to consider
second order degenerate-elliptic linear operators L (or special classes of such oper-
ators), for which the degeneracy is controlled by some vector fields satisfying the
Hörmander condition. We want to understand the geometry of the domain Ω around
a characteristic point for L, in order to ensure the Hopf property in Ω. In particular
we would like to investigate how much the geometry should change if we change the
operator inside the same class, and with the possible presence of first-order terms.

Let us fix some notations. For us L will denote second order linear operators in
the following form

L =
N∑

i,j=1

aij(p)∂
2
ij +

N∑
k=1

bk(p)∂k :

we can think the coefficients aij and bk to be continuous functions in some open set
O ⊃ Ω, and A(p) = (aij(p))

N
i,j=1 a symmetric nonnegative definite N × N matrix

never identically vanishing. These last conditions ensure in particular the validity
of a weak maximum principle for L in small domains (see, e.g, [13]). On the other
hand all the operators will be truly degenerate, in the sense that the matrix A will
have a non-trivial kernel: in this regard the following definition is crucial.

Definition 1.1. We say that y ∈ ∂Ω is characteristic for (L,Ω) if

A(y)ν = 0.

As we mentioned, we are interested in degenerate-elliptic operators whose direc-
tion of ellipticity are determined by smooth vector fields Xj ’s satisfying the Hörman-
der condition. This means that we want to focus on sum of squares of such vector
fields or on non-divergence form operators as

∑
i,j qijXiXj , with (qij) uniformly pos-

itive definite. We will often assume that the vector fields and their commutators
of length 1 recover all the directions of the ambient space. These kind of operators
appear in fact as the linearization of nonlinear operators as the Levi operator which
is, roughly speaking, the degenerate-elliptic analogue of the classical mean-curvature
operator and one of our main motivations of investigation. Boundary comparison
principles for the Levi operator are one of the main obstacles to obtain symmetry
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results via moving planes type techniques (see [11, Section 2]). Nevertheless some
Alexandrov-type results for the Levi operator have been proved in the literature
[11, 25, 19, 20, 22]. In the last section we will discuss the Hopf property for this
specific nonlinear example.

Since the classical works [10, 29], the proof of Hopf lemmas is strictly related to
the concept of barrier functions.

Definition 1.2. Fix y ∈ ∂Ω. We say that a function h is an L-barrier function for
Ω at y if

· h is a C2 function defined on an open bounded neighborhood U of y,

· h(y) = 0,

· {p ∈ U : h(p) ≥ 0}r {y} ⊆ Ω,

· Lh ≥ 0 in {p ∈ U : h(p) > 0},

· ∇h(y) 6= 0.

It is well-known (see the beginning of Section 2) that the existence of an L-
barrier function for Ω at y ensures the validity of the Hopf lemma for L in Ω at y.
At the non-characteristic points, i.e. at the points y where the normal ν is not in the
kernel of A(y), it is easy to find a barrier: since smooth domains have the interior
ball property, a barrier is classically given by exponential-type functions. The real
issue is at the characteristic points. As a matter of fact in the literature there are
some positive and negative results for specific degenerate-elliptic operators. The
references [5, 28, 24, 26] deal respectively with the case of the Kohn Laplacian in the
Heisenberg group, generalized Greiner operators, and some Grushin-type operators.
They pointed out that the boundary of the domain has somehow to reflect the
geometry of the operator under consideration if one wants that the Hopf lemma
holds true. The Zaremba’s interior ball condition is thus replaced with an analogous
condition regarding the level sets of the fundamental solution, which allows to find
suitable barriers.

In Section 2, we first consider sub-Laplacians in general homogeneous Carnot
groups and we prove the validity of Hopf lemma under the condition regarding
the level sets of the fundamental solution. Then we consider the class of step-two
horizontally elliptic operators. They are a class of operators in non-divergence form,
whose degeneracy is controlled by the generators of the Carnot algebra. We prove
that an interior homogeneous ball condition is suitable for all the operators in this
class, more in the spirit of the Hopf-Oleinik’s result. In Section 3 we consider some
operators having non-trivial first order terms along a characteristic direction. We
show that, unlikely the classical elliptic case, the validity of the Hopf lemma may
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change drastically in presence of first order terms. To this aim, we will construct
explicit counterexamples and we will prove positive results for some model operators.
In Section 4, we will briefly discuss the global behavior of the boundary of a bounded
open set where the Hopf lemma is satisfied at any point for all the non-divergence
form operators uniformly elliptic with respect to two classes of vector fields. In
Section 5 we finally discuss the nonlinear case. As an example we study the Levi
operator: we will show that some phenomena of the previous sections for the linear
models appear similarly also in this nonlinear situation.

2 ∆G and 2-step horizontally elliptic operators

We have already recalled that the existence of a barrier implies the validity of the
Hopf via the Weak Maximum Principle. For the sake of completeness we give here
the outline of the proof.

Remark 2.1. Let u as in (1) and consider an L-barrier function h for Ω at y,
defined on U . Let ρ > 0 such that Bρ(y) ⊂ U ∩W . We set V = {p ∈ Bρ(y) : h(p) >
0}, which is contained in Ω. We write ∂V = Γ1 ∪ Γ2, where Γ1 = {p ∈ Bρ(y) :
h(p) = 0} and Γ2 = ∂V r Γ1. Since Γ2 ⊂ ∂Bρ(y) ∩ Ω, we have m = minΓ2

u is
strictly positive. Let us also put M = maxV h > 0. For 0 < ε < m

M , we consider
u− εh. By construction we get u− εh ≥ 0 on ∂V and L(u− εh) ≤ 0 in V . By the
Weak Maximum Principle for L, u ≥ εh in V . Since the inner unit normal to ∂Ω
at y is given by ν = ∇h(y)

‖∇h(y)‖ and y + tν ∈ V for small positive t, we obtain

∂u

∂ν
(y) ≥ ε∂h

∂ν
(y) = ε ‖∇h(y)‖ > 0.

Smooth domains have the interior ball property at any point y ∈ ∂Ω, i.e. there
exists a ball Br0(p0) such that Br0(p0)r{y} ⊂ Ω. This is the reason why it is easy to
find an L-barrier function h for Ω at y in the case y is non-characteristic for (L,Ω).
As a matter of fact, we have the following

Remark 2.2. For α > 0 big enough, the function

hα(p) = e−α‖p−p0‖2 − e−αr2
0

is a barrier in a neighborhood of y (see e.g. [3]). In fact, we have

{p ∈ RN : hα ≥ 0}r {y} = Br0(p0)r {y}, and ∇hα(y) = 2α(p0− y)e−αr
2
0 6= 0.

Thus, it is enough to check the condition on Lhα. We have

Lhα(p) = 2αe−α‖p−p0‖2
(

2α 〈A(p)(p− p0), p− p0〉 − Tr(A(p))−
N∑
k=1

bk(p)(p− p0)k

)
.
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Since y is non-characteristic

〈A(y)(y − p0), y − p0〉 = r2
0 〈A(y)ν, ν〉 > 0.

By the continuity of the coefficients of the operator L, for big α we can find a
neighborhood of y where

Lhα(p) > 0. (2)

At characteristic points the Hopf property may not hold true. Let us consider
for example, in R3, the Kohn Laplacian on the Heisenberg group

∆Hu(x1, x2, t) = ∂2
x1x1

u+∂2
x2x2

u−x2∂
2
x1tu+x1∂

2
x2tu+

1

4
(x2

1 +x2
2)∂2

ttu = (X2
1 +X2

2 )u,

where X1 = ∂x1 − 1
2x2∂t, X2 = ∂x2 + 1

2x1∂t. For this operator we have

A(x1, x2, t) =

 1 0 −1
2x2

0 1 1
2x1

−1
2x2

1
2x1

1
4(x2

1 + x2
2)

 .

If y = 0 ∈ ∂Ω and the inner unit normal is (0, 0, 1) at 0, then 0 is characteristic for
(∆H,Ω). We have the following

Counterexample 2.3. Suppose Ω locally around 0 is described by {(x, t) ∈ R3 :
t > 1

4(x2
1 + x2

2)}. Let us consider

u(x, t) = t2 − 1

16
(x2

1 + x2
2)2.

Of course, u(0) = 0 and u > 0 in Ω (we can assume Ω ⊆ {t > 1
4(x2

1 + x2
2)}).

Moreover ∆Hu(x, t) = −1
2(x2

1 + x2
2) ≤ 0. But

∂u

∂ν
(0) = ∂tu(0) = 0,

thus ∆H does not satisfy the Hopf lemma in Ω at 0.

Despite this counterexample, it is possible to put some natural conditions on Ω
to ensure the validity of the Hopf lemma for ∆H. This was done by Birindelli and
Cutŕı in [5, Lemma 2.1]: as far as we know, this was the first example in literature
of Hopf lemma for a degenerate-elliptic operator at a characteristic point. They
proved that an interior Koranyi-ball condition for Ω allows to find a barrier.
The first thing we want to do is to prove such result in generic homogeneous Carnot
groups. To this purpose let us recall some notions (more details can be found in [6]).

Let G = (RN , ◦, δλ) be a homogeneous Carnot group, with homogeneous dimen-
sion Q ≥ 3. Let us fix X1, . . . , Xm left-invariant vector fields δλ-homogeneous of
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degree 1, which generate the first layer of the Lie algebra of G (2 ≤ m < N). We
want to consider the degenerate-elliptic operator

∆G =

m∑
j=1

X2
j .

We denote by Γ(· ; p0) its fundamental solution with pole at p0. We recall that

Γ(p; p0) = Γ(p−1
0 ◦ p) and Γ(δλ(p)) = λ2−QΓ(p) for all λ > 0, p ∈ G,

where we have used the notation Γ(·) = Γ(· ; 0). Let us denote the G-gauge balls
centered at p0 ∈ G with radius r by

BG
r (p0) =

{
p ∈ RN : Γ(p; p0) >

1

rQ−2

}
, (3)

i.e. the superlevel sets of the fundamental solution. We call them balls since

Γ(p; p0)
1

2−Q defines a homogeneous symmetric norm, satisfying a pseudo-triangle
inequality (see [6, Chapter 5]).

Proposition 2.4. Let us assume there exist p0 and r0 such that

y ∈ ∂BG
r0(p0), BG

r0(p0) r {y} ⊂ Ω.

Then ∆G satisfies the Hopf lemma in Ω at y.

Proof. We just check that

h(p) = Γ(p; p0)− r0
2−Q = Γ(p−1

0 ◦ p)− r0
2−Q,

defined on U = RNrBG
r0
2

(p0), is a ∆G-barrier function for Ω at y. The only condition

which really needs to be checked is

∇h(y) 6= 0,

and it will follow by homogeneity arguments. As a matter of fact, if ∇h(p̄) =
0 at some p̄, then ∇Γ(p−1

0 ◦ p̄) = 0 since the left-translation p 7→ p−1
0 ◦ p is a

diffeomorphism. But, by the homogeneity properties, ∇Γ(p−1
0 ◦ p̄) cannot vanish

because 〈
∇Γ(q),

d

dλ
δλ(q)

〉
= (2−Q)Γ(q) for q 6= 0,

and Γ never vanishes (see [6, Proposition 5.3.13]).

Remark 2.5. The assumption in Proposition 2.4 is meaningful when y is a charac-
teristic point, otherwise the result is known (see Remark 2.2). For operators as ∆G,
a point y ∈ ∂Ω is characteristic iff Xj(y) is tangent to ∂Ω for all j ∈ {1, . . . ,m}.
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Remark 2.6. If G is the Heisenberg group H, the G-ball in (3) defines the Koranyi-
ball, i.e. the metric balls with respect to the distance

d((x1, x2, t), 0) =
(
(x2

1 + x2
2)2 + 16t2

) 1
4 .

The assumption in Proposition 2.4 is saying that ∂Ω at the characteristic point has
to be flat enough for the Hopf property to hold (so that to avoid behavior as in
Counterexample 2.3). This is the same condition as in [5]. They used a different
barrier, i.e. some exponential barrier of Hopf type.

Other examples of Hopf lemmas in literature for degenerate-elliptic operators at
characteristic points are the following: [28] for generalized Greiner operators, [24, 26]
for some ‘so-called’ Grushin-type operators. In all these examples, the condition on
Ω is a flatness condition with respect to some homogeneous norm relevant for the
operator (related to the fundamental solution).

In the cited references and in our Proposition 2.4 the differential operator is
fixed, and somehow also the related geometry. We want now to discuss the issue of
the stability of the assumptions on Ω if we change the operator. This is a meaningful
issue if we consider a class of operators with the same characteristic points. This is
one of the reasons why we want to consider the following operators

LQ =

m∑
i,j=1

qij(p)XiXj (4)

where Q(p) is symmetric and uniformly positive definite, i.e. λIm ≤ Q(p) ≤ ΛIm
for some Λ ≥ λ > 0. If X1, . . . , Xm are the generators of the first (horizontal)
layer of a homogeneous Carnot group, they are called horizontally elliptic operators.
The condition of being characteristic is determined by the vector fields: it is thus
independent of the choice of the positive definite matrix Q. We are going to prove
stability for the Hopf lemma in the case when the step of nilpotence of the Lie
algebra is two.

Let us fix some notations. Fix G = (RN , ◦, δλ) such that the composition law ◦
is defined by

(x, t) ◦ (ξ, τ) =

(
x+ ξ, t+ τ +

1

2
〈Bx, ξ〉

)
,

for (x, t), (ξ, τ) ∈ Rm × Rn = RN . Here we have denoted by 〈Bx, ξ〉 the vector of
Rn whose components are

〈
Bkx, ξ

〉
(for k = 1, . . . , n) and B1, . . . , Bn are m × m

linearly independent skew-symmetric matrices. The group of dilations is defined
as δλ((x, t)) = (λx, λ2t) and the inverse of (x, t) is (−x,−t). Up to a choice for
the stratification of the Lie algebra and a canonical isomorphism (see [6, Theorem
3.2.2]), a generic step-2 Carnot group is of this form.
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We can choose as homogeneous symmetric norm the function d : RN −→ R such
that

d ((x, t)) =
(
‖x‖4 + ‖t‖2

) 1
4

;

from here on we denote by ‖·‖ both the Euclidean norms in Rm and in Rn. Hence,
we have B2

r (x0, t0) = (x0, t0) ◦Br(0) where

B2
r (0) = {(x, t) ∈ RN : ‖x‖4 + ‖t‖2 < r4}.

Let us fix

Xi = ∂xi +
1

2

n∑
k=1

(Bkx)i∂tk for i = 1, . . . ,m. (5)

These m vector fields are left-invariant and δλ-homogeneous of degree 1: they gen-
erate the first layer of the Lie algebra of G. It is easy to check that the condition
of linear independence for the matrices Bk’s is equivalent to require that the vector
fields and their commutators of length 1 span the whole tangent space. We want to
consider the operator LQ as in (4) with respect to these specific vector fields.

Theorem 2.7. Let Ω be an open and bounded set in RN , and let y = (ξ, τ) ∈ ∂Ω be
a characteristic point. Let us assume there exist (ξ0, τ0) ∈ Ω and r0 > 0 such that

y ∈ ∂B2
r0(ξ0, τ0), B2

r0(ξ0, τ0) r {y} ⊂ Ω.

Then LQ satisfies the Hopf lemma in Ω at y, for any horizontally elliptic operator
in the step-2 Carnot group G.

Proof. We are going to exploit the barriers built by one of the authors in [31] (and
then exploited in [32]). Let us write

B2
r0(ξ0, τ0) = {(x, t) ∈ RN : F (x, t) < r4

0},

where F (x, t) = ‖x− ξ0‖4 +
∥∥t− τ0 − 1

2 〈Bξ0, x〉
∥∥2

. By hypothesis the normal ν at
y is parallel to ∇F (y). The fact that y is characteristic is equivalent to

〈Xi(y), ν〉 = 0 ∀ i ⇔ ∇XF (y) := (X1F (y), . . . , XmF (y)) = 0

⇔ 4(ξ − ξ0) ‖ξ − ξ0‖2 +
n∑
k=1

(Bk(ξ − ξ0))(τk − τk0 −
1

2

〈
Bkξ0, ξ

〉
) = 0. (6)

By skew-symmetry (ξ−ξ0) and Bk(ξ−ξ0) are orthogonal for any k and thus ‖ξ − ξ0‖
is forced to be 0. Hence y = (ξ0, τ) with ‖τ − τ0‖ = r2

0. Let us seek a barrier as

h(x, t) = f
(
(ξ0, τ0)−1 ◦ (x, t)

)
,

for a suitable f . By left-invariance we have LQh(x, t) = LQ̃f((ξ0, τ0)−1 ◦ (x, t)),

where Q̃(x, t) = Q((ξ0, τ0) ◦ (x, t)). There are two cases, corresponding to two
different possible choices for f .
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- if the matrix
∑n

k=1(τk − τk0 )Bk is invertible, we put

f(x, t) = fα(x, t) = e
− α

r40
(‖x‖4+‖t′‖2+〈t,τ−τ0〉)

− e−α,

where t′ = t− 1
r4
0
〈t, τ − τ0〉 (τ − τ0) is the projection of t on the orthogonal of

τ − τ0, and α > 0 has to be chosen appropriately big;

- otherwise we put P1 the orthogonal projector on Ker(
∑n

k=1(τk − τk0 )Bk), P2

the orthogonal projector on
(
Ker(

∑n
k=1(τk − τk0 )Bk)

)⊥
, and we define

f(x, t) = fα,γ(x, t) = e
− α

r40
(‖x‖4+(‖P1x‖2−γ‖P2x‖2)2+‖t′‖2+〈t,τ−τ0〉)

− e−α,

with t′ as before, and α, γ > 0 to be chosen.

Let us explicitly remark that the matrix
∑n

k=1(τk−τk0 )Bk cannot be the null matrix
because of the linear independence for the Bk’s.
We have f(0, τ − τ0) = 0 and ∇f(0, τ − τ0) 6= 0, since ∂tkf(0, τ − τ0) = − α

r4
0
(τk −

τk0 )e−α. This gives h(y) = 0 and ∇h(y) 6= 0. Let us now set U0 = {(x, t) ∈
RN ; 〈t, τ − τ0〉 > 0}. We have also

{(x, t) ∈ U0 ; f(x, t) ≥ 0}r {(0, τ − τ0)} ⊂ B2
r0(0), (7)

and (for some choices of α, γ) there exists an open subset of U0 containing (0, τ −τ0)
where LQ̃f ≥ 0 (see [31, Proposition 3.3]). By translation, we have that h is a
LQ-barrier for Ω at y.

Remark 2.8. Here the continuity of the coefficients of the matrix Q plays no role,
as in [31]. The result holds true for horizontally elliptic operators with bounded
measurable coefficients, with Q uniformly positive definite.

If we think of the example of the Heisenberg group, we are saying that the
Koranyi-ball condition which is natural for the sum of squares (see Remark 2.6) is
appropriate also for operators as in (4).
Let us stress that the operators involved in Theorem 2.7 have the following explicit
form

LQ =
m∑

i,j=1

qij(x, t)

(
∂2
xixj +

n∑
k=1

(Bkx)i∂
2
xjtk

+
1

4

n∑
k.l=1

(Bkx)i(B
lx)j∂

2
tktl

)
,

in which first order terms do not appear.
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3 The presence of first-order terms

If we consider vector fields satisfying a step-2 Hörmander rank condition without
any underlying Carnot group structure, what we have seen at the end of the previous
section may change drastically.

Remark 3.1. Let us consider in R2 the two vector fields X1 = ∂x and X2 = x∂t. If
we look at the operator

X2
1 +X2

2 = ∂2
xx + x2∂2

tt,

we can realize that an Hopf lemma at characteristic points can be proved under the
assumption of the interior homogeneous ball {x4 + t2 < r4} (see also [24, 26]).
If y = (0, t0) and ν = ∂t, we can in fact use as barrier the following h(x, t) =

e−α(γx4−(t−t0)) − 1, for some positive γ, α. On the other hand, if we consider the
operators as in (4) built with respect to these two vector fields, this condition is not
the right one. As a matter of fact, let us pick

Q =

(
1 −1

2
−1

2 1

)
and LQ = ∂2

xx − x∂2
xt + x2∂2

tt −
1

2
∂t.

Fix Ω such that it is contained in the halfspace {t > 0}, but it is flat enough to have
the interior homogeneous ball property at (0, 0). Consider the function

u(x, t) =

(
t+

1

8
x2

)α
with 0 < α − 1 < 1

26 . A straightforward calculation shows that this is a counterex-
ample to Hopf for LQ.

The reason of the behavior described in Remark 3.1 is the presence of the first
order term −1

2∂t. In order to understand what happens in presence of such terms,
we will always denote in this section by Ω a bounded open set in some RN such
that 0 ∈ ∂Ω, the positive t-direction determines the inner unit normal and it is a
characteristic direction for the operator at 0.

Birindelli and Cutŕı [5, Remark 2] noted that the Koranyi-ball condition for
Ω ⊂ R3 at 0 is enough to ensure the Hopf property also for an operator like

∆H + k1(x, t)x1

(
∂x1 −

1

2
x2∂t

)
+ k2(x, t)x2

(
∂x2 +

1

2
x1∂t

)
,

with kj ’s bounded functions. Actually, we can also see that for the operators like

∆H + k1(x, t)∂x1 + k2(x, t)∂x2 + (x2
1 + x2

2)γ(x, t)∂t,
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with bounded k1, k2, γ, we can get the Hopf property under the Koranyi-ball assump-
tion. The barrier can be chosen as for ∆H. This is the exact behavior Monticelli
noted in [26, Lemma 4.1] for Grushin-type equations. He proved in particular a
Hopf lemma in Ω ⊂ R2 at 0 for operators like

∂2
xx + x2∂2

tt + k(x, t)∂x + x2γ(x, t)∂t,

with bounded k and γ, under a homogeneous interior ball condition. Having in mind
these examples and Remark 3.1, we want to consider operators where the coefficient
in front of ∂t has lower degree of vanishing, or it does not vanish at all. We want
thus to understand the geometry of Ω if we want an Hopf lemma to hold for model
operators like

∆H ± ∂t, ∂2
xx + x2∂2

tt ± ∂t, ∂2
xx + x2∂2

tt ± x∂t.

In order to do this, let us go back to the classical heat operator, seen as a degenerate
elliptic operator in RN+1. Let us denote H− = ∆x − ∂t in RN+1. Suppose that Ω
strictly contains {(x, t) ∈ RN+1 : t+ 1

2N ‖x‖
2 > 0}, at least locally around 0. Then

h(x, t) = t + 1
2N ‖x‖

2 is clearly an H−-barrier function for Ω at 0, and thus H−

satisfies the Hopf lemma in Ω at 0. We stress that t ∼ − 1
2N ‖x‖

2 is the behavior of
the level set of the fundamental solution forH− up to lower order terms (fundamental
solution with pole at some (0,− |t0|) and passing through 0).
With the following counterexample we show that we cannot do much better than
t+ 1

2N ‖x‖
2.

Counterexample 3.2. Suppose that Ω is contained in the region {(x, t) ∈ RN+1 :
t + β0 ‖x‖2 > 0}, for some 0 < β0 <

1
2N . Then, we can choose β0 < β < 1

2N and

ε = (β−β0)(1−2βN)
4β2 > 0, and we can consider the function

u(x, t) = (t+ β ‖x‖2)1+ε.

This function is C2(Ω)∩C1(Ω∪{0}), u(0) = 0, u > 0 in Ω, and ut(0) = 0. Moreover

H−u(x, t) = −(1− 2βN)(1 + ε)(t+ β ‖x‖2)−1+ε
(
t+ β0 ‖x‖2

)
≤ 0 in Ω.

Therefore u is a counterexample to the Hopf property for H− in Ω.

The operator H+ = ∆x + ∂t has the same behavior than H−. It satisfies the
Hopf lemma in the sets Ω which are “flat enough” to strictly contain the paraboloid
{(x, t) ∈ RN+1 : t > 1

2N ‖x‖
2}. And it does not satisfy the Hopf lemma in Ω if

Ω is contained in a region delimited by a steeper paraboloid {(x, t) ∈ RN+1 : t >
β0 ‖x‖2}, for some β0 >

1
2N .

Regarding to the Hopf-property at 0, we can see that for the degenerate-elliptic
operators

∆H ± ∂t, ∂2
xx + x2∂2

tt ± ∂t,
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despite the non-parabolicity aspects, a similar analysis to the one for H± holds true.
We can summarize these facts in the next Hopf-type lemma.

Lemma 3.3. Suppose there exists an open neighborhood U of 0 such that one of the
following conditions holds true:

(i)

{
(x1, x2, t) ∈ U ⊂ R3 : t ≥ 1

4
(x2

1 + x2
2)

}
r {(0, 0, 0)} ⊂ Ω ⊂ R3;

(ii)

{
(x1, x2, t) ∈ U ⊂ R3 : t ≥ −1

4
(x2

1 + x2
2)

}
r {(0, 0, 0)} ⊂ Ω ⊂ R3;

(iii)

{
(x, t) ∈ U ⊂ R2 : t ≥ 1

2
x2

}
r {(0, 0)} ⊂ Ω ⊂ R2; (8)

(iv)

{
(x, t) ∈ U ⊂ R2 : t ≥ −1

2
x2

}
r {(0, 0)} ⊂ Ω ⊂ R2.

Then, respectively, we have

(i) ∆H + ∂t satisfies the Hopf lemma in Ω at (0, 0, 0);

(ii) ∆H − ∂t satisfies the Hopf lemma in Ω at (0, 0, 0);

(iii) ∂2
xx + x2∂2

tt + ∂t satisfies the Hopf lemma in Ω at (0, 0);

(iv) ∂2
xx + x2∂2

tt − ∂t satisfies the Hopf lemma in Ω at (0, 0).

Proof. The barriers can be easily taken respectively as h(x1, x2, t) = t− 1
4(x2

1 + x2
2),

h(x1, x2, t) = t+ 1
4(x2

1 + x2
2), h(x, t) = t− 1

2x
2, or h(x, t) = t+ 1

2x
2.

On the other hand, as in Counterexample 3.2, the conditions on Ω cannot be
improved too much.

Counterexample 3.4. Suppose one of the following conditions holds true:

(i) Ω ⊆ {(x1, x2, t) ∈ R3 : t > β0(x2
1 + x2

2)} for some positive β0 >
1

4
;

(ii) Ω ⊆ {(x1, x2, t) ∈ R3 : t > −β0(x2
1 + x2

2)} for some positive β0 <
1

4
;

(iii) Ω ⊆ {(x, t) ∈ R2 : t > β0x
2} for some positive β0 >

1

2
;

(iv) Ω ⊆ {(x, t) ∈ R2 : t > −β0x
2} for some positive β0 <

1

2
.

Then, respectively,

(i) ∆H + ∂t does not satisfy the Hopf lemma in Ω at (0, 0, 0);

(ii) ∆H − ∂t does not satisfy the Hopf lemma in Ω at (0, 0, 0);

12



(iii) ∂2
xx + x2∂2

tt + ∂t does not satisfy the Hopf lemma in Ω at (0, 0);

(iv) ∂2
xx + x2∂2

tt − ∂t does not satisfy the Hopf lemma in Ω at (0, 0).

The functions u(x1, x2, t) = (t ∓ β(x2
1 + x2

2))α or u(x, t) = (t ∓ βx2)α work as
counterexamples for suitable choices of α > 1 and β > 0. The choice of β has to be
done respectively as β0 > β > 1

4 , β0 < β < 1
4 , β0 > β > 1

2 , or β0 < β < 1
2 .

Let us stress that the case (ii) gives a counterexample to the Hopf property for
∆H − ∂t in domains Ω which can satisfy the Koranyi-ball condition.

Similarly to H±, we can analyze the case of the operator

∂2
xx + x∂t, in R2.

This is well-studied in literature: it is the stationary part of the Kolmogorov opera-
tor, and it is an example of the so-called degenerate Ornstein-Uhlenbeck operators
(see [14, 18, 7]). Suppose there exists an open neighborhood U of 0 such that{

(x, t) ∈ U ⊂ R2 : t ≥ 1

6
x3

}
r {(0, 0)} ⊂ Ω,

then ∂2
xx +x∂t satisfies the Hopf lemma in Ω at 0. As before, a barrier can be easily

constructed as h(x, t) = t− 1
6x

3.

Counterexample 3.5. If we want to construct counterexamples analogue to the
previous ones, let us define the following function

fβ±0
(x) =


β+

0 x
3 if x > 0

β−0 x
3 if x < 0.

Suppose that

Ω ⊆
{

(x, t) ∈ R2 : t > fβ±0
(x)
}

for some β+
0 > 1

6 and 0 < β−0 < 1
6 . Then, we can consider the function

u(x, t) = (t− fβ±)α,

with β+
0 > β+ > 1

6 , β−0 < β− < 1
6 , and α > 1. The function fβ± is smooth

enough to ensure that u ∈ C2(Ω) ∩ C1(Ω ∪ {0}). Moreover u is positive in Ω, and
u(0) = ut(0) = 0. Suitable choices of β+, β−, α give

(
∂2
xx + x∂t

)
u ≤ 0 in Ω and u

is thus a counterexample to the Hopf lemma in Ω.

Let us now turn our attention to the degenerate-elliptic operator

∂2
xx + x2∂2

tt + x∂t.
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Also for this one, assuming that there exists an open neighborhood U of 0 such that{
(x, t) ∈ U ⊂ R2 : t ≥ 1

6
x3

}
r {(0, 0)} ⊂ Ω, (9)

(∂2
xx + x2∂2

tt + x∂t) satisfies the Hopf property in Ω at 0: h(x, t) = t− 1
6x

3 is in fact
still a barrier. However we cannot be as precise as in Counterexample 3.5. We are
able to find a counterexample just assuming that

Ω ⊆
{

(x, t) ∈ R2 : t > β0x
2
}

for some positive β0. In this case, by taking 0 < β < β0, the function u(x, t) =
(t − βx2)α works as counterexample to Hopf in Ω for some α > 1. We can slightly
improve the condition (9) by asking the following: there exists some positive γ such
that {

(x, t) ∈ U ⊂ R2 : t ≥ 1

6
x3 + γx4

}
r {(0, 0)} ⊂ Ω.

The (∂2
xx+x2∂2

tt+x∂t)-barrier in Ω can be then built as h(x, t) = e−α( 1
6
x3+γx4−t)−1

for some big α. A similar improvement could also be done with the conditions (8) by
adding a term like γx4 (we are going to exploit this fact in the proof of Proposition
4.1 below).

Remark 3.6. Let us just mention that, for any k ∈ N, the operator

∂2
xx + xk∂t, in R2,

behaves regarding the Hopf property similar to H+ = ∂2
xx+∂t (in the case of k even)

or to ∂2
xx + x∂t (for k odd), with the natural adjustments.

The behavior observed in the previous specific degenerate-elliptic examples oc-
curs also in different situations. Let us consider in R3 the two vector fields

X1 = ∂x1 + b1(x)∂t, X2 = ∂x2 + b2(x)∂t, (10)

where b = (b1, b2) : U0 ⊆ R2 −→ R2 is smooth, defined in an open neighborhood U0

of (0, 0), and such that b(0, 0) = (0, 0). Suppose that

[X1, X2](0) = b2x1
(0, 0)− b1x2

(0, 0) 6= 0. (11)

We want to investigate the operator

X2
1 +X2

2 = ∆x + 2b1(x)∂2
x1t + 2b2(x)∂2

x2t +
(
(b1(x))2 + (b2(x))2

)
∂2
tt + div(b)∂t.

Since b(0) = 0, the positive t-direction is characteristic at 0. Let us define the
following polynomial of degree 3

Fb(x) =
1

2
〈J sb(0)x, x〉+1

6

(
b1x1,x1

(0)x3
1 + 3b1x1,x2

(0)x2
1x2 + 3b2x1,x2

(0)x1x
2
2 + b2x2,x2

(0)x3
2

)
,

where J sb(0) is the symmetric part of the Jacobian matrix of b at (0, 0).
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Theorem 3.7. Let X1, X2 the two vector fields in R3 defined in (10), satisfying
(11). Suppose Ω ⊂ R3 is a bounded open set with 0 ∈ ∂Ω, and with (0, 0, 1) as inner
unit normal at 0. Suppose also that there exist an open neighborhood U of (0, 0, 0)
and a positive constant γ such that{

(x, t) ∈ U ⊂ R3 : t ≥ Fb(x) + γ ‖x‖4
}
r {(0, 0, 0)} ⊂ Ω.

Then the operator L = X2
1 +X2

2 satisfies the Hopf lemma in Ω at 0.

Proof. We want to prove that

h(x, t) = e−α(γ‖x‖4+Fb(x)−t) − 1

is an L-barrier function in Ω at 0. To this aim we need some preliminaries. First of
all we have

∆Fb(x) = b1x1
(0) + b2x2

(0) + b1x1,x1
(0)x1 + b1x1,x2

(0)x2 + b2x1,x2
(0)x1 + b2x2,x2

(0)x2

= div(b)(x) + ‖x‖2 k(x)

where k is bounded in a neighborhood of (0, 0). Moreover we get

∇Fb(x)− b(x) =

(
b1x1

(0)x1 + b1x2
(0)x2 + 1

2 [X1, X2](0)x2 +O(‖x‖2)− b1(x)

b2x1
(0)x1 + b2x2

(0)x2 − 1
2 [X1, X2](0)x1 +O(‖x‖2)− b2(x)

)
=

1

2
[X1, X2](0)

(
x2

−x1

)
+ ‖x‖2

(
k1(x)
k2(x)

)
,

with k1 and k2 bounded functions in a neighborhood of (0, 0). Denoting by f(x, t) =
γ ‖x‖4 + Fb(x)− t and by

σ(x) =

(
1 0 b1(x)
0 1 b2(x)

)
,

we can write

Lh(x, t) = Tr
(
σT (x)σ(x)Hh(x, t)

)
+ div(b)(x)∂th(x, t)

= αe−αf(x,t)
(

div(b)(x)−∆Fb(x)− 16γ ‖x‖2 + α ‖σ(x)∇f(x, t)‖2
)

= αe−αf(x,t)

(
−‖x‖2 k(x)− 16γ ‖x‖2 + α

∥∥∥4γ ‖x‖2 x+∇Fb(x)− b(x)
∥∥∥2
)

= α ‖x‖2 e−αf(x,t)

(
−k(x)− 16γ + α

(
1

4
([X1, X2](0))2 + o(1)

))
.

Thus, in a small neighborhood of 0, for α big enough we get Lh ≥ 0 because of the
assumption (11). This proves that h is an L-barrier since h(0) = 0 and ht(0) = α.

The comparison with the degree-3 polynomial Fb is suggested by the examples
in the first part of this section (and looking at the first order term div(b)∂t). In the
case of the Heisenberg vector fields, where b(x) = 1

2(−x2, x1), we have Fb ≡ 0 and
Theorem 3.7 gives back the flatness condition of Birindelli and Cutŕı.
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4 A remark on the global behavior

Throughout the paper we have considered conditions on the behavior of ∂Ω around
a characteristic point. Here we would like to exploit such analysis in order to con-
struct bounded open sets Ω in which our operators satisfy the Hopf lemma at every
boundary point. It is not difficult to see that this is not possible for operators like
∂2
xx in R2 or ∆x± ∂t in RN+1. Nonetheless, it is possible for the family of operators
LQ as in (4) which we have treated in Section 2 and in Section 3, and it is possible
in a uniform way with respect to uniformly positive definite matrices Q.

By looking at the proof of Theorem 2.7 we may recognize that we have already
proved that in the sets

B2
r0(ξ0, τ0) = (ξ0, τ0) ◦

{
(x, t) ∈ Rm × Rn : ‖x‖4 + ‖t‖2 < r4

}
⊂ RN

every operator LQ =
∑m

i,j=1 qi,j(x, t)XiXj (with Xi = ∂xi + 1
2

∑n
k=1(Bkx)i∂tk as in

(5)) satisfies the Hopf lemma at every boundary point of B2
r0(ξ0, τ0). This holds

true for any symmetric uniformly positive definite matrix Q(x, t). As a matter of
fact, we have seen with (6) that the characteristic points of ∂B2

r0(ξ0, τ0) are just the
ones of the form (ξ0, τ) (with ‖τ − τ0‖ = r2

0) and we have showed that the barrier
functions at those points are actual LQ-barrier functions in B2

r0(ξ0, τ0) (see (7)).

On the other hand, we have seen in Remark 3.1 that, for the vector fields X1 = ∂x
and X2 = x∂t in R2, the operators LQ may not satisfy the Hopf lemma in the
homogeneous ball {(x, t) ∈ R2 : x4+t2 < 1}. We have to change this set accordingly
to what we have showed in Section 3. To this aim, let us fix Λ ≥ λ > 0 and define
the following bounded open set

BΛ
λ

=

{
(x, t) ∈ R2 : x4 − 1

2

(
Λ

λ
− 1

)
x2 + t2 < 1

}
⊂ R2.

Proposition 4.1. For any 2×2 symmetric matrix Q(x, t) such that λI2 ≤ Q ≤ ΛI2,
the operator LQ =

∑2
i,j=1 qi,j(x, t)XiXj satisfies the Hopf lemma in BΛ

λ
at any point

of its boundary.

Proof. By putting

σ(x) =

(
1 0
0 x

)
,

we can write

LQu(x, t) = Tr
(
σ(x)Q(x, t)σ(x)Hu(x, t)

)
+ q1,2(x, t)∂tu(x, t).

It is easy to see that the only characteristic points are the ones on the line x = 0, i.e.
(0,±1). Let us just consider the point (0,−1), the other case will follow analogously.
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We claim that there exists a positive γ such that{
(x, t) ∈ R2 : 0 > t ≥ −1− 1

4

(
Λ

λ
− 1

)
x2 + γx4, |x| ≤ ρ

}
r {(0,−1)} ⊂ BΛ

λ
,

for a suitable positive ρ small enough. In fact, if (x, t) 6= (0,−1) belongs to the set
in the left-hand side, we have

x4− 1

2

(
Λ

λ
− 1

)
x2 +t2 ≤ 1+x4

(
1 +

1

16

(
Λ

λ
− 1

)2

− 2γ − x2γ
1

2

(
Λ

λ
− 1

)
+ x4γ2

)

which is strictly less than 1 if 2γ > 1 + 1
16

(
Λ
λ − 1

)2
and |x| is small. With such a

choice of γ, we want to consider the function

h(x, t) = e−α(γx4− 1
4(Λ

λ
−1)x2−t) − e−α,

for some positive α to be chosen. Of course, h(0,−1) = 0 and ht(0,−1) = αe−α 6= 0.
Moreover, by denoting v(x, t) = γx4 − 1

4

(
Λ
λ − 1

)
x2 − t, we get

LQh(x, t) = αe−αv(x,t)

(
q1,2(x, t) + q1,1(x, t)

(
1

2

(
Λ

λ
− 1

)
− 12γx2

)
+

+ α 〈Q(x, t)σ(x)∇v(x, t), σ(x)∇v(x, t)〉
)
.

The bounds on the eigenvalues of Q give that q1,2(x, t) + 1
2

(
Λ
λ − 1

)
q1,1(x, t) ≥ 0.

Hence we have

LQh(x, t) ≥ αe−αv(x,t)
(
−12Λγx2 + αλ ‖σ(x)∇v(x, t)‖2

)
= αx2e−αv(x,t)

(
−12Λγ + αλ

(
1 +

(
4γx2 − 1

2

(
Λ

λ
− 1

))2
))

≥ αx2e−αv(x,t) (αλ− 12Λγ)

which is nonnegative if α is big enough. This proves that h is an LQ-barrier function
in BΛ

λ
at (0,−1). And it concludes the proof.

We would like to stress that, in the case Λ = λ, LQ is forced to be λ(∂2
xx+x2∂2

tt):
the set BΛ

λ
coincides with the homogeneous ball {x4 + t2 < 1} and we recover the

condition in [24, 26].
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5 A nonlinear example: the Levi operator

Now we want to consider boundary comparison principles of Hopf-type for some
non-linear second order degenerate-elliptic operators. Just to fix some notations, let
us put Lu = F (x, u,∇u,Hu) for some function F smooth with respect to its entries.
We will always assume that L satisfies the interior comparison principle and L is
degenerate-elliptic, i.e.

F (x, u, p,M) ≥ F (x, u, p,N) whether M ≥ N.

Let Ω be a bounded open set in RN with smooth boundary, y ∈ ∂Ω, and ν the inner
unit normal to ∂Ω at y. We say that L satisfies the Hopf lemma in Ω at y ∈ ∂Ω if,
for every couple of functions u, v ∈ C2 ((Ω ∩W ) ∪ {y}), we have

Lu ≤ Lv in Ω ∩W,
u > v in Ω ∩W,
u(y) = v(y),

⇒ ∂u

∂ν
(y) >

∂v

∂ν
(y), (12)

where W is an open neighborhood of y.

Remark 5.1. If L is strictly elliptic, i.e. the derivative of F with respect to the
matrix entrance is strictly positive definite, then it is well-known that L satisfies the
Hopf lemma in Ω at y ∈ ∂Ω, at every boundary point y of every smooth Ω. Let us
briefly sketch the proof, having in mind the barrier-type argument in Remark 2.1.
By definition, for any C2-function v, we have that the linearized operator Lv is an
elliptic linear operator defined by

L(v + εh) = Lv + εLv(h) + o(ε), as ε→ 0, for any h ∈ C2.

Since smooth sets Ω have the interior ball property, we can consider a function
h = hα as in Remark 2.2. By the ellipticity of Lv, we can find a neighborhood U
of y where Lvh ≥ cv > 0 (see (2)). We can always assume U ⊂ W . We have to
compare the functions u and v + εh on the set V = {p ∈ U : h(p) > 0} ⊂ Ω ∩W .
For small positive ε we get{

Lu ≤ Lv + ε(Lv(h) + o(1)) = L(v + εh) in V,

u ≥ v + εh on ∂V.

By the interior comparison principle we deduce that u ≥ v + εh in V , and thus

∂u

∂ν
(y)− ∂v

∂ν
(y) ≥ ε∂h

∂ν
(y) > 0.

On the other hand, if L is not strictly elliptic, we have to deal with linearized
operators with non-trivial kernels. These last ones may depend on the functions on
which we are linearizing. For this reason we need a suitable definition of character-
istic points.
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Definition 5.2. Let y ∈ ∂Ω, and W be an open neighborhood of y. Let also v ∈
C2 ((Ω ∩W ) ∪ {y}). We say that y is characteristic for (L, v,Ω) if

y is characteristic for (Lv,Ω)

according to Definition 1.1.

With this definition, we have readily the following

Proposition 5.3. Let y ∈ ∂Ω, and W be an open neighborhood of y. Suppose
we have u, v ∈ C2 ((Ω ∩W ) ∪ {y}). Assume also that y is not characteristic for
(L, v,Ω) or for (L, u,Ω) (for at least one of the two). Then (12) holds true.

Proof. If y is not characteristic for (L, v,Ω), we follow the proof in Remark 5.1. On
the other hand, if y is not characteristic for (L, u,Ω), we can compare the functions
u− εh and v with the same type of choice for the barrier h. The key point is that, in
both cases, the functions h as in Remark 2.2 satisfy Lvh ≥ cv > 0 or Luh ≥ cu > 0
in a suitable neighborhood of y. This is enough to ensure that Lu ≤ L(v + εh) or
L(u− εh) ≤ Lv in the desired set and to conclude the proof.

At the points y which are characteristic for both (L, v,Ω) and (L, u,Ω), the Hopf
property may not hold true. As an example, let us introduce the nonlinear operator
describing the Levi curvature for a real hypersurface in C2 (see e.g. [8, 23], and the
references therein, for a complete exposition about this operator). Let us fix some
notations.

For a smooth function u defined in R3, let us put

A(∇u) =

 1 + u2
t 0 uy − uxut

0 1 + u2
t −ux − uyut

uy − uxut −ux − uyut u2
x + u2

y

 .

This symmetric matrix is nonnegative definite: it has eigenvalues 1 + u2
t , 1 + |∇u|2,

and 0. The eigenvector of A(∇u) related to the eigenvalue 0 is

(−uy + uxut, ux + uyut, 1 + u2
t ).

We want to consider the following operator

Lu =
1

(1 + |∇u|2)3/2
Tr
(
A(∇u) Hu

)
.

We say that u is strictly pseudoconvex at a point if Lu > 0 at that point. This
convexity property is equivalent to a Hörmander-type condition. In fact, by defining
the non-linear vector fields

Xu = ∂x +
uy − uxut

1 + u2
t

∂t, Yu = ∂y −
ux + uyut

1 + u2
t

∂t,
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we can write the operator as the following sum of squares

Lu =
(1 + u2

t )
2

(1 + |∇u|2)3/2

(
X2
uu+ Y 2

u u
)
,

and we have

[Xu, Yu] = −(1 + |∇u|2)3/2

(1 + u2
t )

2
Lu ∂t.

Therefore, Xu and Yu satisfy the Hörmander condition iff u is strictly pseudoconvex.
For a fixed function u, the linearized operator Lu is given by the following

Luh =
1

(1 + |∇u|2)3/2

(
Tr
(
A(∇u) Hh

)
+

+

(
2uxutt − 2utuxt − 2uyt − 3

Tr(A(∇u)Hu)

1 + |∇u|2
ux

)
hx +

+

(
2uyutt + 2uxt − 2utuyt − 3

Tr(A(∇u)Hu)

1 + |∇u|2
uy

)
hy +

+

(
2utuxx + 2utuyy − 2uxuxt − 2uyuyt − 3

Tr(A(∇u)Hu)

1 + |∇u|2
ut

)
ht

)
.

From now on, let us assume Ω to be a bounded open set in R3, with 0 ∈ ∂Ω, and
ν = (0, 0, 1) as inner unit normal at 0. The fact that 0 is characteristic for (L, u,Ω)
is thus equivalent to

u2
x(0) + u2

y(0) = 〈A(∇u(0))ν, ν〉 = 0.

We want to construct two functions for which the Hopf property does not hold true.

Counterexample 5.4. Let us consider Ω described by {(x, y, t) ∈ R3 ; t > x2 + y2}
at least locally around 0, and let

v(x, y, t) = x2 + y2, u(x, y, t) = x2 + y2 − (x2 + y2)2

2
+
t2

2
.

We have

∇v(x, y, t) = (2x, 2y, 0), ∇u(x, y, t) = (2x(1− x2 − y2), 2y(1− x2 − y2), t),

and

Lv(x, y, t) =
4(

1 + 4(x2 + y2)
) 3

2

,

Lu(x, y, t) =

4(1 + t2)

(
1 + (x2 + y2)

((1− x2 − y2)2

1 + t2
− 2
))

(
1 + 4(x2 + y2)(1− x2 − y2)2 + t2

) 3
2

.
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In particular we note that Lu(0) = Lv(0) = 4. Let us put

f(x, y, t) = Lv(x, y, t)− Lu(x, y, t).

A straightforward calculation shows that

∇f(0) = (0, 0, 0), Hf(0) =

 8 0 0
0 8 0
0 0 4

 .

and therefore the existence of a local minimum for f at 0. Then, we can take W
such that f(x, y, t) ≥ f(0, 0, 0) in W , i.e.

Lv(x, y, t) ≥ Lu(x, y, t), ∀(x, y, t) ∈W.

Thus the following is true 
Lu ≤ Lv in Ω ∩W
u > v in Ω ∩W
u(0) = v(0)

but
∂u

∂ν
(0) =

∂v

∂ν
(0) = 0.

We notice that a counterexample to the Hopf lemma for a nonlinear operator related
to L was shown in [21, Example 7.2]. For the operator treated in [21] a Hörmander-
type condition is not available and also strong comparison principles may fail. On
the other hand, for the Levi operator L strong comparison theorems hold true under
pseudoconvexity conditions [23], but we have just seen that boundary comparison
principles of Hopf type are not true in general even assuming a Hörmander condi-
tion/strict pseudoconvexity.

Finally, with the previous sections in mind, we want to find a criterion on Ω in
order to have the Hopf-type property for L for any given couple of functions such
that 0 is characteristic for both of them.

Proposition 5.5. Let u, v ∈ C2 ((Ω ∩W ) ∪ {y}). Assume 0 is characteristic for
(L, u,Ω) and (L, v,Ω). Put

β0 = max

{
−Lu(0)

ut(0)√
1 + u2

t (0)
,−Lv(0)

vt(0)√
1 + v2

t (0)

}
.

Suppose there exists β < β0 such that{
(x, y, t) ∈ U : t ≥ β

4
(x2 + y2)

}
r {(0, 0, 0)} ⊂ Ω

for some neighborhood U of 0, then (12) is satisfied.

21



Proof. First of all, by assumption, we have ux(0) = uy(0) = vx(0) = vy(0) = 0. Let
us consider

h(x, y, t) = t− β

4
(x2 + y2).

Suppose β0 = −Lv(0) vt(0)√
1+v2

t (0)
: as in Remark 5.1, we are going to compare u and

v + εh. Otherwise we can work with u− εh and v.
A simple calculation shows that

Lvh(0) =
1

1 + v2
t (0)

(
−β
√

1 + v2
t (0)− Lv(0)vt(0)

)
> 0.

By continuity Lvh is strictly positive in a neighborhood of 0. We can then conclude
as in Remark 5.1.
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[10] E. Höpf, A remark on linear elliptic differential equations of second order,
Proc. Amer. Math. Soc. 3 (1952), 791-793.

[11] J. Hounie, E. Lanconelli, An Alexandrov type theorem for Reinhardt do-
mains of C2, in ”Recent progress on some problems in several complex vari-
ables and partial differential equations”, Contemp. Math. 400 (2006), 129-146.
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