\bar{Q}^{\prime}-curvature flow on Pseudo-Einstein CR manifolds

Ali Maalaoui ${ }^{(1)}$ \& Vittorio Martino ${ }^{(2)}$

Abstract

In this paper we consider the problem of prescribing the \bar{Q}^{\prime}-curvature on three dimensional Pseudo-Einstein CR manifolds. We study the gradient flow generated by the related functional and we will prove its convergence to a limit function under suitable assumptions.

Keywords: Pseudo-Einstein CR manifolds, \bar{P}^{\prime}-operator
2010 MSC. Primary: 58J60, 58J05. Secondary: 58E05, 58E07 .

1 Introduction and statement of the results

Let ($M, T^{1,0} M, \theta$) be a CR three manifold, which we will always assume smooth and closed. It is known that one can construct a pair $\left(Q, P_{\theta}\right)$ such that under a conformal change of the contact form $\hat{\theta}=e^{u} \theta$, one has

$$
P_{\theta} u+Q_{\theta}=Q_{\hat{\theta}} e^{2 u}
$$

where the Paneitz operator $P_{\theta}=\left(\Delta_{b}\right)^{2}+T^{2}+$ l.o.t.; in particular the operator P_{θ} contains the space of CR pluriharmonic functions \mathcal{P} in its kernel, moreover the total Q-curvature is always zero [16], hence it does not provide any extra geometric information.
Therefore, one considers another pair $\left(P^{\prime}, Q^{\prime}\right)$, see [3], where P^{\prime} is a Paneitz type operator satisfying $P^{\prime}=4\left(\Delta_{b}\right)^{2}+$ l.o.t. and is defined on the space of pluriharmonic functions and the Q^{\prime}-curvature is defined implicitly so that

$$
P_{\theta}^{\prime} u+Q_{\theta}^{\prime}-\frac{1}{2} P_{\theta}\left(u^{2}\right)=Q_{\hat{\theta}}^{\prime} e^{2 u}
$$

which is equivalent to

$$
\begin{equation*}
P_{\theta}^{\prime} u+Q_{\theta}^{\prime}=Q_{\hat{\theta}}^{\prime} e^{2 u} \bmod \mathcal{P}^{\perp} \tag{1}
\end{equation*}
$$

In the case of pseudo-Einstein three dimensional CR manifolds (we refer the reader to the next section for further details), in [10] the authors showed that the total Q^{\prime}-curvature is not always zero and it is invariant under the conformal change of the contact structure; in

[^0]particular it is proportional to the Burns-Epstein invariant $\mu(M)$ (see [5], [13]) and if (M, J) is the boundary of a strictly pseudo-convex domain X, then
$$
\int_{M} Q^{\prime} \theta \wedge d \theta=16 \pi^{2}\left(\chi(X)-\int_{X}\left(c_{2}-\frac{1}{3} c_{1}^{2}\right)\right)
$$
where c_{1} and c_{2} are the first and second Chern forms of the Kähler-Einstein metric on X obtained by solving Fefferman's equation.
Now, equation (1) has to be solved orthogonally to the infinite dimensional space \mathcal{P}^{\perp} : in order to solve this problem on a pseudo-Einstein three dimensional CR manifolds, in [9] it is introduced a new couple $\left(\bar{P}^{\prime}, \bar{Q}^{\prime}\right)$, which comes from the projection of equation (1) on to the space of $L^{2} \mathrm{CR}$ pluriharmonic functions $\hat{\mathcal{P}}$, which is the completion of \mathcal{P} under the L^{2}-norm. Since the P^{\prime}-operator is only defined after projection on \mathcal{P}, we denote by $\Gamma: L^{2}(M) \rightarrow \hat{\mathcal{P}}$ the orthogonal projection and we let $\bar{P}^{\prime}=\Gamma \circ P^{\prime}$ and $\bar{Q}^{\prime}=\Gamma \circ Q^{\prime}$, then on a pseudo-Einstein CR manifolds, we can consider the problem of prescribing the \bar{Q}^{\prime}-curvature, under a conformal change of the contact structure, in particular: for a given a function $f \in \hat{\mathcal{P}}$, we have the following equation
\[

$$
\begin{equation*}
P_{\theta}^{\prime} u+Q_{\theta}^{\prime}=f e^{2 u} \bmod \mathcal{P}^{\perp} \tag{2}
\end{equation*}
$$

\]

that is equivalent to

$$
\bar{P}_{\theta}^{\prime} u+\bar{Q}_{\theta}^{\prime}=\Gamma\left(f e^{2 u}\right)
$$

Therefore, if u solves (22), then by setting $\tilde{\theta}=e^{u} \theta$, one has $\bar{Q}_{\tilde{\theta}}^{\prime}=f$. Let us explicitly notice the differences between the two projections. Since the space of L^{2} CR pluriharmonic functions $\hat{\mathcal{P}}$ does not depend on the contact form, thus $\bar{Q}_{\theta}^{\prime}$ is the orthogonal projection of Q_{θ}^{\prime} on $\hat{\mathcal{P}}$ with respect to the L^{2}-inner product induced by θ, while $\bar{Q}_{\tilde{\theta}}^{\prime}$ is the orthogonal projection of $Q_{\tilde{\theta}}^{\prime}$ with respect to the L^{2}-inner product induced by $\tilde{\theta}$; in particular $\phi \in \hat{\mathcal{P}}_{\theta}$ if and only if $\phi \in \hat{\mathcal{P}}_{\tilde{\theta}}$ and $\psi \in \mathcal{P}_{\theta}^{\perp}$ if and only if $e^{-2 u} \psi \in \mathcal{P}_{\tilde{\theta}}^{\perp}$. Therefore, by denoting Γ_{u} the orthogonal projection induced by $\tilde{\theta}$, one has $\Gamma_{u}\left(Q_{\tilde{\theta}}^{\prime}\right)=f$. Let us also recall that in [10], the authors show that the non-negativity of the Paneitz operator P_{θ} and the positivity of the CR-Yamabe invariant imply that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Moreover, $\int_{M} Q_{\theta}^{\prime}=\int_{M} \bar{Q}_{\theta}^{\prime} \leq 16 \pi^{2}$ with equality if an only if $\left(M, T^{1,0} M, \theta\right)$ is the standard sphere; in particular the previously assumptions imply that the ($M, T^{1,0} M, \theta$) is embeddable (see [12]). Notice that unlike the Riemannian case, it remains unclear if the non-negativity of \bar{P}^{\prime} and ker $\bar{P}^{\prime}=\mathbb{R}$ is a sufficient condition for $\int_{M} Q_{\theta}^{\prime} \leq 16 \pi^{2}$. In particular, the results presented in this paper do not fully cover the case $\bar{P}^{\prime} \geq 0$ and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$.
Thus, from now on we will always assume that $\left(M, T^{1,0} M, \theta\right)$ is a pseudo-Einstein CR three dimensional manifold such that \bar{P}^{\prime} is non-negative and ker $\bar{P}^{\prime}=\mathbb{R}$. The problem in (2) was first studied in [10] for f constant and in the subcritical case, namely $\int_{M} \bar{Q}_{\theta}^{\prime}<16 \pi^{2}$. Then in 21] the problem was solved for $f>0$ via a probabilistic approach again in the subcritical case; also, a solution of the problem was provided in [17] for $f>0$ and $0<\int_{M} \bar{Q}_{\theta}^{\prime}<16 \pi^{2}$ via direct minimization.
In this paper we will study the equation (2) allowing f to change sign: our approach follows closely the methods in [1] where the authors study the analogous problem in the Riemannian setting. In particular, we will use a variational approach by defining a suitable functional on an appropriate space and then we will study the evolution problem along the negative gradient flow lines: the convergence at infinity will provide a solution to the initial problem.

Indeed, with respect to [1], new technical issues will appear, which are essentially due to our sub-Riemannian setting: in particular all the computations and the estimates regarding the convergence along the flow lines have to be done accordingly to the projection on the space of $L^{2} \mathrm{CR}$ pluriharmonic functions, that we defined earlier. Moreover, some technical estimates on the sphere will be adapted to the CR setting as we will see in Section 5 and the Appendix. Therefore, let us define the following functional $E: H \rightarrow \mathbb{R}$, by

$$
E(u)=\int_{M} u \bar{P}^{\prime} u+2 \int_{M} \bar{Q}^{\prime} u
$$

where $H=\hat{\mathcal{P}} \cap \mathcal{S}^{2}(M)$ and $\mathcal{S}^{2}(M)$ is the Folland-Stein Sobolev space equipped with the equivalent norm (see section 2), defined by

$$
\begin{equation*}
\|u\|^{2}=\int_{M} u \bar{P}^{\prime} u+\int_{M} u^{2} \tag{3}
\end{equation*}
$$

We consider the following space, which will serve as a constraint

$$
X=\left\{u \in H ; N(u):=\int_{M} \Gamma\left(f e^{2 u}\right)=\int_{M} \bar{Q}^{\prime}\right\}
$$

we notice that the space is well defined since $e^{u} \in L^{2}$, see [9], Theorem 3.1.
As in the classical case, we will need the following hypotheses, depending on the sign of $\int_{M} \bar{Q}^{\prime}$, namely:

$$
\begin{cases}(i) \inf _{x \in M} f(x)<0, & \text { if } \int_{M}{\bar{Q}^{\prime}<0}^{(i i)} \sup _{x \in M} f(x)>0, \inf _{x \in M} f(x)<0 \tag{4}\\ \text { if } \int_{M}{\bar{Q}^{\prime}}^{\prime}=0 \\ (i i i) \sup _{x \in M} f(x)>0, & \text { if } 0<\int_{M} \bar{Q}^{\prime} \leq 16 \pi^{2}\end{cases}
$$

In the case when $\int_{M} \bar{Q}^{\prime}=0$, we let ℓ be the unique CR pluriharmonic function satisfying $\bar{P}_{\theta}^{\prime} \ell+\bar{Q}^{\prime}=0$ and $\int_{M} \ell=0$, see [9], Theorem 1.1. Notice that $\bar{Q}_{e^{\ell} \theta}^{\prime}=0$. We also recall that in the critical case $M=S^{3}$, there are some extra compatibility conditions of Kazdan-Warner type that f needs to satisfy in order to be the \bar{Q}^{\prime}-curvature of a contact structure conformal to the standard one on the sphere (see Theorem 1.3. in [17]).
Now, in order to define the flow equation, we compute the first variation of E, N, and their $\left(\mathcal{S}^{2}\right)$ gradient, respectively:

$$
\begin{aligned}
\langle\nabla E(u), \phi\rangle & =2 \int_{M}\left(\bar{P}^{\prime} u+\bar{Q}^{\prime}\right) \phi, \forall \phi \in H \\
\langle\nabla N(u), \phi\rangle & =2 \int_{M} \Gamma\left(f e^{2 u}\right) \phi, \forall \phi \in H \\
\nabla E(u) & =2\left(\bar{P}^{\prime}+I\right)^{-1}\left(\bar{P}^{\prime} u+\bar{Q}^{\prime}\right) \\
\nabla N(u) & =2\left(\bar{P}^{\prime}+I\right)^{-1} \Gamma\left(f e^{2 u}\right)
\end{aligned}
$$

In addition, since by hypotheses (4), $\nabla N \neq 0$ on X, then X is a regular hypersurface in H and a unit normal vector field on X is given by $\nabla N /\|\nabla N\|$. Indeed, $\nabla N(u) \neq 0$ if and only if $\Gamma\left(e^{2 u} f\right) \neq 0$. This last identity is clear for the hypothesis (i) and (iii). But for (ii), recall that $f \in \hat{\mathcal{P}}$, so if $\Gamma\left(e^{2 u} f\right)=0$, then $\int_{M} e^{2 u} f^{2}=0$, leading to a contradiction. The gradient of E restricted to X is then

$$
\nabla^{X} E=\nabla E-\left\langle\nabla E, \frac{\nabla N}{\|\nabla N\|}\right\rangle \frac{\nabla N}{\|\nabla N\|}
$$

Finally, the (negative) gradient flow equation is given by

$$
\left\{\begin{array}{l}
\partial_{t} u=-\nabla^{X} E(u) \tag{5}\\
u(0)=u_{0} \in X
\end{array}\right.
$$

Now we can state our main results.
Theorem 1.1. Let $\left(M, T^{1,0} M, \theta\right)$ be a pseudo-Einstein CR three dimensional manifold such that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Let us assume that $\int_{M} \bar{Q}^{\prime}<0$ and let $f \in C(M) \cap \hat{\mathcal{P}}$ as in (4). Then there exists a positive constant C_{0} depending on $f^{-}=\max \{-f, 0\}, M$ and θ, such that if

$$
e^{\tau\left\|u_{0}\right\|^{2}} \sup _{x \in M} f(x) \leq C_{0}
$$

for a constant $\tau>1$ depending on M and θ, then as $t \rightarrow \infty$, the flow converges in H to a solution u_{∞} of (11). Moreover, there exist constants $B, \beta>0$ such that

$$
\left\|u(t)-u_{\infty}\right\| \leq B(1+t)^{-\beta}
$$

for all $t \geq 0$.
Theorem 1.2. Let $\left(M, T^{1,0} M, \theta\right)$ be a pseudo-Einstein $C R$ three dimensional manifold such that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Let us assume that $\int_{M} \bar{Q}^{\prime}=0$ and let $f \in C(M) \cap \hat{\mathcal{P}}$ as in (4). Then as $t \rightarrow \infty$, the flow converges in H to a function u_{∞} and there exists a constant λ such that $v=u_{\infty}+\lambda$ satisfies

$$
\bar{P}^{\prime} v+\bar{Q}^{\prime}=\delta \Gamma\left(f e^{2 v}\right)
$$

where $\delta \in\{+1,0,-1\}$. Moreover, there exist constants $B, \beta>0$ such that

$$
\left\|u(t)-u_{\infty}\right\| \leq B(1+t)^{-\beta}
$$

for all $t \geq 0$. If in addition, we assume that $\int_{M} f e^{2 \ell} \neq 0$, then $\delta \neq 0$.
Theorem 1.3. Let $\left(M, T^{1,0} M, \theta\right)$ be a pseudo-Einstein $C R$ three dimensional manifold such that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Let us assume that $0<\int_{M} \bar{Q}^{\prime}<16 \pi^{2}$ and let $f \in C(M) \cap \hat{\mathcal{P}}$ as in (4). Then as $t \rightarrow \infty$, the flow converges in H to a solution u_{∞} of (1). Moreover, there exist constants $B, \beta>0$ such that

$$
\left\|u(t)-u_{\infty}\right\| \leq B(1+t)^{-\beta}
$$

for all $t \geq 0$.

Finally, the critical case of the sphere, which is a bit different. We will consider a group G acting on S^{3} preserving the CR structure. We denote by Σ the set of points fixed by G, that is

$$
\Sigma=\left\{x \in S^{3} ; g \cdot x=x, \forall g \in G\right\}
$$

and we will assume f being invariant under G, namely $f(g \cdot x)=f(x), \forall g \in G$. Then we have the following
Theorem 1.4. Let us consider the sphere $M=S^{3}$ equipped with its standard contact structure and let $f \in C(M) \cap \hat{\mathcal{P}}$ as in (4) and invariant under G. Let us assume that also $u_{0} \in X$ is invariant under G. If $\Sigma=\emptyset$ or

$$
\sup _{x \in \Sigma} f(x) \leq e^{-\frac{E\left(u_{0}\right)}{16 \pi^{2}}}
$$

then as $t \rightarrow \infty$, the flow converges in H to a solution (invariant under G) u_{∞} of (11). Moreover, there exist constants $B, \beta>0$ such that

$$
\left\|u(t)-u_{\infty}\right\| \leq B(1+t)^{-\beta},
$$

for all $t \geq 0$.

Acknowledgment

The authors wants to express their gratitude to the referee for his/her careful reading of the paper: the remarks and the suggestions led to a serious improvement of the paper.

2 Some definitions in pseudo-Hermitian geometry

We will follow the notations in [10]. Let M^{3} be a smooth, oriented three-dimensional manifold. A CR structure on M is a one-dimensional complex sub-bundle $T^{1,0} M \subset T_{\mathbb{C}} M:=T M \otimes \mathbb{C}$ such that $T^{1,0} M \cap T^{0,1} M=\{0\}$ for $T^{0,1} M:=\overline{T^{1,0} M}$. Let $\mathcal{H}=\operatorname{Re} T^{1,0} M$ and let $J: \mathcal{H} \rightarrow \mathcal{H}$ be the almost complex structure defined by $J(Z+\bar{Z})=i(Z-\bar{Z})$, for all $Z \in T^{1,0} M$. The condition that $T^{1,0} M \cap T^{0,1} M=\{0\}$ is equivalent to the existence of a contact form θ such that $\operatorname{ker} \theta=\mathcal{H}$. We recall that a 1 -form θ is said to be a contact form if $\theta \wedge d \theta$ is a volume form on M^{3}. Since M is oriented, a contact form always exists, and is determined up to multiplication by a positive real-valued smooth function. We say that $\left(M^{3}, T^{1,0} M\right)$ is strictly pseudo-convex if the Levi form $d \theta(\cdot, J \cdot)$ on $\mathcal{H} \otimes \mathcal{H}$ is positive definite for some, and hence any, choice of contact form θ. We shall always assume that our CR manifolds are strictly pseudo-convex.
Notice that in a CR-manifold, there is no canonical choice of the contact form θ. A pseudoHermitian manifold is a triple ($M^{3}, T^{1,0} M, \theta$) consisting of a CR manifold and a contact form. The Reeb vector field T is the vector field such that $\theta(T)=1$ and $d \theta(T, \cdot)=0$. The choice of θ induces a natural L^{2}-dot product $\langle\cdot, \cdot\rangle$, defined by

$$
\langle f, g\rangle=\int_{M} f(x) g(x) \theta \wedge d \theta
$$

A (1,0)-form is a section of $T_{\mathbb{C}}^{*} M$ which annihilates $T^{0,1} M$. An admissible coframe is a non-vanishing $(1,0)$-form θ^{1} in an open set $U \subset M$ such that $\theta^{1}(T)=0$. Let $\theta^{\overline{1}}:=\overline{\theta^{1}}$ be
its conjugate. Then $d \theta=i h_{1 \overline{1}} \theta^{1} \wedge \theta^{\overline{1}}$ for some positive function $h_{1 \overline{1}}$. The function $h_{1 \overline{1}}$ is equivalent to the Levi form. We set $\left\{Z_{1}, Z_{\overline{1}}, T\right\}$ to the dual of $\left(\theta^{1}, \theta^{\overline{1}}, \theta\right)$. The geometric structure of a CR manifold is determined by the connection form $\omega_{1}{ }^{1}$ and the torsion form $\tau_{1}=A_{11} \theta^{1}$ defined in an admissible coframe θ^{1} and is uniquely determined by

$$
\left\{\begin{array}{l}
d \theta^{1}=\theta^{1} \wedge \omega_{1}^{1}+\theta \wedge \tau^{1} \\
\omega_{1 \overline{1}}+\omega_{\overline{1} 1}=d h_{1 \overline{1}}
\end{array}\right.
$$

where we use $h_{1 \overline{1}}$ to raise and lower indices. The connection forms determine the pseudoHermitian connection ∇, also called the Tanaka-Webster connection, by

$$
\nabla Z_{1}:=\omega_{1}^{1} \otimes Z_{1}
$$

The scalar curvature R of θ, also called the Webster curvature, is given by the expression

$$
d \omega_{1}^{1}=R \theta^{1} \wedge \theta^{\overline{1}} \quad \bmod \theta
$$

Definition 2.1. A real-valued function $w \in C^{\infty}(M)$ is $C R$ pluriharmonic if locally $w=\operatorname{Ref}$ for some complex-valued function $f \in C^{\infty}(M, \mathbb{C})$ satisfying $Z_{\overline{1}} f=0$.

Equivalently, [20], w is a CR pluriharmonic function if

$$
\Phi w:=\nabla_{1} \nabla_{1} \nabla^{1} w+i A_{11} \nabla^{1} w=0
$$

for $\nabla_{1}:=\nabla_{Z_{1}}$. We denote by \mathcal{P} the space of all CR pluriharmonic functions and $\hat{\mathcal{P}}$ the completion of \mathcal{P} in $L^{2}(M)$, also called the space of $L^{2} \mathrm{CR}$ pluriharmonic functions. Let $\Gamma: L^{2}(M) \rightarrow \hat{\mathcal{P}}$ be the orthogonal projection on the space of L^{2} pluriharmonic functions. If $S: L^{2}(M) \rightarrow \operatorname{ker} \bar{\partial}_{b}$ denotes the Szego kernel, then

$$
\begin{equation*}
\Gamma=S+\bar{S}+F, \tag{6}
\end{equation*}
$$

where F is a smoothing kernel as shown in [19]. The Paneitz operator P_{θ} is the differential operator

$$
\begin{aligned}
P_{\theta}(w) & :=4 \operatorname{div}(\Phi w) \\
& =\Delta_{b}^{2} w+T^{2}-4 \operatorname{Im} \nabla^{1}\left(A_{11} \nabla^{1} f\right)
\end{aligned}
$$

for $\Delta_{b}:=\nabla^{1} \nabla_{1}+\nabla^{\overline{1}} \nabla_{\overline{1}}$ the sub-Laplacian. In particular, $\mathcal{P} \subset$ ker P_{θ}. Hence, ker P_{θ} is infinite dimensional. For a thorough study of the analytical properties of P_{θ} and its kernel, we refer the reader to [19, 6, 8]. The main property of the Paneitz operator P_{θ} is that it is CR covariant [16]. That is, if $\hat{\theta}=e^{w} \theta$, then $e^{2 w} P_{\hat{\theta}}=P_{\theta}$.
Definition 2.2. Let $\left(M^{3}, T^{1,0} M, \theta\right)$ be a pseudo-Hermitian manifold. The Paneitz type operator $P_{\theta}^{\prime}: \mathcal{P} \rightarrow C^{\infty}(M)$ is defined by

$$
\begin{align*}
P_{\theta}^{\prime} f= & 4 \Delta_{b}^{2} f-8 \operatorname{Im}\left(\nabla^{\alpha}\left(A_{\alpha \beta} \nabla^{\beta} f\right)\right)-4 \operatorname{Re}\left(\nabla^{\alpha}\left(R \nabla_{\alpha} f\right)\right) \\
& +\frac{8}{3} \operatorname{Re}\left(\nabla_{\alpha} R-i \nabla^{\beta} A_{\alpha \beta}\right) \nabla^{\alpha} f-\frac{4}{3} f \nabla^{\alpha}\left(\nabla_{\alpha} R-i \nabla^{\beta} A_{\alpha \beta}\right) \tag{7}
\end{align*}
$$

for $f \in \mathcal{P}$.

The main property of the operator P_{θ}^{\prime} is its "almost" conformal covariance as shown in [2, 10]. That is if $\left(M^{3}, T^{1,0} M, \theta\right)$ is a pseudo-Hermitian manifold, $w \in C^{\infty}(M)$, and we set $\hat{\theta}=e^{w} \theta$, then

$$
\begin{equation*}
e^{2 w} P_{\hat{\theta}}^{\prime}(u)=P_{\theta}^{\prime}(u)+P_{\theta}(u w) \tag{8}
\end{equation*}
$$

for all $u \in \mathcal{P}$. In particular, since P_{θ} is self-adjoint and $\mathcal{P} \subset \operatorname{ker} P_{\theta}$, we have that the operator P^{\prime} is conformally covariant, $\bmod \mathcal{P}^{\perp}$.

Definition 2.3. A pseudo-Hermitian manifold $\left(M^{3}, T^{1,0} M, \theta\right)$ is pseudo-Einstein if

$$
\nabla_{\alpha} R-i \nabla^{\beta} A_{\alpha \beta}=0 .
$$

Moreover, if θ induces a pseudo-Einstein structure then $e^{u} \theta$ is pseudo-Einstein if and only if $u \in \mathcal{P}$. The definition above was stated in [10], but it was implicitly mentioned in [16]. In particular, if ($M^{3}, T^{1,0} M, \theta$) is pseudo-Einstein, then P_{θ}^{\prime} takes a simpler form:

$$
P_{\theta}^{\prime} f=4 \Delta_{b}^{2} f-8 \operatorname{Im}\left(\nabla^{1}\left(A_{11} \nabla^{1} f\right)\right)-4 \operatorname{Re}\left(\nabla^{1}\left(R \nabla_{1} f\right)\right) .
$$

In particular, one has

$$
\int_{M} u P_{\theta}^{\prime} u \geq 4 \int_{M}\left|\Delta_{b} u\right|^{2}-C \int_{M}\left|\nabla_{b} u\right|^{2} .
$$

Using the interpolation inequality

$$
\int_{M}\left|\nabla_{b} u\right|^{2} \leq C\|u\|_{L^{2}}\left\|\Delta_{b} u\right\|_{L^{2}}
$$

and $2 a b \leq \varepsilon a^{2}+\frac{1}{\epsilon} b^{2}$, we have the existence of $C_{1}>0$ and $C_{2}>0$, such that

$$
\int_{M} u P_{\theta}^{\prime} u \geq C_{1} \int_{M}\left|\Delta_{b} u\right|^{2}-C_{2} \int_{M} u^{2}
$$

Hence, if P_{θ}^{\prime} is non-negative, with trivial kernel, one has the equivalence of the Folland-Stein Sobolev norm and (3).

Definition 2.4. Let $\left(M^{3}, T^{1,0} M, \theta\right)$ be a pseudo-Einstein manifold. The Q^{\prime}-curvature is the scalar quantity defined by

$$
\begin{equation*}
Q_{\theta}^{\prime}=2 \Delta_{b} R-4|A|^{2}+R^{2} \tag{9}
\end{equation*}
$$

The main equation that we will be dealing with is the change of the Q^{\prime}-curvature under conformal change. Let $\left(M^{3}, T^{1,0} M, \theta\right)$ be a pseudo-Einstein manifold, let $w \in \mathcal{P}$, and set $\hat{\theta}=e^{w} \theta$. Hence $\hat{\theta}$ is pseudo-Einstein. Then [2, 10]

$$
\begin{equation*}
e^{2 w} Q_{\hat{\theta}}^{\prime}=Q_{\theta}^{\prime}+P_{\theta}^{\prime}(w)+\frac{1}{2} P_{\theta}\left(w^{2}\right) \tag{10}
\end{equation*}
$$

In particular, Q_{θ}^{\prime} behaves as the Q-curvature for $P_{\theta}^{\prime}, \bmod \mathcal{P}^{\perp}$. Since we are working modulo \mathcal{P}^{\perp} it is convenient to project the previously defined quantities on $\hat{\mathcal{P}}$. So we define the operator $\bar{P}_{\theta}^{\prime}=\Gamma \circ P_{\theta}^{\prime}$ and the \bar{Q}^{\prime}-curvature by $\bar{Q}_{\theta}^{\prime}=\Gamma\left(Q_{\theta}^{\prime}\right)$. Notice that

$$
\int_{M} Q_{\theta}^{\prime} \theta \wedge d \theta=\int_{M} \bar{Q}_{\theta}^{\prime} \theta \wedge d \theta
$$

Moreover, the operator $\bar{P}_{\theta}^{\prime}$ has many interesting analytical properties. Indeed, $\bar{P}_{\theta}^{\prime}: \mathcal{P} \rightarrow \hat{\mathcal{P}}$ is an elliptic pseudo-differential operator (see [9]) and if we assume that ker $\bar{P}_{\theta}^{\prime}=\mathbb{R}$, then its Green's function G satisfies

$$
\bar{P}_{\theta}^{\prime} G(\cdot, y)=\Gamma(\cdot, y)-\frac{1}{V}
$$

where $V=\int_{M} \theta \wedge d \theta$ is the volume of M and $\Gamma(\cdot, \cdot)$ is the kernel of the projection operator Γ. Moreover,

$$
G(x, y)=-\frac{1}{4 \pi^{2}} \ln \left(\left|x y^{-1}\right|\right)+\mathcal{K}(x, y)
$$

where \mathcal{K} is a bounded kernel as proved in [7].

3 Preliminary results on the flow

First we recall one fundamental inequality that we will be using all along this paper, namely the CR version of the Beckner-Onofri inequality. This inequality was first proved in the odd dimensional spheres in [3] and then naturally extended to pseudo-Einstein 3-manifolds in [9, Theorem 3.1].

Theorem 3.1. Assume that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Then, there exists $C>0$ such that for all $u \in \hat{\mathcal{P}} \cap \mathcal{S}^{2}(M)$ with $\int_{M} u=0$, we have

$$
\frac{1}{16 \pi^{2}} \int_{M} u \bar{P}^{\prime} u+C \geq \ln \left(f_{M} e^{2 u}\right)
$$

In the case of the sphere, C can be taken to be 0 and equality holds if and only if $u=J(h)$ with $h \in A u t\left(S^{3}\right)$ and $J(h)=\operatorname{det}(\operatorname{Jac}(h))$ is the determinant of the Jacobian determinant of h. The dual version of the above inequality was also investigated in [22], where the existence of extremals was investigated.
Now, we prove the global existence of solutions of (5):
Lemma 3.1. Let $\left(M, T^{1,0} M, \theta\right)$ be a pseudo-Einstein $C R$ three dimensional manifold such that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Let $f \in C(M) \cap \hat{\mathcal{P}}$ as in (4). Then for any $u_{0} \in X$ there exists a solution $u \in C^{\infty}([0, \infty), H)$ of problem (5) such that $u(t) \in X$, for all $t \geq 0$. Moreover it holds

$$
\int_{0}^{t}\left\|\partial_{s} u(s)\right\|^{2} d s=E\left(u_{0}\right)-E(u(t))
$$

for all $t \geq 0$.
Proof. Since all the functionals involved are regular, the short time existence of a solution u for (5) is ensured by the Cauchy-Lipschitz Theorem. In order to extend it to all $t \geq 0$, we notice that

$$
\left\|\partial_{t} u\right\|=\left\|\nabla^{X} E(u)\right\| \leq 2\|\nabla E(u)\| \leq C_{1}\|u\|+C_{2}
$$

Thus, since

$$
\partial_{t}\|u\|^{2}=2\left\langle u, \partial_{t} u\right\rangle \leq C_{3}\|u\|^{2}+C_{4}
$$

by Gronwall's lemma, the solution u exists for all $t \geq 0$. In addition

$$
\partial_{t} N(u)=\left\langle\nabla N(u), \partial_{t} u\right\rangle=-\left\langle\nabla N(u), \nabla^{X} E(u)\right\rangle=0
$$

therefore $u(t) \in X$, for all $t \geq 0$. Finally, we have

$$
\partial_{t} E(u)=\left\langle\nabla E(u), \partial_{t} u\right\rangle=-\left\|\partial_{t} u\right\|^{2}
$$

Hence, E is decreasing along the flow and the following energy identity holds

$$
\begin{equation*}
\int_{0}^{t}\left\|\partial_{s} u\right\|^{2} d s=E\left(u_{0}\right)-E(u(t)) \tag{11}
\end{equation*}
$$

Next we prove the following lemma about the convergence
Lemma 3.2. Let $\left(M, T^{1,0} M, \theta\right)$ be a pseudo-Einstein $C R$ three dimensional manifold such that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Let $f \in C(M) \cap \hat{\mathcal{P}}$ as in (4) and let u be the solution of problem (5) obtained in the previous Lemma (3.1). If there exists a constant $C>0$ such that $\|u(t)\| \leq C$, for all $t \geq 0$, then when $t \rightarrow \infty, u(t) \rightarrow u_{\infty}$ in H and u_{∞} solves the equation

$$
\bar{P}^{\prime} u+\bar{Q}^{\prime} u=\lambda \Gamma\left(f e^{2 u}\right)
$$

for a certain $\lambda \in \mathbb{R}$. Moreover, there exist constants $B, \beta>0$ such that

$$
\left\|u(t)-u_{\infty}\right\| \leq B(1+t)^{-\beta}
$$

for all $t \geq 0$.
Proof. Since $\|u\| \leq C$, we have that

$$
|E(u)| \leq 2\|u\|^{2}+C_{2}
$$

Therefore, by the previous energy estimate

$$
\int_{0}^{\infty}\left\|\partial_{t} u\right\|^{2} d t<\infty
$$

So there exists a sequence $t_{k} \rightarrow \infty$ such that

$$
\left\|\partial_{t} u\left(t_{k}\right)\right\|=\left\|\nabla^{X} E\left(u\left(t_{k}\right)\right)\right\| \rightarrow 0
$$

Now, from the boundedness of $\|u\|$, we also have the convergence $u\left(t_{k}\right) \rightarrow u_{\infty}$ strongly in $L^{2}(M)$ and weakly in $\mathcal{S}^{2}(M)$. From Theorem 3.1, we have that $e^{2 u\left(t_{k}\right)} \in L^{p}(M)$, with $p \geq 1$, and $\left\|e^{2 u\left(t_{k}\right)}\right\|_{L^{p}}$ is uniformly bounded. Thus by Egorov's lemma, we can deduce that

$$
\left\|f e^{2 u\left(t_{k}\right)}-f e^{2 u_{\infty}}\right\|_{L^{p}} \rightarrow 0,1 \leq p<\infty
$$

Indeed, we fix $\varepsilon>0$. Then, there exists a set A with $\operatorname{Vol}(A)<\varepsilon$ such that $f e^{2 u\left(t_{k}\right)}$ converges uniformly to $f e^{2 u_{\infty}}$ on $M \backslash A$. Therefore,

$$
\begin{aligned}
\left\|f e^{2 u\left(t_{k}\right)}-f e^{2 u_{\infty}}\right\|_{L^{p}} \leq & C\left\|f e^{2 u\left(t_{k}\right)}-f e^{2 u_{\infty}}\right\|_{L^{\infty}(M \backslash A)} \\
& +\left(\left\|f e^{2 u\left(t_{k}\right)}\right\|_{L^{\tilde{p}}}+\left\|f e^{2 u_{\infty}}\right\|_{L^{\tilde{p}}}\right) \operatorname{Vol}(A)^{\frac{1}{p}-\frac{1}{\tilde{p}}}
\end{aligned}
$$

for $p<\tilde{p}<\infty$. So the conclusion follows from the uniform boundedness of $\left\|e^{2 u\left(t_{k}\right)}\right\|_{L^{p}}$, for all $1 \leq p<\infty$.
Thus $u_{\infty} \in X$. Now we have that

$$
\nabla N\left(u\left(t_{k}\right)\right)=2\left(\bar{P}^{\prime}+I\right)^{-1} \Gamma\left(f e^{2 u\left(t_{k}\right)}\right)
$$

and since $f e^{2 u\left(t_{k}\right)}$ converges strongly in $L^{p}(M)$ and Γ maps continuously $L^{p}(M)$ to $L^{p}(M)$ (this follows from (6) and [24]), we have by the compactness of $\bar{P}^{\prime}+I$ that $\nabla N\left(u\left(t_{k}\right)\right.$ converges strongly to $\nabla N\left(u_{\infty}\right)$. Also,

$$
\nabla E(u(t))=2\left(\bar{P}^{\prime}+I\right)^{-1}\left(\bar{P}^{\prime} u+\bar{Q}^{\prime}\right)=2 u(t)+2\left(\bar{P}^{\prime}+I\right)^{-1}\left(\bar{Q}^{\prime}-u\right) .
$$

Thus, since $\partial_{t} u\left(t_{k}\right) \rightarrow 0$ in $\mathcal{S}^{2}(M)$, we have that $u\left(t_{k}\right)$ converges strongly to u_{∞} and $\nabla^{X} E\left(u_{\infty}\right)=0$. Moreover, we have

$$
\left(\bar{P}^{\prime}+I\right)^{-1}\left(\bar{P}^{\prime} u_{\infty}+\bar{Q}^{\prime}\right)=\lambda\left(u_{\infty}\right)\left(\bar{P}^{\prime}+I\right)^{-1} \Gamma\left(f e^{2 u_{\infty}}\right)
$$

where

$$
\lambda\left(u_{\infty}\right)=\frac{\left\langle\nabla E\left(u_{\infty}\right), \nabla N\left(u_{\infty}\right)\right\rangle}{\left\|\nabla N\left(u_{\infty}\right)\right\|^{2}} .
$$

Now by integration we have that

$$
\int_{M} \bar{Q}^{\prime}=\lambda\left(u_{\infty}\right) \int_{M} \Gamma\left(f e^{2 u_{\infty}}\right),
$$

and since $u_{\infty} \in X$, we have if $\int_{M} \bar{Q}^{\prime} \neq 0$, that $\lambda\left(u_{\infty}\right)=1$ and hence u_{∞} solves the desired equation. On the other hand, if $\int_{M} \bar{Q}^{\prime}=0$, either $\lambda\left(u_{\infty}\right)=0$ and thus

$$
\bar{P}^{\prime} u_{\infty}+\bar{Q}^{\prime}=0,
$$

or $\lambda\left(u_{\infty}\right)>0$, thus setting $v=u_{\infty}+\frac{1}{2} \ln \left(\lambda\left(u_{\infty}\right)\right)$ we have

$$
\bar{P}^{\prime} v+\bar{Q}^{\prime}=\Gamma\left(f e^{2 v}\right)
$$

and similarly if $\lambda\left(u_{\infty}\right)<0$, we have a function $v=u_{\infty}+\frac{1}{2} \ln \left(-\lambda\left(u_{\infty}\right)\right)$ such that

$$
\bar{P}^{\prime} v+\bar{Q}^{\prime}=-\Gamma\left(f e^{2 v}\right)
$$

In particular, if we assume that $\int_{M} f e^{2 \ell} \neq 0$ in the case $\lambda\left(u_{\infty}\right)=0$, we have $u_{\infty}-\ell$ is constant. Hence,

$$
0=\int_{M} f e^{2 u_{\infty}}=e^{2\left(u_{\infty}-\ell\right)} \int_{M} f e^{2 \ell} \neq 0
$$

which is a contradiction.
The polynomial convergence of the flow can be deduced from the Lojasiewicz-Simon inequality following Theorem 3 in [25] and Lemma 3.2 in [1]. Let $\eta: H \rightarrow T_{u_{\infty}} X$ be the natural
projection, where $T_{u_{\infty}} X$ denotes the tangent space of the manifold X at the point u_{∞}. We have, for $v \in T_{u_{\infty}} X$

$$
\left(\nabla^{X}\right)^{2} E\left(u_{\infty}\right) v=\eta\left(\nabla^{2} E\left(u_{\infty}\right) v-\frac{\left\langle\nabla E\left(u_{\infty}\right), \nabla N\left(u_{\infty}\right)\right\rangle}{\|\nabla N(u)\|^{2}} \nabla^{2} N\left(u_{\infty}\right) v+R^{\perp} v\right)
$$

where $R^{\perp} v$ is the component along $\nabla N\left(u_{\infty}\right)$. Thus, since $\eta\left(R^{\perp} v\right)=0$, we have that

$$
\left(\nabla^{X}\right)^{2} E\left(u_{\infty}\right) v=2\left(I-\eta\left(\bar{P}^{\prime}+1\right)\right) v-4 \frac{\left\langle\nabla E\left(u_{\infty}\right), \nabla N\left(u_{\infty}\right)\right\rangle}{\|\nabla N(u)\|^{2}}\left(\bar{P}^{\prime}+1\right)^{-1} \Gamma\left(f e^{2 u_{\infty}} v\right) .
$$

It can be checked that $\left(\nabla^{X}\right)^{2} E\left(u_{\infty}\right): T_{u_{\infty}} X \rightarrow T_{u_{\infty}} X$ is a Fredholm operator, then there exists a constant $\delta>0$ and $0<\kappa<\frac{1}{2}$ such that if $\left\|u(t)-u_{\infty}\right\|<\delta$, it holds

$$
\left\|\nabla^{X} E(u)\right\| \geq\left(E(u(t))-E\left(u_{\infty}\right)\right)^{1-\kappa} .
$$

We note that if $E\left(u\left(t_{0}\right)\right)=E\left(u_{\infty}\right)$ for some $t_{0} \geq 0$, then the flow is stationary and the estimate is trivially satisfied. So we can assume that $E(u(t))-E\left(u_{\infty}\right)>0$, for all $t \geq 0$. Since $\lim _{n \rightarrow \infty}\left\|u\left(t_{n}\right)-u_{\infty}\right\|=0$, for a given $\varepsilon>0$, there exists $n_{0}>0$ such that for $n \geq n_{0}$ we have,

$$
\left\|u\left(t_{n}\right)-u_{\infty}\right\|<\frac{\varepsilon}{2}
$$

and

$$
\frac{1}{\kappa}\left(E\left(u\left(t_{n}\right)\right)-E\left(u_{\infty}\right)\right)^{\kappa}<\frac{\varepsilon}{2} .
$$

We set $\varepsilon=\frac{\delta}{2}$ and

$$
T:=\sup \left\{t \geq t_{n_{0}} ;\left\|u(s)-u_{\infty}\right\|<\delta ; s \in\left[t_{n_{0}}, t\right]\right\}
$$

and we assume for the sake of contradiction that $T<\infty$. Now we have

$$
-\partial_{t}\left[E(u(t))-E\left(u_{\infty}\right)\right]^{\kappa}=-\kappa \partial_{t} E(u(t))\left[E(u(t))-E\left(u_{\infty}\right)\right]^{\kappa-1},
$$

but

$$
-\partial_{t} E(u(t))=-\left\langle E(u), \partial_{t} u\right\rangle=\left\|\nabla^{X} E(u)\right\|\left\|\partial_{t} u\right\| .
$$

Thus, for $t \in\left[t_{n_{0}}, T\right]$ we have

$$
-\partial_{t}\left[E(u(t))-E\left(u_{\infty}\right)\right]^{\kappa} \geq \kappa\left\|\partial_{t} u\right\|,
$$

and since E is non-increasing along the flow, we have after integration in the interval $\left[t_{n_{0}}, T\right]$

$$
\left\|u(T)-u\left(t_{n_{0}}\right)\right\| \leq \int_{t_{n_{0}}}^{T}\left\|\partial_{s} u\right\| d s \leq \frac{1}{\kappa}\left[E\left(u\left(t_{n_{0}}\right)\right)-E\left(u_{\infty}\right)\right]^{\kappa}<\frac{\varepsilon}{2} .
$$

Hence,

$$
\left\|u(T)-u_{\infty}\right\| \leq\left\|u(T)-u\left(t_{n_{0}}\right)\right\|+\left\|u\left(t_{n_{0}}\right)-u_{\infty}\right\|<\varepsilon=\frac{\delta}{2}
$$

which is a contradiction and so $T=+\infty$. We set now $g(t)=E(u(t))-E\left(u_{\infty}\right)$, for $t \in$ $\left[t_{n_{0}},+\infty\right)$. Then we have

$$
g^{\prime}(t)=-\left\|\nabla^{X} E(u)\right\|^{2} \geq g^{2 \kappa-1}(t)
$$

By integration we obtain

$$
g^{2 \kappa-1}(t) \geq g^{2 \kappa-1}\left(t_{n_{0}}\right)+(1-2 \kappa)\left(t-t_{n_{0}}\right)
$$

Since $2 \kappa-1<0$, then

$$
g(t) \leq\left[g^{2 \kappa-1}\left(t_{n_{0}}\right)+(1-2 \kappa)\left(t-t_{n_{0}}\right)\right]^{\frac{1}{2 \kappa-1}} \leq C t^{\frac{1}{2 \kappa-1}}
$$

Now, by taking $t^{\prime}>t$, we have

$$
\left\|u(t)-u\left(t^{\prime}\right)\right\| \leq \int_{t}^{t^{\prime}}\left\|\partial_{s} u\right\| d s \leq \frac{1}{\theta}\left[E(u(t))-E\left(u_{\infty}\right)\right]^{\kappa} \leq \frac{1}{\kappa} g^{\kappa}(t) \leq C t^{\frac{\kappa}{2 \kappa-1}}
$$

For $t^{\prime}=t_{n}$, letting $n \rightarrow \infty$ and setting $\beta=\frac{\kappa}{1-2 \kappa}$, we get that for $t>t_{n_{0}}$

$$
\left\|u(t)-u_{\infty}\right\| \leq C t^{-\beta}
$$

Therefore, since $\left\|u(t)-u_{\infty}\right\|$ is bounded for $t>t_{n_{0}}$, we have the existence of $B>0$ such that for all $t \geq 0$

$$
\left\|u(t)-u_{\infty}\right\| \leq B(1+t)^{-\beta}
$$

Corollary 3.1. Let $\left(M, T^{1,0} M, \theta\right)$ be a pseudo-Einstein $C R$ three dimensional manifold such that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Let $f \in C(M) \cap \hat{\mathcal{P}}$ as in (4) and let u be the solution of problem (5) obtained in the Lemma 3.1). If $\bar{u}=\frac{1}{V} \int_{M} u$ is uniformly bounded then the flow converges. Here $V=\int_{M} \theta \wedge d \theta$ is the volume of M.
Proof. From the energy identity (11) we have that

$$
\int_{M} u \bar{P}^{\prime} u+2 \int_{M} \bar{Q}^{\prime} u \leq E\left(u_{0}\right)
$$

but we also know from the Poincaré-type inequality (or the non-negativity of the operator \bar{P}^{\prime}), that

$$
\int_{M} u \bar{P}^{\prime} u \geq \lambda_{1} \int_{M}(u-\bar{u})^{2}
$$

Here λ_{1} is the first non-zero eigenvalue of the operator \bar{P}^{\prime}. In particular, from Young's inequality, we obtain that

$$
\int_{M} u \bar{P}^{\prime} u \leq E\left(u_{0}\right)+\varepsilon \int_{M}(u-\bar{u})^{2}+C(\varepsilon)\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}-2 \bar{u} \int_{M} \bar{Q}^{\prime}
$$

Hence, for ε small enough, we get

$$
\int_{M} u \bar{P}^{\prime} u \leq C
$$

since \bar{u} is uniformly bounded, then the uniform boundedness of $\|u\|$ and the conclusion follows from Lemma 3.2 .

Therefore, in the rest of the paper, we will show the uniform boundedness of \bar{u} along the flow, in order to have convergence at infinity.

4 The sub-critical case

Along all this section we will assume that \bar{P}^{\prime} is non-negative and $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. Next we consider the three separate cases in which $\int_{M} \bar{Q}^{\prime}<16 \pi^{2}$. Also we let $V=\int_{M} \theta \wedge d \theta$ be the volume of M.

4.1 Case $\int_{M} \bar{Q}^{\prime}<0$ and proof of Theorem 1.1

Lemma 4.1. There exists a positive constant $C>0$ depending on M and θ such that for any measurable subset $K \subset M$ with $\operatorname{Vol}(K)>0$, we have

$$
\int_{M} u \leq\left|E\left(u_{0}\right)\right|+\frac{C}{\operatorname{Vol}(K)}+\frac{4 V}{\operatorname{Vol}(K)} \max \left(\int_{K} u, 0\right)
$$

Proof. Without loss of generality we can assume that $\int_{M} u>0$ otherwise the inequality is trivially satisfied. First

$$
\int u \bar{P}^{\prime} u \leq E\left(u_{0}\right)-2 \int_{M} \bar{Q}^{\prime} u
$$

and

$$
\|u-\bar{u}\|_{L^{2}}^{2} \leq \frac{1}{\lambda_{1}} \int_{M} u \bar{P}^{\prime} u
$$

Hence,

$$
\int_{M} u^{2} \leq \frac{1}{\lambda_{1}} E\left(u_{0}\right)-\frac{2}{\lambda_{1}} \int_{M} \bar{Q}^{\prime} u+\frac{1}{V}\left(\int_{M} u\right)^{2}
$$

Now if $\int_{K} u \leq 0$, then we have

$$
\left(\int_{M} u\right)^{2} \leq\left(\int_{K^{c}} u\right)^{2} \leq \operatorname{Vol}\left(K^{c}\right) \int_{M} u^{2}
$$

hence

$$
\frac{V o l(K)}{V} \int_{M} u^{2} \leq \frac{1}{\lambda_{1}} E\left(u_{0}\right)-\frac{2}{\lambda_{1}} \int_{M} \bar{Q}^{\prime} u .
$$

Again using Young's inequality we obtain

$$
\int_{M} u^{2} \leq \frac{2 V}{\lambda_{1} \operatorname{Vol}(K)} E\left(u_{0}\right)+\frac{4\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2} V^{2}}{\lambda_{1}^{2} \operatorname{Vol}(K)^{2}},
$$

but

$$
\begin{aligned}
\left(\int_{M} u\right)^{2} & \leq V \int_{M} u^{2} \leq \frac{2 V^{2}}{\lambda_{1} \operatorname{Vol}(K)} E\left(u_{0}\right)+\frac{4\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2} V^{3}}{\lambda_{1}^{2} V o l(K)^{2}} \\
& \leq\left|E\left(u_{0}\right)\right|^{2}+\frac{V^{4}}{\lambda_{1}^{2} \operatorname{Vol}(K)^{2}}+\frac{4\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2} V^{3}}{\lambda_{1}^{2} \operatorname{Vol}(K)^{2}}
\end{aligned}
$$

which yields

$$
\int_{M} u \leq\left|E\left(u_{0}\right)\right|+\frac{C}{V o l K} .
$$

We assume now that $\int_{K} u>0$. Then one has

$$
\int_{M} u^{2} \leq \frac{1}{\lambda_{1}} E\left(u_{0}\right)-\frac{2}{\lambda_{1}} \int_{M}{\bar{Q}^{\prime}}^{\prime}+\frac{1}{V}\left(\left(\int_{K} u\right)^{2}+\left(\int_{K^{c}} u\right)^{2}+2 \int_{K^{c}} u \int_{K} u\right)
$$

and

$$
\frac{2}{V} \int_{K^{c}} u \int_{K} u \leq \frac{2 \operatorname{Vol}\left(K^{c}\right)}{\operatorname{Vol}(K) V}\left(\int_{K} u\right)^{2}+\frac{\operatorname{Vol}(K)}{2 V} \int_{M} u^{2}
$$

Hence,

$$
\frac{\operatorname{Vol}(K)}{2 V} \int_{M} u^{2} \leq \frac{1}{\lambda_{1}} E\left(u_{0}\right)-\frac{2}{\lambda_{1}} \int_{M} \bar{Q}^{\prime} u+\frac{3}{\operatorname{Vol}(K)}\left(\int_{K} u\right)^{2} .
$$

By using that

$$
\left|\frac{2}{\lambda_{1}} \int_{M} \bar{Q}^{\prime} u\right| \leq \frac{\operatorname{Vol}(K)}{4 V} \int_{M} u^{2}+\frac{4 V\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}}{\lambda_{1}^{2} \operatorname{Vol}(K)},
$$

we have,

$$
\int_{M} u^{2} \leq \frac{4 V}{\lambda_{1} \operatorname{Vol}(K)}\left|E\left(u_{0}\right)\right|+\frac{16 V^{2}\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}}{\lambda_{1}^{2} \operatorname{Vol}(K)^{2}}+\frac{12 V}{\operatorname{Vol}(K)^{2}}\left(\int_{M} u\right)^{2}
$$

Hence,

$$
\left(\int_{M} u\right)^{2} \leq \frac{4 V^{2}}{\lambda_{1} \operatorname{Vol}(K)}\left|E\left(u_{0}\right)\right|+\frac{16 V^{3}\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}}{\lambda_{1}^{2} \operatorname{Vol}(K)^{2}}+\frac{12 V^{2}}{\operatorname{Vol}(K)^{2}}\left(\int_{M} u\right)^{2}
$$

and therefore

$$
\int_{M} u \leq\left|E\left(u_{0}\right)\right|+\frac{C}{\operatorname{Vol}(K)}+\frac{4 V}{\operatorname{Vol}(K)} \int_{K} u .
$$

Lemma 4.2. Let K be a measurable subset of M such that $\operatorname{Vol}(K)>0$. Then there exists a constant $\alpha>1$ depending on M and θ and a constant $C_{K}>1$ depending on $\operatorname{Vol}(K)$ such that

$$
\int_{M} e^{2 u} \leq C_{K} e^{\alpha\left\|u_{0}\right\|^{2}} \max \left(\left(\int_{K} e^{2 u}\right)^{\alpha}, 1\right)
$$

Proof. Recall that from Theorem 3.1 one has the existence of $C>0$ such that

$$
\int_{M} e^{2 u} \leq C \exp \left(\frac{1}{16 \pi^{2}} \int_{M} u \bar{P}^{\prime} u+\frac{2}{V} \int_{M} u\right)
$$

Again, by the energy identity (11) and Young's inequality, we have

$$
\begin{aligned}
\int_{M} u \bar{P}^{\prime} u & \leq E\left(u_{0}\right)-2 \int_{M} \bar{Q}^{\prime}(u-\bar{u})-2 \bar{u} \int_{M} \bar{Q}^{\prime} \\
& \leq E\left(u_{0}\right)-2 \bar{u} \int_{M} \bar{Q}^{\prime}+\frac{1}{\varepsilon}\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}+\frac{\varepsilon}{\lambda_{1}} \int_{M} u \bar{P}^{\prime} u
\end{aligned}
$$

Thus, for $\varepsilon=\frac{\lambda_{1}}{2}$,

$$
\frac{1}{2} \int_{M} u \bar{P}^{\prime} u \leq E\left(u_{0}\right)-2 \bar{u} \int_{M} \bar{Q}^{\prime}+\frac{2}{\lambda_{1}}\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}
$$

Therefore

$$
\int_{M} e^{2 u} \leq C \exp \left(\frac{1}{8 \pi^{2}} E\left(u_{0}\right)+\frac{\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}}{4 \lambda_{1} \pi^{2}}+\left(2-\frac{1}{4 \pi^{2}} \int_{M} \bar{Q}^{\prime}\right) \bar{u}\right) .
$$

Now we notice that $E\left(u_{0}\right) \leq\left\|u_{0}\right\|^{2}+\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}$, hence there exist constants C_{1} and C_{2} such that

$$
\int_{M} e^{2 u} \leq C_{1} \exp \left(\frac{1}{8 \pi^{2}}\left\|u_{0}\right\|^{2}+C_{2} \int_{M} u\right)
$$

By using Lemma 4.1, we get

$$
\int_{M} e^{2 u} \leq \bar{C}_{K} \exp \left(A_{1}\left\|u_{0}\right\|^{2}+\frac{A_{2}}{\operatorname{Vol}(K)} \max \left(\int_{K} u, 0\right)\right)
$$

where \bar{C}_{K} depends on $\operatorname{Vol}(K)$. Now, we set $\alpha=\max \left(A_{1}, \frac{A_{2}}{2}, 2\right)>1$, and we get

$$
\int_{M} e^{2 u} \leq \bar{C}_{K} \exp \left(\alpha\left\|u_{0}\right\|^{2}+\frac{\alpha}{\operatorname{Vol}(K)} \max \left(\int_{K} 2 u, 0\right)\right)
$$

But Jensen's inequality yields

$$
\exp \left(\frac{1}{\operatorname{Vol}(K)} \int_{K} 2 u\right) \leq \frac{1}{\operatorname{Vol}(K)} \int_{K} e^{2 u}
$$

in particular

$$
\exp \left(\frac{\alpha}{\operatorname{Vol}(K)} \max \left(\int_{K} u, 0\right)\right) \leq \max \left(\left(\frac{1}{\operatorname{Vol}(K)} \int_{K} e^{2 u}\right)^{\alpha}, 1\right)
$$

Therefore, by adjusting the constant eventually

$$
\int_{M} e^{2 u} \leq C_{K} e^{\alpha\left\|u_{0}\right\|^{2}} \max \left(\left(\int_{K} e^{2 u}\right)^{\alpha}, 1\right)
$$

which completes the proof.
Next we move to the proof of Theorem 1.1. We set

$$
K=\left\{x \in M ; f(x) \leq \frac{1}{2} \inf _{x \in M} f(x)\right\}
$$

From the compatibility condition (i) in $(\sqrt[4]{4}$, we have that $\operatorname{Vol}(K)>0$, and since

$$
\int_{M} \bar{Q}^{\prime}=\int_{M} f e^{2 u_{0}}
$$

we obtain

$$
\frac{\int_{M} \bar{Q}^{\prime}}{\inf _{x \in M} f(x)} \leq \int_{M} e^{2 u_{0}}
$$

Thus, there exists $C>0$ (we will assume $C>1$ actually) such that

$$
\int_{M} e^{2 u_{0}} \leq C \exp \left[C\left(\int_{M} u_{0} \bar{P}^{\prime} u_{0}+\int_{M} u_{0}^{2}\right)\right]=C e^{C\left\|u_{0}\right\|^{2}}
$$

Hence,

$$
\begin{equation*}
\frac{\int_{M} \bar{Q}^{\prime}}{\inf _{x \in M} f(x)} \leq C e^{C\left\|u_{0}\right\|^{2}} \tag{12}
\end{equation*}
$$

Next we will prove the following
Lemma 4.3. Let C_{K} and α be the constants found in Lemma 4.2. Let

$$
r=C_{K}(8 C)^{\alpha} e^{(C+1) \alpha\left\|u_{0}\right\|^{2}},
$$

and let us assume that

$$
e^{\tau\left\|u_{0}\right\|^{2}} \sup _{x \in M} f(x) \leq C_{0}
$$

where $\tau=\alpha(C+1)-C$ and

$$
C_{0}=-\frac{\inf _{x \in M} f(x)}{8^{\alpha} C_{K} C^{\alpha-1}} .
$$

Then for all $t \geq 0$, it holds

$$
\int_{M} e^{2 u} \leq 2 r
$$

Proof. Let

$$
T=\sup \left\{s \geq 0 ; \int_{M} e^{2 u} \leq 2 r \text { in }[0, s]\right\}
$$

and let us assume for the sake of contradiction that $T<\infty$. We notice that by continuity, we obtain that

$$
\int_{M} e^{2 u(T)}=2 r .
$$

We assume first that

$$
\int_{M} f^{+} e^{2 u(T)} \leq \frac{1}{2} \int_{M} f^{-} e^{2 u(T)},
$$

where $f^{+}:=\max \{f, 0\}$ and $f^{-}=f^{+}-f$ denote the positive and negative part of f respectively. Then we get

$$
\int_{M} f^{-} e^{2 u(T)} \leq-2 \int_{M} f e^{2 u(T)}=-2 \int_{M} \bar{Q}^{\prime} \leq-4 \int_{M} \bar{Q}^{\prime}
$$

Since in K we have $f^{-}(x) \geq-\frac{1}{2} \inf _{x \in M} f(x)$, we have

$$
\int_{K} e^{2 u(T)} \leq \frac{8 \int_{M} \bar{Q}^{\prime}}{\inf _{x \in M} f(x)}
$$

which combined with (12) gives

$$
\int_{K} e^{2 u(T)} \leq 8 C e^{C\left\|u_{0}\right\|^{2}}
$$

But from Lemma 4.2, we have

$$
\int_{M} e^{2 u(T)} \leq C_{K} e^{\alpha\left\|u_{0}\right\|^{2}} \max \left(\left(\int_{K} e^{2 u}\right)^{\alpha}, 1\right)
$$

Thus

$$
\int_{M} e^{2 u(T)} \leq C_{K} e^{\alpha\left\|u_{0}\right\|^{2}}\left(8 C e^{C\left\|u_{0}\right\|^{2}}\right)^{\alpha}=r
$$

which is a contradiction.
So we move to the next case, where

$$
\int_{M} f^{+} e^{2 u(T)}>\frac{1}{2} \int_{M} f^{-} e^{2 u(T)}
$$

Then we have

$$
-\frac{1}{2} \inf _{x \in M} f(x) \int_{K} e^{2 u(T)} \leq \int_{M} f^{-} e^{2 u(T)}<2 \int_{M} f^{+} e^{2 u(T)} \leq 4 r \sup _{x \in M} f(x)
$$

Hence,

$$
\int_{K} e^{2 u(T)} \leq-\frac{8 r \sup _{x \in M} f(x)}{\inf _{x \in M} f(x)}
$$

By using our assumption, we obtain that

$$
\int_{K} e^{2 u(T)} \leq-\frac{8 r e^{-\tau\left\|u_{0}\right\|^{2}} C_{0}}{\inf _{x \in M} f(x)}
$$

and by Lemma 4.2, we have

$$
\int_{M} e^{2 u(T)} \leq C_{K} e^{\alpha\left\|u_{0}\right\|^{2}}\left(\frac{8 r e^{-\tau\left\|u_{0}\right\|^{2}} C_{0}}{-\inf _{x \in M} f(x)}\right)^{\alpha} \leq r
$$

leading again to a contradiction. Hence $T=+\infty$ and $\int_{M} e^{2 u}$ is uniformly bounded.
Now, by Jensen's inequality we have

$$
\exp \left(\frac{1}{V} \int_{M} 2 u\right) \leq \frac{1}{V} \int_{M} e^{2 u} \leq \frac{2 r}{V}
$$

thus \bar{u} is bounded from above. Now again using the energy identity (11), we get

$$
\int_{M} u \bar{P}^{\prime} u+2 \int_{M} \bar{Q}^{\prime}(u-\bar{u})+2 \bar{u} \int_{M} \bar{Q}^{\prime} \leq E\left(u_{0}\right)
$$

and

$$
\int_{M} u \bar{P}^{\prime} u+2 \int_{M} \bar{Q}^{\prime}(u-\bar{u}) \geq \frac{1}{2} \int_{M} u \bar{P}^{\prime} u-\frac{2\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}}{\lambda_{1}} \geq-C_{3}
$$

Therefore

$$
2 \bar{u} \int_{M} \bar{Q}^{\prime} \leq E\left(u_{0}\right)+C_{3}
$$

and since $\int_{M} \bar{Q}^{\prime}<0$ we have that \bar{u} is uniformly bounded from below which finishes the proof of Theorem 1.1.

4.2 Case $\int_{M} \bar{Q}^{\prime}=0$ and proof of Theorem 1.2

Since $\int_{M} \bar{Q}^{\prime}=0$, we have that

$$
\langle\nabla E(u), 1\rangle=2 \int_{M} \bar{P}^{\prime} u=0
$$

and

$$
\langle\nabla N(u), 1\rangle=2 \int_{M} \Gamma\left(f e^{2 u}\right)=2 \int_{M} \bar{Q}^{\prime}=0 .
$$

Hence,

$$
0=\int_{M} \partial_{t} u=\partial_{t} \int_{M} u
$$

which means that the average value of u is preserved. Therefore $\bar{u}=\bar{u}_{0}$ and by Corollary 3.1, we have the convergence of the flow. This completes the proof of Theorem 1.2.
4.3 Case $0<\int_{M} \bar{Q}^{\prime}<16 \pi^{2}$ and proof of Theorem 1.3

First, we have again from the energy identity (11)

$$
\begin{equation*}
\int_{M} u \bar{P}^{\prime} u+2 \int_{M} \bar{Q}^{\prime}(u-\bar{u})+2 \bar{u} \int_{M} \bar{Q}^{\prime} \leq E\left(u_{0}\right) . \tag{13}
\end{equation*}
$$

Hence

$$
2 \bar{u} \int_{M} \bar{Q}^{\prime} \leq E\left(u_{0}\right)-\frac{1}{2} \int_{M} u \bar{P}^{\prime} u+\frac{2}{\lambda_{1}}\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2}
$$

and then \bar{u} is bounded from above; we will need a bound from below. Since $u \in X$, we get

$$
\int_{M} \bar{Q}^{\prime}=\int_{M} f e^{2 u} \leq\|f\|_{\infty} \int_{M} e^{2 u}
$$

and therefore

$$
\ln \left(\frac{\int_{M} \bar{Q}^{\prime}}{\|f\|_{\infty}}\right) \leq \ln \left(\int_{M} e^{2 u}\right)
$$

Now again from Theorem 3.1 we have

$$
\begin{equation*}
\ln \left(\frac{\int_{M} \bar{Q}^{\prime}}{\|f\|_{\infty}}\right) \leq C+\frac{1}{16 \pi^{2}} \int_{M} u \bar{P}^{\prime} u+\frac{2}{V} \int_{M} u \tag{14}
\end{equation*}
$$

Let $\delta>0$ to be determined later, we sum equation (13) and $-\delta$ times equation (14), obtaining $\ln \left(\frac{\int_{M} \bar{Q}^{\prime}}{\|f\|_{\infty}}\right)-\delta E\left(u_{0}\right) \leq C+\left(\frac{1}{16 \pi^{2}}-\delta\right) \int_{M} u \bar{P}^{\prime} u+2\left(1-\delta \int_{M} \bar{Q}^{\prime}\right) \bar{u}-2 \delta \int_{M} \bar{Q}^{\prime}(u-\bar{u})$.

Since $\int_{M} \bar{Q}^{\prime}<16 \pi^{2}$, we choose δ such that $\int_{M} \bar{Q}^{\prime}<\frac{1}{\delta}<16 \pi^{2}$, and we set

$$
c_{1}=2\left(1-\delta \int_{M} \bar{Q}^{\prime}\right), \quad c_{2}=\delta-\frac{1}{16 \pi^{2}} .
$$

We have

$$
\ln \left(\frac{\int_{M} \bar{Q}^{\prime}}{\|f\|_{\infty}}\right)-\delta E\left(u_{0}\right)-C+c_{2} \int_{M} u \bar{P}^{\prime} u+2 \delta \int_{M} \bar{Q}^{\prime}(u-\bar{u}) \leq c_{1} \bar{u} .
$$

Now we notice that

$$
c_{2} \int_{M} u \bar{P}^{\prime} u+2 \delta \int_{M} \bar{Q}^{\prime}(u-\bar{u}) \geq\left(c_{2} \lambda_{1}-\delta \varepsilon\right)\|u-\bar{u}\|_{L^{2}}^{2}-\frac{\delta}{\varepsilon}\left\|\bar{Q}^{\prime}\right\|_{L^{2}}^{2},
$$

therefore for ε small enough we have that

$$
c_{2} \int_{M} u \bar{P}^{\prime} u+2 \delta \int_{M} \bar{Q}^{\prime}(u-\bar{u}) \geq-c_{3} .
$$

It follows that \bar{u} is bounded from below and therefore from Corollary 3.1 this finishes the proof.

5 The critical case and proof of Theorem 1.4

Here we will study the case $\int_{M} \bar{Q}^{\prime}=16 \pi^{2}$, where $M=S^{3}$ is the sphere equipped with its standard contact structure. We will see S^{3} as a subset of \mathbb{C}^{2} with coordinates $\left(\zeta_{1}, \zeta_{2}\right)$ such that

$$
S^{3}=\left\{\left(\zeta_{1}, \zeta_{2}\right) \in \mathbb{C}^{2} ;\left|\zeta_{1}\right|^{2}+\left|\zeta_{2}\right|^{2}=1\right\}
$$

We recall, following the notations in [3, page 15], that every C^{4} conformal mapping of $\mathbb{H}^{1}=$ $\mathbb{C} \times \mathbb{R}$ comes from the action of $S U(2,1)$ and it can be written as the composition of the following four transformations:

- left translations: $(z, t) \rightarrow\left(z^{\prime}, t^{\prime}\right) *(z, t)$, where here $*$ denotes the group operation on \mathbb{H}^{1},
- dilations: $(z, t) \rightarrow\left(\delta z, \delta^{2} t\right)$ for $\delta>0$,
- rotations: $(z, t) \rightarrow(a z, t)$, where $a \in S^{1} \subset \mathbb{C}$,
- inversion: $(z, t) \rightarrow\left(-\frac{z}{|z|^{2}+i t}, \frac{t}{t^{2}+|z|^{4}}\right)$.

The group of conformal transformation of the Heisenberg group \mathbb{H}^{1}, also called the group of CR automorphisms, will be denoted by $\operatorname{Aut}\left(\mathbb{H}^{1}\right)$. Using the Cayley transform $C: \mathbb{H}^{1} \rightarrow$ $S^{3} \backslash\{(0,-i)\}$ one has a clear description of the set $\operatorname{Aut}\left(S^{3}\right)$:

$$
\operatorname{Aut}\left(S^{3}\right)=\left\{C \circ h \circ C^{-1} ; h \in \operatorname{Aut}\left(\mathbb{H}^{1}\right)\right\} .
$$

For $p \in S^{3}$ and $r \geq 1$, we will write $h_{p, r}$ the element of $\operatorname{Aut}\left(S^{3}\right)$ corresponding to a Cayley transform centered at p and a dilation of size r. That is, if $h \in A u t\left(\mathbb{H}^{1}\right)$ is a dilation with $\delta=r$ and $C_{p}: \mathbb{H}^{1} \rightarrow S^{3} \backslash\{-p\}$ is the Cayley transform sending zero to p (instead of $\left.(0, i)\right)$, then $h_{p, r}=C_{p} \circ h \circ C_{p}^{-1}$. Now, for $u \in X$ we set

$$
v_{p, r}=u \circ h_{p, r}+\frac{1}{2} \ln \left(J\left(h_{p, r}\right)\right),
$$

where we denoted $J(h)=\operatorname{det}(\operatorname{Jac}(h))$, the Jacobian determinant of h. We have

$$
E\left(v_{p, r}\right)=E(u) \leq E\left(u_{0}\right)
$$

and since $u \in X$

$$
\int_{S^{3}} f \circ h_{p, r} e^{2 v_{p, r}}=\int_{S^{3}} f e^{2 u}
$$

hence

$$
\int_{S^{3}} e^{2 v_{p, r}} \geq \frac{16 \pi^{2}}{\sup _{x \in S^{3}} f(x)}
$$

From [3, page 38], we know that for all $t \geq 1$ there exists $r(t) \geq 1$ and $p(t) \in S^{3}$ such that

$$
\int_{S^{3}} \xi_{i} e^{2 v_{p(t), r(t)}}=0, i=1,2 .
$$

So we let $v(t)=v_{p(t), r(t)}$ and $h(t)=h_{p(t), r(t)}$. Then using Corollary A. 2 in the Appendix, one has the existence of $a<\frac{1}{16 \pi^{2}}$ and a constant C_{1} such that

$$
a \int_{S^{3}} v(t) \bar{P}^{\prime} v(t)+2 \int_{S^{3}} v(t)-\ln \left(\int_{S^{3}} e^{2 v(t)}\right)+C_{1} \geq 0 .
$$

Since $E(v(t)) \leq E\left(u_{0}\right)$, we find that

$$
\int_{S^{3}} v(t) \bar{P}^{\prime} v(t) \leq C
$$

and

$$
\left|\int_{S^{3}} v(t)\right| \leq C
$$

In particular we have that for all $p \geq 1$

$$
\int_{S^{3}} e^{2|p v(t)|} \leq C_{p}
$$

and hence

$$
\int_{S^{3}} v^{2}(t) \leq C
$$

leading to the boundedness of $v(t)$ in H. We need the following concentration-compactness lemma in order to prove uniform boundedness.

Lemma 5.1. Either
(i) $\|u(t)\| \leq C$, for some constant C;
or
(ii) there exists a sequence $t_{n} \rightarrow \infty$ and a point $p_{0} \in S^{3}$ such that for all $r>0$

$$
\lim _{n \rightarrow \infty} \int_{B_{r}\left(p_{0}\right)} f e^{2 u\left(t_{n}\right)}=16 \pi^{2}
$$

Moreover, for any $\tilde{x} \in S^{3} \backslash\left\{p_{0}\right\}$, and any $r<d\left(\tilde{x}, p_{0}\right)$, we have

$$
\lim _{n \rightarrow \infty} \int_{B_{r}(\tilde{x})} f e^{2 u\left(t_{n}\right)}=0
$$

Proof. We assume first that $r(t)$ is bounded. Then we get

$$
0<C_{1} \leq J\left(h_{p(t), r(t)}\right) \leq C_{2} .
$$

Thus, from the uniform boundedness of $v(t)$ we have

$$
\int_{S^{3}}|u(t)| \leq C .
$$

Therefore, from Lemma 3.1, it follows that $\|u(t)\|$ is uniformly bounded.
So now we assume that $r(t)$ is not bounded, then there exists a sequence $t_{n} \rightarrow \infty$ such that $r\left(t_{n}\right) \rightarrow \infty$ and without loss of generality, by compactness of S^{3} we can assume that $p\left(t_{n}\right) \rightarrow p_{0}$. From the uniform boundedness of $v(t)$, we can also assume that $v\left(t_{n}\right) \rightarrow v_{\infty}$ strongly in $L^{2}\left(S^{3}\right)$ and weakly in H. We let then $r>0$ and set $K_{n}=h\left(t_{n}\right)^{-1}\left(B_{r}\left(p_{0}\right)\right)$. Then we have

$$
\left|\int_{S^{3}} f \circ h\left(t_{n}\right) e^{2 v\left(t_{n}\right)}-\int_{K_{n}} f \circ h\left(t_{n}\right) e^{2 v\left(t_{n}\right)}\right| \leq\left(\sup _{x \in S^{3}} f(x)\right)\left(\operatorname{Vol}\left(K_{n}^{c}\right) \int_{S^{3}} e^{4\left|v\left(t_{n}\right)\right|}\right)^{\frac{1}{2}} .
$$

Since $h\left(t_{n}\right)(x) \rightarrow p_{0}$ a.e. then $\lim _{n \rightarrow \infty} \operatorname{Vol}\left(K_{n}\right)=V$, and thus

$$
\int_{B_{r}\left(p_{0}\right)} f e^{2 u\left(t_{n}\right)}=\int_{K_{n}} f \circ h\left(t_{n}\right) e^{2 v\left(t_{n}\right)}=\int_{S^{3}} f \circ h\left(t_{n}\right) e^{2 v\left(t_{n}\right)}+o(1) .
$$

We have also

$$
\int_{S^{3}} f \circ h\left(t_{n}\right) e^{2 v\left(t_{n}\right)}=16 \pi^{2},
$$

and then

$$
\lim _{n \rightarrow \infty} \int_{B_{r}\left(p_{0}\right)} f e^{2 u\left(t_{n}\right)}=16 \pi^{2} .
$$

Now if we consider $\tilde{x} \in S^{3} \backslash\left\{p_{0}\right\}$ and $r<d\left(p_{0}, \tilde{x}\right)$ we have that $h\left(t_{n}\right)(x) \notin B_{r}(\tilde{x})$ for n big enough, since $\lim _{n \rightarrow \infty} h\left(t_{n}\right)(x)=p_{0}$ a.e.; in particular

$$
\lim _{n \rightarrow \infty} \chi_{h\left(t_{n}\right)^{-1}\left(B_{r}(\tilde{x})\right)}=0,
$$

where χ is the characteristic function. Therefore

$$
\lim _{n \rightarrow \infty} \int_{B_{r}(\tilde{x})} f e^{2 u\left(t_{n}\right)}=\lim _{n \rightarrow \infty} \int_{h\left(t_{n}\right)^{-1}\left(B_{r}(\tilde{x})\right)} f \circ h\left(t_{n}\right) e^{2 v\left(t_{n}\right)}=0 .
$$

Let us assume now that $\Sigma=\emptyset$. By using the previous lemma, if $\|u(t)\|$ is not uniformly bounded, then there exists $p_{0} \in S^{3}$ such that

$$
\lim _{n \rightarrow \infty} \int_{B_{r}\left(p_{0}\right)} f e^{2 u\left(t_{n}\right)}=16 \pi^{2}
$$

and if $p_{1} \neq p_{0}$ and $r<d\left(p_{0}, p_{1}\right)$, then

$$
\lim _{n \rightarrow \infty} \int_{B_{r}\left(p_{1}\right)} f e^{2 u(t)}=0
$$

Since $\Sigma=\emptyset$, then there exists $g \in G$ such that $p_{1}=g \cdot p_{0} \neq p_{0}$. But

$$
16 \pi^{2}=\lim _{n \rightarrow \infty} \int_{B_{r}\left(p_{0}\right)} f e^{2 u(t)}=\lim _{n \rightarrow \infty} \int_{B_{r}\left(g \cdot p_{0}\right)} f e^{2 u(t)}=\lim _{n \rightarrow \infty} \int_{B_{r}\left(p_{1}\right)} f e^{2 u(t)}=0
$$

which is a contradiction. Hence $\|u(t)\|$ is uniformly bounded.
Now we assume that $\Sigma \neq \emptyset$ and that $\|u(t)\|$ is not uniformly bounded. We have that the concentration point $p_{0} \in \Sigma$, otherwise we reach a contradiction arguing as in the previous case. So we obtain

$$
\int_{B_{r}\left(p_{0}\right)} f e^{2 u\left(t_{n}\right)} \leq \sup _{x \in B_{r}\left(p_{0}\right)} f(x) \int_{B_{r}\left(p_{0}\right)} e^{2 u\left(t_{n}\right)} \leq \max \left(\sup _{x \in B_{r}\left(p_{0}\right)} f(x), 0\right) \int_{S^{3}} e^{2 u\left(t_{n}\right)}
$$

By using the the sphere version of Theorem 3.1, proved in 3], we have that

$$
\frac{1}{V} \int_{S^{3}} e^{2 u\left(t_{n}\right)} \leq e^{\frac{E\left(u\left(t_{n}\right)\right)}{V}}
$$

Thus

$$
\int_{B_{r}\left(p_{0}\right)} f e^{2 u\left(t_{n}\right)}<\max \left(\sup _{x \in B_{r}\left(p_{0}\right)} f(x), 0\right) V e^{\frac{E\left(u_{0}\right)}{V}} .
$$

Now we first let $n \rightarrow \infty$, then $r \rightarrow \infty$ and we get

$$
16 \pi^{2}<V \max \left(f\left(p_{0}\right), 0\right) e^{\frac{E\left(u_{0}\right)}{V}}
$$

Therefore $f\left(p_{0}\right)>0$ and

$$
1<f\left(p_{0}\right) e^{\frac{E\left(u_{0}\right)}{16 \pi^{2}}}
$$

hence

$$
f\left(p_{0}\right)>e^{-\frac{E\left(u_{0}\right)}{16 \pi^{2}}},
$$

which leads to a contradiction of the assumption in Theorem 1.4. Therefore we get the uniform boundedness of $\|u\|$ also in this case, which yields the convergence of the flow and it ends the proof.

A Appendix: Improved Moser-Trudinger Inequality

In what follows we will consider S^{3} as a subset of \mathbb{C}^{2} with coordinates $\left(\zeta_{1}, \zeta_{2}\right)$ such that $\left|\zeta_{1}\right|^{2}+\left|\zeta_{2}\right|^{2}=1$. We recall here the Improved Moser-Trudinger inequality introduced in [3] in order to prove the existence of a minimizer:
Proposition A.1. ([3], Proposition 3.4) Given $\frac{1}{2}<a<1$, there exist constants $C_{1}(a), C_{2}(a)$ such that for $u \in H$ with $\int_{S^{3}} \zeta_{i} e^{2 u}=0, i=1,2$, it holds:

$$
\frac{a}{16 \pi^{2}} \int_{S^{3}} u P^{\prime} u+2 \int_{S^{3}} u-\ln \left(\int_{S^{3}} e^{2 u}\right)+C_{1}(a)\left\|\left(-\Delta_{b}\right)^{\frac{3}{4}} u\right\|_{2}^{2}+C_{2}(a) \geq 0
$$

This improved estimate will not be useful to us in our setting since it contains the term $C_{1}(a)\left\|\left(-\Delta_{b}\right)^{\frac{3}{4}} u\right\|_{2}^{2}$ that we cannot bound along the flow. Notice that in 3], the authors exploit Ekeland's principle to exhibit a good minimizing Palais-Smale sequence that allows the control of this extra term. In our setting, we will prove a result that can be seen as intermediate between Proposition A. 1 and the usual Moser-Trudinger inequality in Theorem 3.1. In fact in 3 the authors gave hints on how to prove this result, knowing that this method only works in dimension 3 and 5 . We will follow a technique used in [11], since it is simpler and it allows even more improved estimates.
We set

$$
P_{k}:=\left\{\text { polynomials of } \mathbb{C}^{2} \text { with degree at most } k\right\}
$$

and

$$
P_{k, 0}:=\left\{f \in P_{k} ; \int_{S^{3}} f=0\right\} .
$$

For a given $m \in \mathbb{N}$ we let

$$
\mathcal{N}_{m}:=\left\{\begin{array}{l}
N \in \mathbb{N} ; \exists x_{1}, \cdots, x_{N} \in S^{3}, \nu_{1}, \cdots, \nu_{N} \in \mathbb{R}^{+} \text {with } \sum_{k=1}^{N} \nu_{k}=1 \\
\text { and for any } f \in P_{m, 0} ; \sum_{k=1}^{N} \nu_{k} f\left(x_{k}\right)=0
\end{array}\right\} .
$$

We let then $N_{m}=\min \mathcal{N}_{m}$. As it was shown in [11], one has $N_{1}=2$ and $N_{2}=4$. We recall from [3] that one has the following inequality on the standard sphere:
There exists a constant $A_{2}>0$ such that

$$
\int_{S^{3}} \exp \left[A_{2} \frac{|u-\bar{u}|^{2}}{\left\|\Delta_{b} u\right\|_{L^{2}}^{2}}\right] \leq C_{0}
$$

In fact the sharp constant A_{2} was explicitly computed in [3] and it has the value $A_{2}=32$. With this result we can easily deduce that if $u \in \mathcal{S}^{2}\left(S^{3}\right)$ then $e^{2 u} \in L^{p}\left(S^{3}\right)$ for all $1 \leq p<\infty$.
Lemma A.1. Consider a sequence of functions $u_{k} \in \mathcal{S}^{2}\left(S^{3}\right)$ such that

$$
\bar{u}_{k}=0, \quad\left\|\Delta_{b} u_{k}\right\|_{L^{2}} \leq 1
$$

and suppose that $u_{k} \rightharpoonup u$ weakly in $\mathcal{S}^{2}\left(S^{3}\right)$ and

$$
\left|\Delta_{b} u_{k}\right|^{2} \rightharpoonup\left|\Delta_{b} u\right|^{2}+\sigma \text { in measure },
$$

where σ is a measure on S^{3}. Let $K \subset S^{3}$ be a compact set with $\sigma(K)<1$, then for all $1 \leq p<\frac{1}{\sigma(K)}$ we have

$$
\sup _{k} \int_{K} \exp \left[p A_{2} u_{k}^{2}\right]<\infty
$$

Proof. Let φ be a fixed smooth compactly supported function on S^{3}. We set $v_{k}=u_{k}-u$. Then $v_{k} \rightarrow 0$ strongly in L^{2} and weakly in $\mathcal{S}^{2}\left(S^{3}\right)$. Now we compute

$$
\begin{align*}
\int_{S^{3}}\left|\Delta_{b}\left(\varphi v_{k}\right)\right|^{2}= & \int_{S^{3}}\left(\varphi \Delta_{b} v_{k}+v_{k} \Delta_{b} \varphi+2 \nabla_{H} \varphi \nabla_{H} v_{k}\right)^{2} \\
= & \int_{S^{3}} \varphi^{2}\left(\Delta_{b} v_{k}\right)^{2}+v_{k}^{2}\left(\Delta_{b} \varphi\right)^{2}+4\left|\nabla_{H} v_{k} \nabla_{H} \varphi\right|^{2}+2 \varphi v_{k} \Delta_{b} \varphi \Delta_{b} v_{k}+ \tag{15}\\
& +4 \varphi\left(\nabla_{H} \varphi \nabla_{H} v_{k}\right) \Delta_{b} v_{k}+4 v_{k}\left(\nabla_{H} v_{k} \nabla_{H} \varphi\right) \Delta_{b} \varphi .
\end{align*}
$$

Hence,

$$
\int_{S^{3}}\left|\Delta_{b}\left(\varphi v_{k}\right)\right|^{2} \rightarrow \int_{S^{3}} \varphi^{2} d \sigma .
$$

Assume that $1 \leq p_{1}<\frac{1}{\sigma(K)}$ and take φ so that $\varphi_{\mid K}=1$, and $\int_{S^{3}} \varphi^{2} d \sigma<\frac{1}{p_{1}}$. Then we have for k large,

$$
\left\|\Delta_{b}\left(\varphi v_{k}\right)\right\|_{L^{2}}^{2}<\frac{1}{p_{1}} .
$$

Therefore,

$$
\int_{K} \exp \left[p_{1} A_{2}\left(v_{k}-\overline{\varphi v_{k}}\right)^{2}\right] \leq \int_{S^{3}} \exp \left[p_{1} A_{2}\left(\varphi v_{k}-\overline{\varphi v_{k}}\right)^{2}\right] \leq \int_{S^{3}} \exp \left[A_{2} \frac{\left(\varphi v_{k}-\overline{\varphi v_{k}}\right)^{2}}{\left\|\Delta_{b} \varphi v_{k}\right\|_{L^{2}}^{2}}\right] \leq C_{0}
$$

Thus, if we fix $\varepsilon>0$, we can write

$$
\begin{aligned}
u_{k}^{2} & =\left(v_{k}-\overline{\varphi v_{k}}+u+\overline{\varphi v_{k}}\right)^{2} \\
& =\left(v_{k}-\overline{\varphi v_{k}}\right)^{2}+2\left(v_{k}-\overline{\varphi v_{k}}\right)\left(u+\overline{\varphi v_{k}}\right)+\left(u+\overline{\varphi v_{k}}\right)^{2} \\
& \leq(1+\varepsilon)\left(v_{k}-\overline{\varphi v_{k}}\right)^{2}+2\left(1+\frac{1}{\varepsilon}\right) u^{2}+2\left(1+\frac{1}{\varepsilon}\right)^{2}{\overline{\varphi v_{k}}}^{2} .
\end{aligned}
$$

Hence, given $p<\frac{1}{\sigma(K)}$ we can take $p_{1} \in\left(p, \frac{1}{\sigma(K)}\right)$ such that

$$
\int_{K} e^{A_{2} p_{1} u_{k}^{2}}<C_{0}
$$

which finishes the proof.
Corollary A.1. We consider the same assumptions as in Lemma A. 1 and we let $\ell=$ $\max _{x \in S^{3}} \sigma(\{x\}) \leq 1$. Then the following hold

- If $\ell<1$, then for any $1 \leq p<\frac{1}{\ell}, e^{A_{2} u_{k}^{2}}$ is bounded in $L^{p}\left(S^{3}\right)$. In particular $e^{A_{2} u_{k}^{2}} \rightarrow$ $e^{A_{2} u^{2}}$ in L^{1}.
- If $\ell=1$, then there exists $x_{0} \in S^{3}$ such that $\sigma=\delta_{x_{0}}, u=0$ and after passing to a subsequence if necessary, we have

$$
e^{A_{2} u_{k}^{2}} \rightharpoonup 1+c_{0} \delta_{x_{0}}
$$

for some $c_{0} \geq 0$.

Proof. Assume that $\ell<1$ and let $1 \leq p<\frac{1}{\ell}$. Then for all $x \in S^{3}, \sigma(\{x\})<\frac{1}{p}$. By continuity, there exists $r_{x}>0$ such that $\sigma\left(\overline{B_{r_{x}}(x)}\right)<\frac{1}{p}$. Since S^{3} is compact we can find a finite collection of balls of the form $B_{r_{i}}\left(x_{i}\right)$ such that

$$
S^{3}=\bigcup_{i=1}^{N} \overline{B_{r_{i}}\left(x_{i}\right)} .
$$

So using Lemma A.1, we have

$$
\sup _{k} \int_{\overline{B_{r_{i}}\left(x_{i}\right)}} \exp \left[p A_{2} u_{k}^{2}\right]<\infty .
$$

Thus,

$$
\sup _{k} \int_{S^{3}} \exp \left[p A_{2} u_{k}^{2}\right]<\infty
$$

We assume now that $\ell=1$. Since $\left\|\Delta_{b} u_{k}\right\|^{2} \leq 1$ we have that $\left\|\Delta_{b} u\right\|^{2}+\sigma\left(S^{3}\right) \leq 1$. Therefore, we have $u=0$ and there exists $x_{0} \in S^{3}$ such that $\sigma=\delta_{x_{0}}$. Hence, for r small, we have that

$$
\sup _{k} \int_{S^{3} \backslash B_{r}\left(x_{0}\right)} \exp \left[q A_{2} u_{k}^{2}\right]<\infty
$$

for all $q \geq 1$. Therefore, $e^{A_{2} u_{k}^{2}} \rightarrow 1$ in $L^{1}\left(S^{3} \backslash B_{r}\left(x_{0}\right)\right)$ for every $r>0$ and small. Hence, after passing to a subsequence if necessary we have that $e^{A_{2} u_{k}^{2}} \rightharpoonup 1+c_{0} \delta_{x_{0}}$ in measure.

Proposition A.2. Let $\alpha>0$ and consider a sequence $m_{k} \rightarrow \infty$ and $u_{k} \in \mathcal{S}^{2}\left(S^{3}\right)$ such that $\overline{u_{k}}=0$ and $\left\|\Delta_{b} u_{k}\right\|_{L^{2}}=1$ such that $u_{k} \rightharpoonup u$ weakly in $\mathcal{S}^{2}\left(S^{3}\right)$ and $\left(\Delta_{b} u_{k}\right)^{2} \rightharpoonup\left(\Delta_{b} u\right)^{2}+\sigma$ in measure. We assume moreover that

$$
\ln \left(\int_{S^{3}} e^{2 m_{k} u_{k}}\right) \geq \alpha m_{k}
$$

and

$$
\frac{e^{2 m_{k} u_{k}}}{\int_{S^{3}} e^{2 m_{k} u_{k}}} \rightharpoonup \nu \text { in measure. }
$$

We set $R=\left\{x \in S^{3} ; \sigma(\{x\}) \geq A_{2} \alpha\right\}=\left\{x_{1}, \cdots, x_{N}\right\}$. Then $\nu=\sum_{i=1}^{N} \nu_{i} \delta_{x_{i}}$ with $\nu_{i} \geq 0$ and $\sum_{i} \nu_{i}=1$.
Proof. Let $K \subset S^{3}$ such that $\sigma(K)<A_{2} \alpha$. By continuity, we can find a compact set K_{1} such that $K \subset \operatorname{int}\left(K_{1}\right)$ and $\sigma\left(K_{1}\right)<A_{2} \alpha$. Now given $\frac{1}{A_{2} \alpha}<p<\frac{1}{\sigma\left(K_{1}\right)}$, we have

$$
\sup _{k} \int_{K_{1}} e^{p A_{2} u_{k}^{2}} \leq C_{0}
$$

Since $2 m_{k} u_{k} \leq p A_{2} u_{k}^{2}+\frac{m_{k}^{2}}{p A_{2}}$, we have

$$
\int_{K_{1}} e^{2 m_{k} u_{k}} \leq C e^{\frac{m_{k}^{2}}{A_{2} p}}
$$

Therefore,

$$
\frac{\int_{K_{1}} e^{2 m_{k} u_{k}}}{\int_{S^{3}} e^{2 m_{k} u_{k}}} \leq C e^{\left(\frac{1}{A_{2} p}-\alpha\right) m_{k}^{2}}
$$

So $\nu(K) \leq \nu\left(K_{1}\right)=0$ and $\nu(K)=0$. Thus, if $\sigma(\{x\})<A_{2} \alpha$, then there exists $r_{x}>0$ small enough so that $\sigma\left(\overline{B_{r_{x}}(x)}\right)<A_{2} \alpha$. Hence, $\nu\left(\overline{B_{r_{x}}(x)}\right)=0$. We deduce then that $\nu\left(S^{3} \backslash R\right)=0$. Therefore

$$
\nu=\sum_{k=1}^{N} \nu_{k} \delta_{x_{k}},
$$

with $\nu_{k} \geq 0$ and $\sum_{k=1}^{N} \nu_{k}=1$.
Let $f_{1}, \cdots, f_{\ell} \in C\left(S^{3}\right)$. We define

$$
\mathcal{S}_{f}=\left\{u \in \mathcal{S}^{2}\left(S^{3}\right) ; \bar{u}=0 ; \int_{S^{3}} f_{k} e^{2 u}=0 ; k=1, \cdots, \ell\right\} .
$$

Proposition A.3. If $f_{j} \in P_{m, 0}$ for $j=0, \cdots, \ell$ and $\alpha>\frac{1}{A_{2} N_{m}}$, then there exists $C \in \mathbb{R}$ such that

$$
\ln \left(\int_{S^{3}} e^{2 u}\right) \leq \alpha\left\|\Delta_{b} u\right\|_{2}^{2}+C, \forall u \in \mathcal{S}_{f} .
$$

Proof. We assume that the inequality

$$
\ln \left(\int_{S^{3}} e^{2 u}\right) \leq \alpha\left\|\Delta_{b} u\right\|_{2}^{2}+C
$$

does not hold for $u \in \mathcal{S}_{f}$. Then there exists a sequence $u_{k} \in \mathcal{S}_{f}$ such that

$$
\ln \left(\int_{S^{3}} e^{2 u_{k}}\right)-\alpha\left\|\Delta u_{k}\right\|_{L^{2}}^{2} \rightarrow \infty
$$

Therefore, it follows that $\int_{S^{3}} e^{2 u_{k}} \rightarrow \infty$ and $\left\|\Delta_{b} u_{k}\right\|_{L^{2}} \rightarrow \infty$. So we let $m_{k}=\left\|\Delta_{b} u_{k}\right\|_{L^{2}}$ and $v_{k}=\frac{u_{k}}{m_{k}}$. Then $m_{k} \rightarrow \infty,\left\|\Delta_{b} v_{k}\right\|_{L^{2}}^{2}=1$. Hence, after passing to a subsequence, we have

$$
\left\{\begin{array}{l}
v_{k} \rightharpoonup v \text { weakly in } \mathcal{S}^{2}\left(S^{3}\right) \\
\left|\Delta_{b} v_{k}\right|^{2} \rightharpoonup\left|\Delta_{b} v\right|^{2}+\sigma \text { in measure, } \\
\frac{e^{2 m_{k} v_{k}}}{\int_{S^{3}} e^{2 m_{k} v_{k}}} \rightharpoonup \nu \text { in measure. }
\end{array}\right.
$$

So we let $R=\left\{x \in S^{3} ; \sigma(\{x\}) \geq A_{2} \alpha\right\}=\left\{x_{1}, \cdots, x_{N}\right\}$. It follows from Proposition A. 2 that $\nu=\sum_{j=1}^{N} \nu_{j} \delta_{x_{j}}$, with $\sum_{j=1}^{N} \nu_{j}=1$ and $\nu_{j} \geq 0$.
But since $u_{k} \in \mathcal{S}_{f}$, we have

$$
\int_{S^{3}} f_{j} d \nu=0 .
$$

Therefore,

$$
\sum_{i=1}^{N} \nu_{i} f_{j}\left(x_{i}\right)=0, \text { for all } 1 \leq j \leq \ell
$$

On the other hand, $A_{2} \alpha N \leq 1$. In particular, if $f_{j} \in P_{m, 0}$, we have that $N \in \mathcal{N}_{m}$. Therefore,

$$
\alpha \leq \frac{1}{A_{2} N} \leq \frac{1}{A_{2} N_{m}} .
$$

Hence, if $\alpha=\frac{1}{A_{2} N_{m}}+\varepsilon$ we get a contradiction and the result holds.
Therefore, if we define

$$
\mathcal{S}_{0}=\left\{u \in \mathcal{S}^{2}\left(S^{3}\right) ; \bar{u}=0 ; \int_{S^{3}} f e^{2 u}=0 \text { for all } f \in P_{1,0}\right\}
$$

the following corollary holds
Corollary A.2. There exist $a<\frac{1}{16 \pi^{2}}$ and $C>0$ such that for all $u \in \mathcal{P} \cap \mathcal{S}_{0}$, we have

$$
a \int_{S^{3}} u \bar{P}^{\prime} u+2 \int_{M} u-\ln \left(\int_{M} e^{2 u}\right) \geq-C .
$$

Indeed, this corollary follows from the fact that

$$
\int_{S^{3}} u \bar{P}^{\prime} u \geq \int_{S^{3}}\left|2 \Delta_{b} u\right|^{2}
$$

for all $u \in \hat{\mathcal{P}}$ and $8 A_{2}>16 \pi^{2}$.

References

[1] Baird, P., Fardoun, A., Regbaoui, R.; Q-curvarure flow on 4-manifolds, Calc. Var. 27 (2006) 75-104.
[2] Branson, T., Gover, A.; Conformally invariant operators, differential forms, cohomology and a generalisation of Q-curvature, Comm. Partial Differential Equations, 30(10-12): (2005), 1611-1669.
[3] Branson, T., Fontana, L., Morpurgo, C., Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. of Math. (2), 177(1): (2013), 1-52.
[4] Brendle, S.; Convergence of the Q-curvature flow on S^{4}, Adv. Math. 205, (2006), 1-32.
[5] Burns,D., Epstein,C. L.; A global invariant for three-dimensional CR-manifolds, Invent. Math., 92(2): (1988), 333-348.
[6] Case, J.S., Chanillo, S., Yang, P.; A remark on the kernel of the CR Paneitz operator, Nonlinear Analysis Volume 126, (2015), 153-158.
[7] Case, J.S., Cheng, J.H., Yang, P.; An integral formula for the q-prime curvature in 3dimensional cr geometry, Proceedings of the American Mathematical Society, 147(4), (2018), 1577-1586.
[8] Case, J.S., Hsiao, C.Y., Yang, P.C.; Extremal metrics for the \bar{Q}^{\prime}-curvature in three dimensions. Comptes Rendus Mathematique, Vol 354 (4), (2016), 407-410.
[9] Case, J.S., Hsiao, C.Y., Yang, P.C.; Extremal metrics for the Q^{\prime}-curvature in three dimensions. Journal of the European Mathematical Society, Vol 21 (2), (2019), 585-626.
[10] Case, J.S., Yang, P.; A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N.S.), 8(3): (2013), 285-322.
[11] Chang, S-Y., Fengbo, H.; Improved Moser-Trudinger-Onofri inequality under constraints, Preprint, arXiv:1909.00431
[12] Chanillo, S., Chiu, H.L., Yang, P.; Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants, Duke Math. J., 161(15): (2012), 2909-2921.
[13] Cheng, J.H., Lee, J.M.; The Burns-Epstein invariant and deformation of CR structures. Duke Math. J. 60, no. 1, (1990), 221-254.
[14] Frank, R.L., Lieb, E.H.; Sharp constants in several inequalities on the Heisenberg group. Ann. of Math. (2) 176, no. 1, 349-381, (2012).
[15] Graham, C.R., Jenne, R., Mason, L., Sparling, G.; Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46, (1992), 557-565.
[16] Hirachi, K.; Scalar pseudo-Hermitian invariants and the Szegö kernel on three - dimensional CR manifolds, In Complex geometry (Osaka, 1990), volume 143 of Lecture Notes in Pure and Appl. Math., pages 67-76. Dekker, New York, 1993.
[17] Ho, P.T.; Prescribing the \bar{Q}^{\prime}-curvature in three dimension, Discrete Contin. Dyn. Syst. 39, (2019), 2285-2294.
[18] Ho, P.T.; Prescribed Q-curvature flow on S^{n}, J. Geom. Phys. 62, (2012), 1233-1261.
[19] Hsiao, C.Y.; On CR Paneitz operators and CR pluriharmonic functions, Math. Ann. 362: (2015), 903-929.
[20] Lee, J.M.; Pseudo-Einstein structures on CR manifolds, Amer. J. Math., 110, (1988), 157-178.
[21] Maalaoui, A.; Prescribing the \bar{Q}^{\prime}-Curvature on Pseudo-Einstein CR 3-Manifolds, Preprint.
[22] Maalaoui, A.; Logarithmic Hardy-Littlewood-Sobolev Inequality on Pseudo-Einstein 3manifolds and the Logarithmic Robin Mass, Preprint.
[23] Malchiodi, A., Struwe, M.; Q-curvature flow on S^{4}, J. Differential Geom. 73, (2006), 1-44.
[24] Phong, D. H., Stein, E. M.; Estimates for the Bergman and Szego projections on strongly pseudo-convex domains. Duke Math. J. 44 (1977), no. 3, 695-704.
[25] Simon, L.; Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Ann. of Math. (2) 118, no. 3, (1983), 525-571.

[^0]: ${ }^{1}$ Department of Mathematics, Clark University, Worcester, MA 01610, USA.
 E-mail address: amaalaoui@clarku.edu
 ${ }^{2}$ Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5, 40126 Bologna, Italy. E-mail address: vittorio.martino3@unibo.it

