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Abstract In this paper we consider the problem of prescribing the @/—curvature on three dimensional
Pseudo-Einstein CR manifolds. We study the gradient flow generated by the related functional and
we will prove its convergence to a limit function under suitable assumptions.
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1 Introduction and statement of the results

Let (M, T"°M, 0) be a CR three manifold, which we will always assume smooth and closed.
It is known thAat one can construct a pair (@, Py) such that under a conformal change of the
contact form 6 = e“0, one has

Pyu+ Qo = Qéezu

where the Paneitz operator Py = (Ap)? + T2 + l.o.t.; in particular the operator Py contains
the space of CR pluriharmonic functions P in its kernel, moreover the total @Q-curvature is
always zero [16], hence it does not provide any extra geometric information.
Therefore, one considers another pair (P, Q’), see [3], where P’ is a Paneitz type operator
satisfying P’ = 4(A;)? +1.0.t. and is defined on the space of pluriharmonic functions and the
Q'-curvature is defined implicitly so that
/ / 1 2 ! 2u

Pyu+ Qp — 5 Py(u”) = Qze™,
which is equivalent to

Ppu+Qp = Qéezu mod P+, (1)

In the case of pseudo-Einstein three dimensional CR manifolds (we refer the reader to the
next section for further details), in [10] the authors showed that the total Q’-curvature is
not always zero and it is invariant under the conformal change of the contact structure; in
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particular it is proportional to the Burns-Epstein invariant pu(M) (see [5], [13]) and if (M, J)
is the boundary of a strictly pseudo-convex domain X, then

/M Q0 A db = 167> (X(X) - /X(62 - %C%)),

where ¢; and ¢y are the first and second Chern forms of the Kéhler-Einstein metric on X
obtained by solving Fefferman’s equation.
Now, equation has to be solved orthogonally to the infinite dimensional space P+: in
order to solve this problem on a pseudo-Einstein three dimensional CR manifolds, in [9] it is
introduced a new couple (ﬁ/, @,), which comes from the projection of equation on to the
space of L2 CR pluriharmonic functions P, which is the completion of P under the L2-norm.
Since the P’-operator is only defined after projection on P, we denote by I' : L2(M) — P the
orthogonal projection and we let P =ToP and @/ =T 0@, then on a pseudo-Einstein CR
manifolds, we can consider the problem of prescribing the @/—curvature, under a conformal
change of the contact structure, in particular: for a given a function f € P, we have the
following equation

Pju+ Qy = fe** mod P, (2)

that is equivalent to

Pyu+ Qp = I(fe*).
Therefore, if u solves , then by setting § = %6, one has @i@ = f. Let us explicitly notice the
differences between the two projections. Since the space of L? CR pluriharmonic functions
P does not depend on the contact form, thus @/9 is the orthogonal projection of @ on P
with respect to the L?-inner product induced by 6, while @lg is the orthogonal projection of
Qé with respect to the L?-inner product induced by #; in particular ¢ € Py if and only if

P € 759 and ¢ € PQL if and only if e=2%) € P(;l. Therefore, by denoting I'y, the orthogonal

projection induced by 6, one has I'.(Q5) = f. Let us also recall that in [I0], the authors
show that the non-negativity of the Paneitz operator Py and the positivity of the CR-Yamabe
invariant imply that P s non-negative and ker P = R. Moreover, |[ M by = | M ng < 1672
with equality if an only if (M,T"YM, ) is the standard sphere; in particular the previously
assumptions imply that the (M, T10M, 0) is embeddable (see [12]). Notice that unlike the
Riemannian case, it remains unclear if the non-negativity of P and ker P’ = R is a sufficient
condition for [ v @ < 1672, In particular, the results presented in this paper do not fully
cover the case P > 0 and ker P =R

Thus, from now on we will always assume that (M, T M, ) is a pseudo-Einstein CR three
dimensional manifold such that P is non-negative and ker P =R. The problem in was
first studied in [10] for f constant and in the subcritical case, namely [, @/9 < 1672. Then
in [2I] the problem was solved for f > 0 via a probabilistic approach again in the subcritical
case; also, a solution of the problem was provided in [17] for f > 0 and 0 < | M @,9 < 1672
via direct minimization.

In this paper we will study the equation ([2) allowing f to change sign: our approach follows
closely the methods in [I], where the authors study the analogous problem in the Riemannian
setting. In particular, we will use a variational approach by defining a suitable functional
on an appropriate space and then we will study the evolution problem along the negative
gradient flow lines: the convergence at infinity will provide a solution to the initial problem.



Indeed, with respect to [I], new technical issues will appear, which are essentially due to our
sub-Riemannian setting: in particular all the computations and the estimates regarding the
convergence along the flow lines have to be done accordingly to the projection on the space of
L? CR pluriharmonic functions, that we defined earlier. Moreover, some technical estimates
on the sphere will be adapted to the CR setting as we will see in Section 5 and the Appendix.
Therefore, let us define the following functional £ : H — R, by

E(u) :/ uP/u+2/ Qu
M M
where H = P N S?(M) and S?(M) is the Folland-Stein Sobolev space equipped with the
equivalent norm (see section 2), defined by

||uH2:/ up’u+/ 2, (3)
M M

We consider the following space, which will serve as a constraint

X = {u € H;N(u) := /MF (fe) = /MQ' } :

we notice that the space is well defined since e* € L?, see [9], Theorem 3.1.
As in the classical case, we will need the following hypotheses, depending on the sign of

S Q', namely:

() nf (@) <0, if /MQ <0
(ii) sup f(x) >0, inf fz)<0 i /M Q' =0 (4)
(iii) sup f(z) >0, if 0 </ Q' <1672

zeM M

In the case when f M @/ =0, we let £ be the unique CR pluriharmonic function satisfying

Pyt +Q =0 and Jir € =0, see [9], Theorem 1.1. Notice that QLey = 0. We also recall that
in the critical case M = S3, there are some extra compatibility conditions of Kazdan-Warner
type that f needs to satisfy in order to be the @,—curvature of a contact structure conformal
to the standard one on the sphere (see Theorem 1.3. in [I7]).

Now, in order to define the flow equation, we compute the first variation of E, N, and their
(8?) gradient, respectively:

<VE(u),qS):2/ F’u+©’)¢,v¢eﬂ,
<VN(u),q5):2/ I (fe*) ¢ ,Voe H,
P +I>_l (F’u+©’) :

P +I>_1F(fe2u) _



In addition, since by hypotheses , VN # 0 on X, then X is a regular hypersurface in H
and a unit normal vector field on X is given by VN/||VN]||. Indeed, VN (u) # 0 if and only
if I'(e? f) # 0. This last identity is clear for the hypothesis (i) and (4ii). But for (ii), recall
that f € P, so if I(e*f) = 0, then I e?tf?2 = 0, leading to a contradiction. The gradient
of F restricted to X is then

VXE =VE — <VE, VN > ‘VN

IVNI/ VNI

Finally, the (negative) gradient flow equation is given by

Ou = —VXE(u)

(5)
u(0) =up € X

Now we can state our main results.

Theorem 1.1. Let (M, T°M,0) be a pseudo-Einstein CR three dimensional manifold such

that P is non-negative and ker P’ = R. Let us assume that / @/ <0 andlet f € C(M) NP
M

as in . Then there exists a positive constant Cy depending on f~ = max{—f,0}, M and
0, such that if

eTlol® sup f(z) < Co
xEM

for a constant T > 1 depending on M and 0, then ast — oo, the flow converges in H to a
solution us of . Moreover, there exist constants B, > 0 such that

[u(t) = uool < B(L+1)77,
for allt > 0.

Theorem 1.2. Let (M, T°M,0) be a pseudo-Einstein CR three dimensional manifold such
that P is non-negative and ker P’ = R. Let us assume that / @/ =0 and let f € C(M) NP
M

as in . Then as t — oo, the flow converges in H to a function us and there exists a
constant A such that v = us + A\ satisfies

Plv+Q =or(fe®),
where 6 € {4+1,0,—1}. Moreover, there exist constants B, 3 > 0 such that
lu(t) — uscll < B(L+1¢)77,
for allt > 0. If in addition, we assume that [, fe2t +£0, then § # 0.

Theorem 1.3. Let (M, TV°M,0) be a pseudo-Einstein CR three dimensional manifold such

that P’ is non-negative and ker P = R. Let us assume that 0 < / @/ < 1672 and let
M

fec(M)n P as in . Then as t — oo, the flow converges in H to a solution us of .
Moreover, there exist constants B, > 0 such that

[u(t) = uoo| < B(1+1)77,
for allt > 0.



Finally, the critical case of the sphere, which is a bit different. We will consider a group G
acting on S preserving the CR structure. We denote by ¥ the set of points fixed by G, that
is

Y={re8 g-x=21, VgeG}
and we will assume f being invariant under G, namely f(g-x) = f(x),Vg € G. Then we
have the following

Theorem 1.4. Let us consider the sphere M = S3 equipped with its standard contact struc-
ture and let f € C(M)NP as in and invariant under G. Let us assume that also ug € X
is invariant under G. If X =0 or

E(ugp)

sup f(z) < e 16x? |

TEN
then as t — oo, the flow converges in H to a solution (invariant under G) us of .
Moreover, there exist constants B, 8 > 0 such that

lu(t) = uscll < B(L+1¢)77,

for allt > 0.
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2 Some definitions in pseudo-Hermitian geometry

We will follow the notations in [10]. Let M? be a smooth, oriented three-dimensional manifold.
A CR structure on M is a one-dimensional complex sub-bundle 7'M C TeM :=TM ® C
such that THYOM N TO M = {0} for TO'M := T'OM. Let H = ReT' "M and let J: H — H
be the almost complex structure defined by J(Z + Z) = i(Z — Z), for all Z € T*M. The
condition that THOM N T M = {0} is equivalent to the existence of a contact form 6 such
that ker & = H. We recall that a 1-form @ is said to be a contact form if 8 A df is a volume
form on M3. Since M is oriented, a contact form always exists, and is determined up to
multiplication by a positive real-valued smooth function. We say that (M3, T10M) is strictly
pseudo-convex if the Levi form df(-, J-) on H ® H is positive definite for some, and hence
any, choice of contact form 6. We shall always assume that our CR manifolds are strictly
pseudo-convex.

Notice that in a CR-manifold, there is no canonical choice of the contact form 6. A pseudo-
Hermitian manifold is a triple (M3, T19M, ) consisting of a CR manifold and a contact form.
The Reeb vector field T' is the vector ﬁeld such that 0(T") = 1 and df(7,-) = 0. The choice
of 6 induces a natural L2-dot product (-, -), defined by

/f ) O A db.

A (1,0)-form is a section of TAM which annihilates T%'M. An admissible coframe is a
non-vanishing (1,0)-form #' in an open set U C M such that 6'(T) = 0. Let 6! := 0! be




its conjugate. Then df = ih;70' A 6 for some positive function hy7. The function hyg is
equivalent to the Levi form. We set {Z1, Z7, T} to the dual of (61,6,0). The geometric
structure of a CR manifold is determined by the connection form w;! and the torsion form
71 = A110" defined in an admissible coframe #' and is uniquely determined by

{cw%=MAwﬂ+0ATR
wit +wip = dhy,

where we use h;7 to raise and lower indices. The connection forms determine the pseudo-
Hermitian connection V, also called the Tanaka-Webster connection, by

VZi:= wll AR
The scalar curvature R of 6, also called the Webster curvature, is given by the expression
dunt = ROV A G mod 6.

Definition 2.1. A real-valued function w € C*°(M) is CR pluriharmonic if locally w = Ref
for some complez-valued function f € C*(M,C) satisfying Z7f = 0.

Equivalently, [20], w is a CR pluriharmonic function if
dw = V1V1Vw+id; Viw =0

for Vi := Vz,. We denote by P the space of all CR pluriharmonic functions and P the
completion of P in L?(M), also called the space of L? CR pluriharmonic functions. Let
I:L*(M)— P be the orthogonal projection on the space of L? pluriharmonic functions. If
S : L2(M) — ker 0, denotes the Szego kernel, then

[=S+S+F (6)

where F' is a smoothing kernel as shown in [19]. The Paneitz operator Py is the differential
operator

Py(w) := 4div(Pw)
= Ajw+T? — 4ImV' (41, V' f)

for Ay := VI!V; + V!V; the sub-Laplacian. In particular, P C ker Py. Hence, ker Py is
infinite dimensional. For a thorough study of the analytical properties of Py and its kernel,
we refer the reader to [19] [0, [§]. The main property of the Paneitz operator P is that it is
CR covariant [I6]. That is, if = ¢*0, then e® Py = Py

Definition 2.2. Let (M3, T*°M,0) be a pseudo-Hermitian manifold. The Paneitz type op-
erator Py: P — C>(M) is defined by

Pyf = 4A%f = 8Tm (V*(Aas V7 f)) — 4Re (V7 (RV.0f))
+ Re(VaR — iV Ag) V7 — 5 U (VaR — 197 Aug) (7)

for f e P.



The main property of the operator P} is its “almost” conformal covariance as shown in [2} 10].
That is if (M3, TY9M, 0) is a pseudo-Hermitian manifold, w € C*°(M), and we set § = e*,
then

62“’P0f(u) = Py(u) + Py (uw) (8)

for all u € P. In particular, since Py is self-adjoint and P C ker Py, we have that the operator
P’ is conformally covariant, mod P=.

Definition 2.3. A pseudo-Hermitian manifold (M3, TOM, 0) is pseudo-Einstein if
VoR —iVP A5 = 0.

Moreover, if # induces a pseudo-Einstein structure then €6 is pseudo-Einstein if and only if
u € P. The definition above was stated in [10], but it was implicitly mentioned in [16]. In
particular, if (M3, TY9M, 0) is pseudo-Einstein, then P} takes a simpler form:

Pjf = 4A}f — 8Im (VY(A11 V1 f)) — 4Re (VL(RV.f)) .

/ uPéuZél/ \Abu|2—C/ |Vyul?.
M M M

Using the interpolation inequality

In particular, one has

/WVWPscmmmAwm%
M

and 2ab < ea? + %62, we have the existence of C'1 > 0 and C5 > 0, such that

/ uPéuzCl/ |Abu]2—C'2/ u?.,
M M M

Hence, if P is non-negative, with trivial kernel, one has the equivalence of the Folland-Stein
Sobolev norm and .

Definition 2.4. Let (M3, TY9M,0) be a pseudo-Einstein manifold. The Q' -curvature is the
scalar quantity defined by
Q) = 2A,R — 4| A + R2. (9)

The main equation that we will be dealing with is the change of the @Q’-curvature under
conformal change. Let (M3, T'OM, 6) be a pseudo-Einstein manifold, let w € P, and set
6 = e"0. Hence 0 is pseudo-Einstein. Then [2] 10]

1
Q= Qh + Bhw) + L Py (u?). (10)
In particular, Q) behaves as the Q-curvature for P, mod P+. Since we are working modulo

Pt it is convenient to project the previously defined quantities on P. So we define the
operator Py =T o Pj and the Q -curvature by Qp = I'(Q})- Notice that

/anAdez/anAde.
M M

7



Moreover, the operator ?;, has many interesting analytical properties. Indeed, ?/9 PP
is an elliptic pseudo-differential operator (see [9]) and if we assume that ker ﬁ; = R, then its

Green’s function G satisfies .

PyG(oy) =T(,9) = 37

where V = [} 0 A df is the volume of M and T'(-,-) is the kernel of the projection operator
I'". Moreover,

G(Q?,y) = _m 1n(|$y_1‘) + ,C(.I,y),

where I is a bounded kernel as proved in [7].

3 Preliminary results on the flow

First we recall one fundamental inequality that we will be using all along this paper, namely
the CR version of the Beckner-Onofri inequality. This inequality was first proved in the odd
dimensional spheres in [3] and then naturally extended to pseudo-Einstein 3-manifolds in [9)
Theorem 3.1].

Theorem 3.1. Assume that P is non-negative and ker P = R. Then, there exists C > 0
such that for all u € P N S2(M) with / u =0, we have
M

1 -/ 2u
167r2/MuPuﬂ—C2111<][Me )

In the case of the sphere, C' can be taken to be 0 and equality holds if and only if u = J(h)
with h € Aut(S?) and J(h) = det(Jac(h)) is the determinant of the Jacobian determinant of
h. The dual version of the above inequality was also investigated in [22], where the existence
of extremals was investigated.

Now, we prove the global existence of solutions of :

Lemma 3.1. Let (M, T'°M, ) be a pseudo-Einstein CR three dimensional manifold such
that P’ is non-negative and ker P = R. Let f € C(M)NP as in . Then for any ug € X
there exists a solution u € C*([0,00), H) of problem () such that u(t) € X, for all t > 0.
Moreover it holds

AH@M$szEww—Ewwx
for allt > 0.

Proof. Since all the functionals involved are regular, the short time existence of a solution
for is ensured by the Cauchy-Lipschitz Theorem. In order to extend it to all ¢ > 0, we
notice that

|eull = [IV* B(u)l| < 2(VE(u)|| < Cylful| + Co.

Thus, since
Brllul® = 2(u, dpu) < Cslul|® + Cu,

by Gronwall’s lemma, the solution u exists for all ¢t > 0. In addition

N (u) = (VN (u), 0pu) = — (VN (u), VXE(u)) = 0,



therefore u(t) € X, for all ¢ > 0. Finally, we have
0:E(u) = (VE(u), dyu) = —||pul|*.

Hence, E is decreasing along the flow and the following energy identity holds

/0 |9su|2ds = E(ug) — E(u(t)). (11)

Next we prove the following lemma about the convergence

Lemma 3.2. Let (M, T'°M,0) be a pseudo-Einstein CR three dimensional manifold such
that P is non-negative and ker P =R. Let feC(M) NP as in and let u be the solution
of problem (@ obtained in the previous Lemma . If there exists a constant C > 0 such
that |u(t)|| < C, for allt > 0, then whent — 00, u(t) — us in H and us solves the equation

Pu+Qu= AL(fe?),
for a certain A € R. Moreover, there exist constants B, 3 > 0 such that
lu(t) = ool < B(1+1)77,
for allt > 0.
Proof. Since ||u|| < C, we have that
|B(w)] < 2[Jull* + Co.

Therefore, by the previous energy estimate
o0
/ [|Qpu|?dt < oo.
0
So there exists a sequence t; — oo such that

10vu(ti)ll = IV E(u(te))]| — 0.

Now, from the boundedness of ||u||, we also have the convergence u(tx) — us strongly in
L?(M) and weakly in S?(M). From Theorem we have that e?*(%) ¢ LP(M), with p > 1,
and [|e?**)||» is uniformly bounded. Thus by Egorov’s lemma, we can deduce that

Hf€2u(tk) _ fezuooHLp —0,1<p< 0.

Indeed, we fix € > 0. Then, there exists a set A with Vol(A) < e such that fe*“(*s) converges
uniformly to fe?“> on M \ A. Therefore,

Hf€2u(tk) _ fedues ’

pp SO0 = et

«(lse

Lo (M\A)

Bl

L lrer | Yvoays



2ultn) || 1o, for

for p < p < o0. So the conclusion follows from the uniform boundedness of ||e
all 1 < p < oo.

Thus us € X. Now we have that
VN (u(t)) = 2(F + 17T (70,

and since fe?“(*) converges strongly in LP(M) and I' maps continuously LP(M) to LP(M)
(this follows from @ and [24]), we have by the compactness of P'+1 that VN (u(ty) converges
strongly to VN (uq,). Also,

VEu(t) =2 + 1) "Pu+Q) =2ut)+ 2P + )" (Q —u).

Thus, since dyu(ty) — 0 in S?2(M), we have that u(t;) converges strongly to us and
VX E(us) = 0. Moreover, we have

P + 1) (Puse + Q) = Auce) (P’ + I)"'T(fe2u=)

where

<VE(uoo),VN(uoo)).

Mutoo) = TN () 2

Now by integration we have that

| @ =) [ T,

and since us € X, we have if / @/ # 0, that A(uc) = 1 and hence uq, solves the desired
M

equation. On the other hand, if/ @, = 0, either A\(us) = 0 and thus
M

F’uoo + Ql =0,
or A(uso) > 0, thus setting v = s + 3 In(A(uos)) We have
Plo+Q =T(fe*),
and similarly if A(uos) < 0, we have a function v = us + & In(—A(us)) such that
Pu+Q = —T(fe*).

In particular, if we assume that [;, fe?* # 0 in the case A(us) = 0, we have us — £ is

constant. Hence,
0 :/ f€2u°° _ eQ(uw—Z)/ fe% 0,
M M
which is a contradiction.

The polynomial convergence of the flow can be deduced from the Lojasiewicz-Simon inequality
following Theorem 3 in [25] and Lemma 3.2 in [I]. Let n : H — T, X be the natural

10



projection, where T, X denotes the tangent space of the manifold X at the point u... We
have, for v € T, X

(VE(uso), VN (o))
[VN (u)?

(VX)2 E(us)v=n <V2E(uoo)v - V2N (oo )v + RLU>

where R1v is the component along VN (too). Thus, since n (Rlv) = 0, we have that

(VE(tuso), VN (too))
[V ()2

(VX)2 E(uoo)v =2 (I - T](P/ + 1)) v—4 (F’ + 1)711“(fe2“°°v),

It can be checked that (VX)2FE(us) : Ty, X — Ty, X is a Fredholm operator, then there
exists a constant § > 0 and 0 < x < 3 such that if |[u(t) — uo|| < 4, it holds

IV¥E ()| > (B(u(t) - E(us))' ™"

We note that if E(u(ty)) = E(us) for some tg > 0, then the flow is stationary and the
estimate is trivially satisfied. So we can assume that FE(u(t)) — E(us) > 0, for all ¢ > 0.
Since lim,, o0 [|u(tn) — uso|| = 0, for a given & > 0, there exists ng > 0 such that for n > ng
we have,

9
Jiftn) = wocll < 5

and

We set € = g and
T :=sup {t > tngs [luls) — uooH <d;s € [tnmﬂ}a

and we assume for the sake of contradiction that T' < co. Now we have
—O[E(u(t)) — E(uce)]™ = —kOE(u(t)[E(u(t)) — E(uco)]" ",

but
—B(u(t)) = —(E(u), du) = [|[VXE(w)|[[|0ru].

Thus, for t € [t,,,T] we have
—0i[E(u(t)) — E(uco)]” = kl|Oyul],

and since F is non-increasing along the flow, we have after integration in the interval [t,,, T

T
[u(T) = utn,)|l < /t 10sullds < %[E(u(tno)) — E(uco)]” <

no

DN ™

Hence,

N

[(T) = wool < [[u(T) = ultng) || + [[ultng) — ool < &=

which is a contradiction and so T' = 4+00. We set now ¢(t) = E(u(t)) — F(us), for t €

[tnys +00). Then we have
g (1) =—~IV¥E@)|* = ¢** ().

11



By integration we obtain
G = g7 ) + (1= 26) (8 — tny).
Since 2k — 1 < 0, then
9(8) < [0 (tng) + (1 = 20) (¢ — ta, )] 71 < G701,
Now, by taking ¢’ > t, we have

lu(t) = u(t)]| < /t 10sullds < %[E(u(t)) — E(uco)]" < %g”(t) < CtET,

For t' = t,,, letting n — oo and setting 8 = we get that for ¢ > ¢,

K
1-2k7
lu(t) — usc|| < Ct™7
Therefore, since ||u(t) — uso || is bounded for ¢ > t,,, we have the existence of B > 0 such that

forallt >0
u(t) — o] < B(141)77.

O
Corollary 3.1. Let (M, T'°M,0) be a pseudo-Einstein CR three dimensional manifold such
that P is non-negative and ker P =R. Let feC(M)NP asin and let u be the solution

1
of problem (H) obtained in the Lemma . If u = V/ u is uniformly bounded then the
M

flow converges. Here V = / 0 A df is the volume of M.
M

Proof. From the energy identity we have that

/ uP,u+2/ Q'u < E(up),
M M

but we also know from the Poincaré-type inequality (or the non-negativity of the operator

P), that
/ wP'u > )\1/ (u— ﬁ)z.
M M

Here )\ is the first non-zero eigenvalue of the operator P. In particular, from Young’s
inequality, we obtain that

/ “PIUSE(Uo)JrE/ (u—u)? +C(e)||Q]2 —2u/ Q.
M M "

Hence, for € small enough, we get
uP'u < C,
M

since @ is uniformly bounded, then the uniform boundedness of ||u|| and the conclusion follows
from Lemma O

Therefore, in the rest of the paper, we will show the uniform boundedness of u along the
flow, in order to have convergence at infinity.

12



4 The sub-critical case

Along all this section we will assume that P s non-negative and ker P = R. Next we

consider the three separate cases in which / @/ < 1672, Also we let V = / 0 A df be the
M M

volume of M.

4.1 Case / @/ < 0 and proof of Theorem (1.1
M

Lemma 4.1. There exists a positive constant C > 0 depending on M and 0 such that for
any measurable subset K C M with Vol(K) > 0, we have

v 0+ s+ g e </K v °>

Proof. Without loss of generality we can assume that / u > 0 otherwise the inequality is
M

/uP,u < E(up) — 2/ Q'u
M
2 1 =/
lu—alj: < — | uPu.
At Jm

/Mu2 < )\11E(u0) —i/MQ/u—k‘l/ </M“)2

Now if / u < 0, then we have
K

(/;u>2§</!u>2§VhKKﬁ/;u{

VOl(K) [ , 1 2/,
< = E(u) — = .
174 /Mu M (uo) A MQU

Again using Young’s inequality we obtain

2V 1)Q')12.v?
2o 2 R W WL2 7
AﬁL—Mva)@w+ﬁvaV

trivially satisfied. First

and

Hence,

hence

but

2 2 112 173

2V 41Q |15V

<V 2« _ 2 R S WL=2"
(Aﬂ)- ZJL_MVMK)WM+QVMKP

v 4Q'|)3. v

< |E(ug)|?
—’W®’+ﬁvaP NVol(K)2’

13



which yields
C

u < |E(ug)| + 5+
| Bl + g

We assume now that / u > 0. Then one has
K

fostme2 [ b (L)' (L) v )
L )
Vol(K) , 1 2 [ — 3 2
2V /Mu S/\1E(uo)_/\1/MQU+VOZ(K)</Ku> ‘

and

Hence,

By using that

_ 4V 10112

2/ Tl < Vol(K)/ .2 ;/IIQ ||L27

M S Wy A2V ol(K)
we have,

4V 16V2|Q'|12, 12V 2

2o 4V g L / .
/M“ S vl Flwll+ NVol(K)2 | Vol(K)? < e

Hence,

2 2 31112 2 2
4V 16V3Q)2, 12V
< __|E
</M“> S o) Pl + NVol(K)? | Vol(K)? /M“ ’
and therefore o e
/ w < | B(ug)| + 4 /u
M Vol(K)  Vol(K) Jk

Lemma 4.2. Let K be a measurable subset of M such that Vol(K) > 0. Then there exists
a constant o > 1 depending on M and 0 and a constant Cxg > 1 depending on Vol(K) such

that N
/ 62u S CKeaHuOHZ max <</ €2u> , 1) .
M K

Proof. Recall that from Theorem [3.1] one has the existence of C' > 0 such that

1 — 2
2u
e §C’exp< /uPu+/ u)
/M 1672 [y, V Iu

Again, by the energy identity and Young’s inequality, we have

/M uP'u < E(up) - Q/MQ/(u —a) — QQ/MQ/

. 1 — e .
< E(ug) — 20 /M Q@ +2IQ 1+ 1 /M Pl

O

14



AL

Thus, for ¢ = 5,

1 [ 74200
1 / WPlu < Blug) — 20 / Q+ Q2.
2 M M >\1

1 19’12 1
2u < 7E L2 2 o ay — .
/M et s Cop <87T2 (uo) + AN\ 2 + a2 o, @ )u

Now we notice that E(ug) < |lug||* + ||©/H%2, hence there exist constants C'; and C3 such that

1
/ e* < Cyexp (2HuoH2 + C’g/ u> .
M 8 M

By using Lemma [£.1] we get

_ A
2u ~ 2 2 /
/ e < Ck exp (AlHu()H + Vol )max< Ku,O ,

where Cc depends on Vol(K). Now, we set a = max (Al, %, 2) > 1, and we get

2u A 2 o
et < exp | a|lu + max / 2u,0)>.
/M . p< ol Vol(K) < K

But Jensen’s inequality yields

o e (o) =t ) )

Therefore, by adjusting the constant eventually

o
/ o2 < C«Keaﬂuoll2 max <</ e2u) ’1>
M K

which completes the proof. O

Therefore

in particular

Next we move to the proof of Theorem We set
1
K {xeM,f(a:)_ 2x1é1]€[f(ar)}

From the compatibility condition (¢) in (4)), we have that Vol(K) > 0, and since

/M 9= /M fee,

fM @/ 2ug
it @) fe

15

we obtain



Thus, there exists C' > 0 (we will assume C' > 1 actually) such that
/ e?U0 < Cexp {C </ uoﬁluo —i—/ u%)] — CeCllwol?,
M M M

@ < CeCllul”, (12)

27

Hence,

Next we will prove the following

Lemma 4.3. Let Cx and « be the constants found in Lemmal[{.9 Let
r = Ok (8C) e CHeluol’®,

and let us assume that

eIl sup f(x) < €y,
xeM

where T = a(C +1) — C and
inf f(x)

Cy— %M~
0 8aCKCa71

/ 2t < or.
M

T:sup{sZO;/ e* < 2r in [0,5]}
M

and let us assume for the sake of contradiction that T' < co. We notice that by continuity,

we obtain that
/awuw.
M

/ Fre2u® < 1/ fe2u(T)
M T2 )u

where f :=max{f,0} and f~ = f* — f denote the positive and negative part of f respec-
tively. Then we get

/M Fe2u® < 9 /M Fe2ulT) — g /M 9 <4 /MQ,~

Since in K we have f~(z) > —1 inf f(z), we have

Then for all t > 0, it holds

Proof. Let

We assume first that

xeM
—/
/ 20T < ?fMQ

which combined with gives

/ 2uT) < gCrCluol.
; <

16



But from Lemma we have

/ 2u(T) < CKeaHUOHQ max <</ 62u>a : 1) )
M K

/ e2u(l) < CK@QHUOHQ <8CeCH“°”2>a =T,
M

which is a contradiction.
So we move to the next case, where

/ Fre2u(®) 5 1/ fe2ull)|
M 2 Jm
Then we have

1 inf f(a:)/ 2T S/ fe?u?) < 2/ Fre?™ < 4r sup f(x).
K M M

2 zeM reM

Thus

Hence,
8r sup f(x)

e2u(l) o w€M
/K - JQJE f(z)

By using our assumption, we obtain that

K o b f()

Y

and by Lemma [4.2] we have

«
_ 2
/ 62u(T) < CK€a||UOH2 8T€'T£u0 Co <r,
M - rlélM f(z)

leading again to a contradiction. Hence T' = +o00 and / e?" is uniformly bounded. O
M

Now, by Jensen’s inequality we have

1 1 ou _ 21
exp v M2u SV Me SV’

thus @ is bounded from above. Now again using the energy identity , we get

/MuP/u+2/MQI(uﬂ)+2TL/MQ/ < E(uo),

—/

_ _ 1 _ 2 2
/uP/u+2/ Q/(u—a)Z/ UP/U—&Z—C&

M M 2 Jm A

2@/ Q' < BE(ug) + Cs,
M

and

Therefore

and since / @, < 0 we have that @ is uniformly bounded from below which finishes the

M
proof of Theorem

17



4.2 Case / @/ = 0 and proof of Theorem |1.2
M

Since / @’ = 0, we have that
M

(VE(u),1) = z/M Pu=0

and

(VN (u), 1) = / (fe2) —2/ 7=

0—/61}’&—615/ u,

which means that the average value of w is preserved. Therefore 4 = uy and by Corollary
-1} we have the convergence of the flow. This completes the proof of Theorem [I.2]

Hence,

4.3 Case 0 < / @/ < 167* and proof of Theorem [1.3
M

First, we have again from the energy identity

/MuPu+2/MQ(u—u)+2u/MQ < E(up). (13)
Hence

_ 1 — 2 —
2 / Q < Blug) — * / WPt 2T
M 2 M )\1

and then u is bounded from above; we will need a bound from below. Since u € X, we get

| @@= < e
In /]J\C/Ii, <In (/M62”> .

Now again from Theorem [3.1] we have

/@
In|Z4__ | <C+ ! /uPlu+2/ u. (14)
M V

[1flloo 167

and therefore

Let § > 0 to be determined later, we sum equation and —0 times equation , obtaining

/MQ/ —0E(ug) < C + (16;2 —5> /MuP/u—I—Z(1—5/MQ/>E—25/MQ/(U—_

[/l
18
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i

1
01—2(1—5/ > CQZCS—@.
L2
—0F

£l

1
Smce/ Q < 1672, we choose § such that/ Q < = < 1672, and we set

We have

In

(ug) = C + 02/ uP u + 25/ @,(u — 1) < c14.
M M

Now we notice that
_ _ 5
& / uPlu+ 2 / Q' —) > (exh — 60)Ju— |2 — 2[Q)2.
M M g

therefore for € small enough we have that

62/ uP/u+25/ @/(u—ﬂ) > —cs.
M M

It follows that # is bounded from below and therefore from Corollary this finishes the

proof.

5 The critical case and proof of Theorem

Here we will study the case / @/ = 1672, where M = 5% is the sphere equipped with its

M
standard contact structure. We will see S% as a subset of C? with coordinates ((1,(2) such

that
={(C1,6) € C*; [G]> +|G]* =1}

We recall, following the notations in [3, page 15], that every C* conformal mapping of H! =
C x R comes from the action of SU(2,1) and it can be written as the composition of the

following four transformations:

e left translations: (z,t) — (2/,¢) % (2,t), where here x denotes the group operation on

Hl
e dilations: (z,t) — (8z,6%t) for § > 0,

e rotations: (z,t) — (az,t), where a € S C C,

. . . z t
® 1NVErsion: (Z,t) — (- m, W)

The group of conformal transformation of the Heisenberg group H', also called the group
of CR automorphisms, will be denoted by Aut(H'). Using the Cayley transform C : H' —

S3\ {(0,—i)} one has a clear description of the set Aut(S3):

Aut(S?) ={CohoCth e Aut(H)}.

19



For p € S% and r > 1, we will write hy,, the element of Aut(S?) corresponding to a Cayley
transform centered at p and a dilation of size 7. That is, if h € Aut(H') is a dilation with
§=rand C,: H' — S3\ {—p} is the Cayley transform sending zero to p (instead of (0,1)),
then hy,, = CpohoCyt. Now, for u € X we set

Upyr =0 hyp + %ln(e](hpm)),
where we denoted J(h) = det(Jac(h)), the Jacobian determinant of h. We have
E(vp,r) = E(u) < E(uo),
and since u € X

f © hpﬂ"eQ’Up‘T - fe2u7
S3 S3

2
/ o20p.r > 167 .
53 sup f(x)
res3

From [3, page 38], we know that for all t > 1 there exists r(t) > 1 and p(t) € S3 such that

hence

/ gieQ’Up(t),r(t) — ()7 — 17 2.
S3

So we let v(t) = vy r(r) and h(t) = hp() ). Then using Corollary in the Appendix, one

has the existence of a < 1 and a constant C; such that

672

a/sg (P u(t) + 2/53 o(t) = In </S er(t)> 40y >0,

Since E(v(t)) < E(ug), we find that

/ (0P u(t) < C,
53

/ v(t)' <C.
S3
In particular we have that for all p > 1

/ 2l < ¢
g3

/ng2(t)§(]

leading to the boundedness of v(¢) in H. We need the following concentration-compactness
lemma in order to prove uniform boundedness.

and

and hence

Lemma 5.1. Either

20



(i) |lu(®)|| < C, for some constant C;
or

(ii)  there erists a sequence t,, — oo and a point pg € S* such that for all r > 0

lim fe?ultn) — 1672,
n—oo B, (pO)

Moreover, for any & € S\ {po}, and any r < d(Z,po), we have

lim ferutn) =,

n—oo Br(i“)
Proof. We assume first that r(¢) is bounded. Then we get

0 < C1 < J(hpe) () < Co.
Thus, from the uniform boundedness of v(t) we have
lu(t)| < C.
S3

Therefore, from Lemma it follows that ||u(t)]| is uniformly bounded.
So now we assume that 7(¢) is not bounded, then there exists a sequence ¢, — oo such
that r(t,) — oo and without loss of generality, by compactness of S® we can assume that

p(tn) — po. From the uniform boundedness of v(t), we can also assume that v(t,) — veo
strongly in L?(S%) and weakly in H. We let then r > 0 and set K,, = h(t,) (B, (po)). Then
f o h(ty)etn) — f o h(ty)e?vtn)

we have
1
< <Sup f(:L‘)) <Vol(K,§)/ e4|v(tn)> 2.
S3 Ky z€S3 S3

Since h(tn)(z) — po a.e. then lim Vol(K,) =V, and thus

n—oo

/ feQu(tn) _ fo h(tn)e%(tn) — fo h(tn)er(tn) + 0(1).
By (po) Kn 5

We have also

f o h(ty)e?t) = 1672,
S3
and then

lim fe?ltn) — 1672,
n—oo B, (pO)

Now if we consider # € S3\ {po} and r < d(py,¥) we have that h(t,)(z) ¢ B,(¥) for n big
enough, since li_}m h(tn)(x) = po a.e.; in particular

Jm Xt,)-1(8. @) = 0,
where x is the characteristic function. Therefore

lim f€2u(tn) — lim fo h(tn)€2v(tn) —=0.
n—oo Br(f) n—oo h(tn)fl(Br(f))
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Let us assume now that X = (). By using the previous lemma, if ||u(¢)| is not uniformly
bounded, then there exists py € S3 such that

lim ferultn) — 1672,
n—oo BT‘ (pO)

and if p; # po and r < d(po, p1), then

lim fe2®) = .

n—oo B, (pl )

Since ¥ = (), then there exists g € G such that p; = g - po # po. But

1672 = lim fe2“(t) = lim fe2“(t) = lim fezu(t) =0
n—o0 B'r(pO) n—o0 B'r(g'pO) n—o0 Br(pl)

which is a contradiction. Hence ||u(¢)]| is uniformly bounded.

Now we assume that ¥ # () and that ||u(t)|| is not uniformly bounded. We have that the
concentration point pg € X, otherwise we reach a contradiction arguing as in the previous
case. So we obtain

/ fe?ulin) < gup f(x)/ e?tn) < max [ sup f(x),0 /eQu(t”).
Br(po) x€Br(po) Br(po) x€Br(po) S3

By using the the sphere version of Theorem (3.1} proved in [3], we have that

1
V /s

E(u(tn))
€2U(tn) S e v .

Thus
2u(tn) E(ug)
fe <max | sup f(x),0]|Ve v .
Br(po) z€By(po)

Now we first let n — oo, then r — oo and we get

E(ug)

1672 < V max(f(po),0)e” v

Therefore f(po) > 0 and
E(ug)

1< f(po)6 1672

hence
E(ug)

f(po) > e 16n2

which leads to a contradiction of the assumption in Theorem Therefore we get the
uniform boundedness of ||u|| also in this case, which yields the convergence of the flow and it
ends the proof.
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A Appendix: Improved Moser-Trudinger Inequality

In what follows we will consider S as a subset of C? with coordinates ((1,(2) such that
|C1]? + |¢2|*> = 1. We recall here the Improved Moser-Trudinger inequality introduced in [3]
in order to prove the existence of a minimizer:

Proposition A.1. ([3], Proposition 3.4) Given % < a < 1, there exist constants C1(a), Ca(a)
such that for w € H with fS3 Ge* =0,1i=1,2, it holds:

a/ uP’u+2/ u—In /62“ —i—Cl(a)H(—Ab)%uH%—i—Cg(a)20
1671'2 S3 S3 33

This improved estimate will not be useful to us in our setting since it contains the term
Cl(a)H(—Ab)%uH% that we cannot bound along the flow. Notice that in [3], the authors
exploit Ekeland’s principle to exhibit a good minimizing Palais-Smale sequence that allows
the control of this extra term. In our setting, we will prove a result that can be seen as
intermediate between Proposition and the usual Moser-Trudinger inequality in Theorem
In fact in [3] the authors gave hints on how to prove this result, knowing that this method
only works in dimension 3 and 5. We will follow a technique used in [11], since it is simpler
and it allows even more improved estimates.

We set

Py = {polynomials of C? with degree at most k‘}

Pyo = {f € Pk;/ f= 0}'
S3
For a given m € N we let

and for any f € Pm70;zg:1 v f(z) = 0

We let then N, = min NV,,. As it was shown in [II], one has N7 = 2 and Ny = 4. We recall
from [3] that one has the following inequality on the standard sphere:
There exists a constant Ao > 0 such that

and

ju—ul”
exp [A27:| < Co.
/53 ‘|Abu|’%2

In fact the sharp constant As was explicitly computed in [3] and it has the value Ay = 32.
With this result we can easily deduce that if u € S?(S?) then e* € LP(S3) for all 1 < p < oo.

Lemma A.1. Consider a sequence of functions uyx € S*(S3) such that
ap =0, ||Apugllzz <1
and suppose that up, — u weakly in S*(S3) and
|Apug|* = |Apul? + o in measure

where o is a measure on S3. Let K C S3 be a compact set with o(K) < 1, then for all
1

1<p< (K we have
sup/ exp [pAgui] < 0.
k K
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Proof. Let ¢ be a fixed smooth compactly supported function on S3. We set v, = uy — w.
Then v — 0 strongly in L? and weakly in S?(S®). Now we compute

/53 | Ap(pvp))? = /SS(SOAbvk + v App + 2V gV gug)?

= /53 O (Apvg)? + VR (App)? + 4V goe V| + 200, App Apvg+ (15)

+ 4g0(VHg0VHvk)Abvk + 4Uk(vHUka(p)Abg0.

Hence,
/ |Ay (o) |2 — / ©2do.
93 S3
Assume that 1 < p; < ﬁ and take ¢ so that ¢ =1, and fsg pdo < p%' Then we have
for k large,
1
1A (pup)ll72 < —
n
Therefore,

—\2
V — QU
/exp [p1A2(vk*¢vk)Q} S/ exp {plAQ(SOUk*SOUk)ﬂ S/ exp [Az—(gp . f) < Co.
K 53 53 | Appvr |72

Thus, if we fix € > 0, we can write
uj, = (v — P + u + Pvg)?
= (vk — PU%)” + 2(vi — PUF) (u + P0F) + (u + Pox)
< (1+¢)(vp — Pog)* +2(1 + é)uQ +2(1+ é)Qm?

Hence, given p < ﬁ we can take p; € (p, ﬁ) such that

/ eAzplui < C(),
K

which finishes the proof. O

Corollary A.1. We consider the same assumptions as in Lemma and we let £ =
max,cgs 0({x}) < 1. Then the following hold

e If¢ <1, then for any 1 < p < 7, eA2u% is bounded in LP(S3). In particular 2% —
eA2v’ jp L1,

o If ¢ = 1, then there exists zg € S® such that 0 = 6,,, u = 0 and after passing to a
subsequence if necessary, we have
ef2ul 1 4 Co0y

0

for some cy > 0.
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Proof. Assume that £ < landlet 1 <p< %. Then for all z € S3, o({x}) < ]%. By continuity,
there exists r; > 0 such that o(B,, (z)) < %.
collection of balls of the form B, (x;) such that

Since S? is compact we can find a finite

N
% = By, (@)
=1

So using Lemma we have

sup / exp [pAQU%} < 00.
k Bri ($1)

Thus,

sup/ exp [pAguﬂ < 0.
k S3

We assume now that £ = 1. Since ||Ayug||?> < 1 we have that ||Ayul|? +o(S3) < 1. Therefore,
we have u = 0 and there exists 29 € S® such that o = d,,. Hence, for r small, we have that

sup / exp [quuz] < 00,
kJ$3\B,(z0)

for all ¢ > 1. Therefore, 2 — 1 in L*(S3 \ B,(x¢)) for every r > 0 and small. Hence,
after passing to a subsequence if necessary we have that ed2ui ] 4 co0z, in measure.  []

Proposition A.2. Let a > 0 and consider a sequence my, — 0o and uy € S%(S3) such that
U =0 and ||Apug||z2 = 1 such that up — u weakly in S?(S3) and (Apug)? — (Apu)? + o in
measure. We assume moreover that

In </ ezmk"’“> > amy,
53

62mkuk

ekauk
S3

We set R = {ZE c S3o({x}) > Aga} ={x1, - ,zn}. Thenv = ZZJL Vi, with v; >0 and
Zi V; = 1.

Proof. Let K C S® such that o(K) < Asa. By continuity, we can find a compact set K1

such that K C int(K;) and o(K;) < Asa. Now given A%a <p< a(}<1)7 we have

and

— v in measure.

2
sup/ ePA2U < ).
k JKy

2
Since 2mpuy < pAgu% + ;nT’;, we have

mi
2mpug A
etk < (e Azp,
Ky
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Therefore,
2mpug
/ € L _ o )m2
S e AT k.
ekauk
3

So v(K) <v(K;) =0 and v(K) = 0. Thus, if o({z}) < Asa, then there exists r, > 0 small
enough so that o(B,,(z)) < Asa. Hence, v(B,,(z)) = 0. We deduce then that v(S3\ R) = 0.

Therefore
N
V= Z VO,
k=1

with v, > 0 and Eszl v = 1. dJ

Let f1,---, fr € C(S®). We define
Sy = {“ €S (Su=0; | fue™ =0k=1, - 76}'
S3

Proposition A.3. If f; € Py forj=0,--- £ and o > m, then there exists C' € R such
that

In </ 62"> < al|Apul3 + C,Vu € Sy.
SS

Proof. We assume that the inequality

In (/ 62“> < al|Apul)3 +C
S3

does not hold for u € Sy. Then there exists a sequence uj € Sy such that

In </ 62“’“) — al|Aug||7s — oco.
S3

Therefore, it follows that [g; €% — oo and ||[Apug||r2 — 00. So we let my = || Apug||z2 and

v = #T’; Then my, — oo, ||Abvk||%2 = 1. Hence, after passing to a subsequence, we have

(v, — v weakly in S%(S3),
|Apvg|2 — |Apv|? + o in measure,

2mp vy .
—&£ "% _~ypin measure.
/ ekavk
\ Jg3

So we let R = {x € S%0({z}) > Asa} = {x1, -+ ,xn}. It follows from Propositionthat
v= Zjvzl Vjly,, with Zjvzl vj =1and v; > 0.
But since uy, € Sy, we have

fjdV =0.
S3

26



Therefore,

N
Z%fg(lﬁz) =0, forall 1 <j </

=1

On the other hand, ApaN < 1. In particular, if f; € Py, 0, we have that N € N,,. Therefore,
1
a < < .
— AN — AsN,,
Hence, if a = m + ¢ we get a contradiction and the result holds. O

the

Therefore, if we define

Sy = {UES2(53);u:0; fe** =0 for all fEPLO},

S3

following corollary holds

Corollary A.2. There exist a < 16% and C > 0 such that for all w € PN Sy, we have

a/ uP,u+2/ u—ln</ 62“>2—C’.
53 M M

Indeed, this corollary follows from the fact that

/uPluz/ 124>
53 S3

for all uw € P and 84y > 1672.
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