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Abstract In this paper we show the following property of a non Levi flat real

hypersurface in Cn+1: if the unit characteristic direction T is a geodesic, then

it is an eigenvector of the second fundamental form and the relative eigenvalue

is constant. As an application we prove a symmetry result, of Alexandrov

type, for compact hypersurfaces in Cn+1 with positive constant Levi mean

curvature.

1 Introduction

By using Codazzi equations and Chow Theorem, we show a characterization

result for non Levi flat real smooth hypersurfaces in Cn+1, whose unit charac-

teristic direction T is a geodesic. By denoting with h the second fundamental

form of M and with hTT := h(T, T ), the main result of our work is:

Theorem 1.1. Let M be a non Levi flat real hypersurface in Cn+1. If the

characteristic direction T is a geodesic for M , then hTT is constant.
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2Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5, 40127

Bologna, Italy. E-mail address: montanar@dm.unibo.it

1



2 CURVATURE LINES AND GEODESICS 2

Theorem 1.1 cannot be inverted. Indeed, in Section 4 we will show a non

Levi flat hypersurface whose characteristic direction is not a geodesic, but hTT

is constant.

As an application of Theorem 1.1 we get a result of characterization of spheres,

of Alexandrov type:

Corollary 1.2. Let M be a compact real hypersurface in Cn+1 with positive

constant Levi mean curvature. If the characteristic direction T is a geodesic

for M , then M is a sphere.

The problem of characterizing compact hypersurfaces with positive con-

stant Levi mean curvature has recently received attention from many mathe-

maticians. Klingenberg in [4] showed that if the characteristic direction of a

compact hypesurface is a geodesic and the Levi form is diagonal and positive

definite, then M is a sphere. Later on Hounie and Lanconelli proved that the

boundary of a compact Reinhardt domain in C2 with constant Levi curvature

is a sphere. Monti and Morbidelli in [8] proved that every Levi umbilical hy-

persurface for n ≥ 2, is contained either in a sphere or in the boundary of a

tube domain with spherical section.

Our paper is organized as follows. In Section 2 we introduce notations and

we prove that the characteristic direction T is a geodesic iff it is a curvature

line. In Section 3 we recall the celebrated Codazzi equations for the Levi-Civita

connection. In Section 4 we prove Theorem 1.1 by using Chow Theorem and

we use the classical Alexandrov Theorem to show Corollary 1.2.

2 Curvature lines and geodesics

We recall some elementary facts in order to fix the notations. Let M be a

hypersurface in Cn+1 and let TM be the tangent space to M . We denote by

N the inner unit normal, and we define the characteristic direction T ∈ TM

as:

T = J(N) (1)



2 CURVATURE LINES AND GEODESICS 3

where J is the standard complex structure in Cn+1 (corresponding to the

multiplication by ±i). The complex maximal distribution or Levi distribution

HM is the largest subspace in TM invariant under the action of J

HM = TM ∩ J(TM) (2)

i.e., a vector field X ∈ TM belongs to HM if and only if also J(X) ∈ HM .

Moreover, if g is the standard metric on M induced by Cn+1, then every

element in TM can be written as a direct sum of an element of HM and one

of the space generated by T , in formulas

TM = HM ⊕ RT (3)

where dim(HM) = 2n and the sum is g-orthogonal:

∀X ∈ HM g(T,X) = 0 (4)

In the sequel we shall use the following notation: we will use a tilde for all the

objects in Cn+1 that induce on M the relative induced objects. As an example,

with g̃ we refer to the metric on Cn+1 and with g we refer to the metric on M

induced by g̃.

We shall denote by ∇̃ the Levi-Civita connection in Cn+1. We recall that

both ∇̃ and g̃ are compatible with the complex structure J , i.e.:

J∇̃ = ∇̃J, g̃(·, ·) = g̃(J(·), J(·)) (5)

The second fundamental form h is defined as:

h(V,W ) = g̃(∇̃V W,N) = g(A(V ),W ), ∀V,W ∈ TM (6)

where A is the Weingarten operator, defined by

A(V ) = −∇̃V N, ∀ V ∈ TM (7)

The Levi form l is the hermitian operator on HM defined in the following

way:

∀X1, X2 ∈ HM , if Z1 = X1 − iJ(X1) and Z2 = X2 − iJ(X2), then

l(X1, X2) = g̃(∇̃Z1Z̄2, N) (8)
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We compare the Levi form with the second fundamental form by using the

identity (see [2], Chap.10, Theorem 2):

∀X ∈ HM, l(X,X) = h(X,X) + h(J(X), J(X)) (9)

We recall that M is non Levi flat if in every point of M the Levi form is

not identically zero.

The classical mean curvature H and the Levi mean curvature L are respec-

tively:

H =
1

2n+ 1
tr(h), L =

1
n
tr(l) (10)

where tr is the canonical trace operator. A direct calculation lead to the

relation between H and L [7]:

H =
1

2n+ 1
(2nL+ hTT ) (11)

Definition 2.1. Let V ∈ TM . V is a eigenvector for A (or for h) if there

exists a function (eigenvalue) λ : M → R such that A(V ) = λV on M .

Let γ be the integral curve of V , i.e. γ ⊆M is a line such that γ̇ = V . If V is

a eigenvector for A then we refer to γ as a curvature line. Moreover, if V is

unitary, then the value of λ is λ = h(V, V ) because

h(V, V ) = g(A(V ), V ) = g(λV, V ) = λg(V, V ) = λ

Definition 2.2. Let V ∈ TM . The integral curve of V is a geodesic if ∇V V =

0 or equivalently: if ∇̃V V ∈ RN , i.e. if the field ∇̃V V is normal to M .

It is well known that this definition of geodesic coincides with that one of

minimizing curve for the distance functional dp,q(γ), induced by the metric

g̃ of Cn+1, i.e. if p, q ∈ M , for all curves γ : [t1, t2]→ M such that γ(t1) = p

and γ(t2) = q

dp,q(γ) =
∫ t2

t1

√
g(γ̇, γ̇)dt

and the geodesic is the curve that realizes min
(
dp,q(γ)

)
With an abuse of language, we will also refer to the vector field V as a

curvature line or a geodesic if the corresponding integral curve is a curvature

line or a geodesic respectively.
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Lemma 2.3. Let T be the characteristic direction of M . T is a curvature line

if and only if it is a geodesic.

Proof. If T is a curvature line, one has

A(T ) = λT, λ = hTT (12)

For all X ∈ HM , by using (4), one realizes that

g(∇̃TN,X) = g(−A(T ), X) = −hTT g(T,X) = 0 (13)

Then for the compatibility of the complex structure J with the connection ∇̃

and with the metric g̃, for all X ∈ HM we have

0 = g̃(∇̃TN,X) = g̃(J(∇̃TN), J(X)) = g̃(∇̃TT, J(X)) (14)

Moreover T is unitary (g(T, T ) = 1), and by differentiating along T one has

g̃(∇̃TT, T ) = 0 (15)

Therefore, by using (14) and (15) it is proved that

∇̃TT ∈ RN, ∇TT = 0 (16)

To prove the converse we can argue by inverting the previous procedure.

3 A Codazzi equation

In this section we write a Codazzi equation (see [5]) with the notations of

Section 2. The celebrated Codazzi equations assert that: for all V,W,Z ∈

T (M)

(∇V h)(W,Z) = (∇Wh)(V,Z) (17)

where

(∇V h)(W,Z) = V (h(W,Z))− h(∇V W,Z)− h(W,∇V Z) (18)
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By writing equation (17) with V = X e W = Z = T , where T is the

characteristic direction, we get

(∇Xh)(T, T ) = (∇Th)(X,T ) (19)

Let

B = {T,X1, . . . , Xn, J(X1), . . . , J(Xn)} = {T,X1, . . . , Xn, Xn+1, . . . , X2n}

be an orthonormal basis of TM . For k = 1, . . . , 2n, we denote

Γk
XT = g(∇XT,Xk), Γk

TX = g(∇TX,Xk), ΓT
TX = g(∇TX,T )

In particular, by using (4) and (5) one has

ΓT
TX = g̃(∇̃TX,T ) = −g̃(∇̃TT,X) = g̃(∇̃N, J(X))

= −g(A(T ), J(X)) = −h(T, J(X)).

Therefore, with the usual convention to sum up and low equal indices, (19)

becomes:

X(hTT )− 2h(∇XT, T ) = T (h(T,X))− h(∇TX,T )− h(X,∇TT )

X(hTT )− 2h(Γk
XTXk, T ) = T (h(T,X))− h(Γk

TXXk + ΓT
TXT, T )− h(X,∇TT )

X(hTT ) = T (h(T,X))+
(

2Γk
XT−Γk

TX

)
h(Xk, T )−hTTh(T, J(X))−h(X,∇TT )

(20)

4 An Alexandrov type result

In this section we first prove Theorem 1.1 by using (20). Then, by using the

classical Alexandrov Theorem for compact hypersurfaces with constant mean

curvature, we prove our symmetry result, Corollary 1.2. Let us start with a

lemma

Lemma 4.1. If M is non Levi flat, then M has the following H-connectivity

property: for every couple of points p, q ∈M there exists a curve γ : [0, 1]→M ,

such that γ(0) = p, γ(1) = q and γ̇(t) ∈ HM for all t ∈ [0, 1].
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Proof. It has been proved in [6, Corollary 3.1 and Remark 3.1] that if M is

not Levi flat then there is a basis {Xj , j = 1, . . . , 2n} of HM such that the

Hörmander’s rank condition holds:

dim
(
span

{
Xj , [X`, Xk], j, k, ` = 1, . . . , 2n

})
= 2n+ 1 (21)

With the notations of the present paper, an easier proof of (21) can be obtained.

Indeed, if M is non Levi flat then at every point of M then there exists at least

a vector field X ∈ HM such that l(X,X) 6= 0. For Y = J(X) and Z = X−iY ,

one has

l(X,X) = g̃(∇̃ZZ̄,N) = g̃(∇̃X−iY X + iY,N) = g̃(∇̃XX + ∇̃Y Y,N) =

= g̃(∇̃XY − ∇̃Y X,T ) = g̃([X,Y ], T ) 6= 0

This means that for every basis {Xj , j = 1, . . . , 2n} of HM the Hörmander’s

rank condition (21) holds. By Chow’s theorem we then get the H-connectivity

property.

Proof of Theorem 1.1. By Lemma 2.3 the characteristic direction T is a cur-

vature line. If T is a curvature line for M , then for all V ∈ HM

h(T, V ) = g(A(T ), V ) = hTT g(T, V ) = 0

Moreover, since T is a geodesic, then ∇TT = 0 on M . Let X ∈ HM , the

equation (20) becomes

X(hTT ) =T (h(T,X)) +
(

2Γk
XT − Γk

TX

)
h(Xk, T )+

− hTTh(T, J(X))− h(X,∇TT ) = 0
(22)

and hTT is constant on HM .

Since M is not Levi flat, by Lemma 4.1 for every couple of points p, q ∈M there

exists a curve γ : [0, 1] → M , such that γ(0) = p, γ(1) = q and γ̇(t) ∈ HM

for all t ∈ [0, 1]. Therefore, by using an arbitrary basis {X1, . . . , X2n} of HM ,

one obtains:

γ̇(hTT ) = αkXk(hTT ) = 0

Then hTT is constant along γ and therefore on M
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In general the converse of Theorem 1.1 does not hold, i.e. if the coefficient

of the second fundamental form hTT is constant, one cannot conclude that the

characteristic direction T is a geodesic (or a curvature line), as the following

example shows

Example 4.2. In C2 with coordinates zk = xk + iyk, k = 1, 2, we consider the

domain

Ω = {(z1, z2) ∈ C2 : f(x1, y1, x2, y2) = x2
1 + (ay1 + bx2)2 − 1 < 0}

with a, b constants such that a2 + b2 = 1. Let M be the real hypersurface

defined by M := ∂Ω. We claim that if 0 < a < 1 then M is non Levi flat and

hTT = a2, but T is not a geodesic. Indeed, let r = ay1 + bx2, then on M one

has

Df = 2(x1, ar, br, 0), |Df | = 2

where D is the Euclidean gradient in R4. Therefore, by identifying vector fields

with first order partial differential operators, we get

N = −(x1∂x1 + ar∂y1 + br∂x2), T = J(N) = ar∂x1 − x1∂y1 − br∂y2

Then, by using T (r) = −ax1, one has

hTT = h(T, T ) = g̃(∇̃TT,N) = −T (ar)x1 − T (x1)ar = a2x2
1 + a2r2 = a2

We notice that M is isometric to the cylinder S1 × R2 whose three principal

curvatures are 1,0,0; therefore the classical mean curvature of M is H =
1
3

.

From (11) it follows that 2L = b2, and since b 6= 0 then M is non Levi flat.

Moreover, since

∇̃TT = T (ar)∂x1 − T (x1)∂y1 − T (br)∂y2 /∈ RN

then T is not a geodesic.

As a consequence of Theorem 1.1 we get the proof of Corollary 1.2.
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Proof of Corollary 1.2. If M has constant positive Levi mean curvature, then

M is non Levi flat, and since T is a curvature line, one has that hTT is con-

stant on M . By using the compactness of M , by (11) and by the classical

Alexandrov’s theorem [1] we get that M is a sphere.
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