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Abstract In this paper we prove that the CR-Yamabe equation on the Heisenberg

group has infinitely many changing sign solutions. By mean of the Cayley transform

we will set the problem on the sphere S2n+1; since the functional I associated with

the equation does not satisfies the Palais-Smale compactness condition, we will find

a suitable closed subspace X on which we can apply the minmax argument for I|X .

We generalize the result to any compact contact manifold of K-contact type.

1 Introduction

In this paper we prove that the CR-Yamabe equation on the Heisenberg
group Hn

−∆Hu = |u|
4
q−2u, u ∈ S1

0(Hn) (1)

has infinitely many changing sign solutions. Here ∆H denotes the sub-
Laplacian of the group, q = 2n + 2 is the homogenous dimension of Hn,
and S1

0(Hn) is the Folland-Stein Sobolev type space on Hn.
We recall that for the positive solutions of (1), Jerison and Lee in [12] gave
a complete classification. The problem is variational but, as in the Rieman-
nian case, the functional associated with the equation (1) fails to satisfy the
Palais-Smale compactness condition.
For the classical Yamabe equation on Rn, the first result in this direction

1Department of Mathematics, Rutgers University - Hill Center for the Mathemati-
cal Sciences 110 Frelinghuysen Rd., Piscataway 08854-8019 NJ, USA. E-mail address:
maalaoui@math.rutgers.edu

2Department of Mathematics, Rutgers University - Hill Center for the Mathemati-
cal Sciences 110 Frelinghuysen Rd., Piscataway 08854-8019 NJ, USA. E-mail address:
martino@dm.unibo.it

1



was proved by Ding in [8]: following the analysis by Ambrosetti and Rabi-
nowitz [1], he found a suitable subspace X of the space of the variations for
the related functional, on which he performed the minmax argument. The
same argument was then used by Saintier in [14] for the Yamabe equation
on Rn involving the bi-Laplacian operator.
Later on, many authors proved the existence of infinitely many changing
sign solutions using other kinds of variational methods (see [2], [3] and the
references therein). Finally in a couple of recent works [6], [7], M. del Pino,
M.Musso, F.Pacard and A.Pistoia found changing sign solutions, different
from those of Ding, by using a superposition of positive and negative bubbles
arranged on some special sets.
We are going to use the approach of Ding. Using the Cayley transform we
will set the problem on the sphere S2n+1 and with the help of the group of
the isometries generated by the Reeb vector field of the standard contact
form on S2n+1, we will be able to exhibit a suitable closed subspace on which
we can apply the minmax argument for the restriction of the functional as-
sociated with the equation (1). At the end we will generalize the result to
any compact contact manifold of K-contact type.
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spent at the Mathematics Department of Rutgers University: the author
wishes to express his gratitude for the hospitality and he is grateful to the
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2 Preliminaries

Let Hn = Cn × R ' R2n+1 be the Heisenberg group. If we denote by
ξ = (z, t) = (x + iy, t) ' (x, y, t) ∈ (Rn × Rn × R) then the group law is
given by

ξ0 � ξ = (x+ x0, y + y0, t+ t0 + 2(x · y0 − x0 · y)), ∀ξ, ξ0 ∈ Hn

where · denotes the inner product in Rn. The left translations are defined
by

τξ0(ξ) := ξ0 � ξ

Finally the dilations of the group are

δλ : Hn → Hn, δλ(ξ) = (λx, λy, λ2t)
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for any λ > 0. Moreover we will denote by q = 2n + 2 the homogeneous
dimension of the group. The canonical left-invariant vector fields are

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n

The horizontal (or intrinsic) gradient of the group is

DH = (X1, . . . , Xn, Y1, . . . , Yn)

The Kohn Laplacian (or sub-Laplacian) on Hn is the following second order
operator invariant with respect to the left translations and homogeneous of
degree two with respect to the dilations:

∆H =
n∑
j=1

X2
j + Y 2

j

Let us now consider the following Yamabe type problem on the Heisenberg
group Hn

−∆Hu = |u|
4
q−2u, u ∈ S1

0(Hn) (2)

where S1
0(Hn) is the Folland-Stein Sobolev space on Hn (see [9]).

We will prove that the equation (2) has infinitely many changing sign solu-
tions.
We will follow the scheme of Ding [8]. The idea is to consider the problem,
after the Cayley transform, on the sphere S2n+1 and there we will be able
to find a suitable closed subspace X ⊆ S1(S2n+1), compactly embedded in
Lq
∗
(S2n+1), on which we can apply the minmax argument for the functional

associated with the equation.
Here q∗ = 2q

q−2 denotes the critical exponent for the Sobolev embedding. We
recall that a solution of the problem (2) on Hn can be found as critical point
of the following functional

J : S1
0(Hn)→ R, J(u) =

1

2

∫
Hn
|DHu|2 −

1

q∗

∫
Hn
|u|q∗

Moreover any variational solution is actually a classical solution ([9], [10]).
We will prove the following

Theorem 2.1. There exists a sequence of solutions {uk} of (2), with∫
Hn
|DHuk|2 −→∞, as k →∞

3



The Theorem (2.1) will imply then that equation (2) has infinitely many
changing sign solutions: in fact by a classification result by Jerison and Lee
[12] all the positive solutions of the equation (2) are in the form

u = ωλ,ξ = λ
2−q
2 ω ◦ δ 1

λ
◦ τξ−1

for some λ > 0 and ξ ∈ Hn, where

ω(x, y, t) =
c0(

(1 + |x|2 + |y|2)2 + t2
) q−2

4

with c0 a positive constant; in particular all the solutions ωλ,ξ have the same
energy.

3 Proof of the Theorem (2.1)

Let us consider the sphere S2n+1 ⊆ Cn+1 defined by

S2n+1 = {(z1, . . . , zn+1) ∈ Cn+1 s.t. |z1|2 + . . .+ |zn+1|2 = 1}

As in the Riemannian case, we will use an analogous of the stereographic
projection. The Cayley transform is the CR-diffeomorphism between the
sphere minus a point and the Heisenberg group

F : S2n+1 \ {0, . . . , 0,−1} → Hn

F (z1, . . . , zn+1) =
( z1

1 + zn+1
, . . . ,

zn
1 + zn+1

, Re
(
i
1− zn+1

1 + zn+1

))
Denoting by θ0 the standard contact form on S2n+1 and by ∆θ0 the related
sub-Laplacian, a direct computation show that equation (2) becomes

−∆θ0v + c(n)v = |v|
4
q−2 v, v ∈ S1(S2n+1) (3)

with c(n) a suitable positive constant related to the (constant) Webster
curvature of the sphere (see [11] for a full detailed exposition); in particular
by setting u = vϕ (where ϕ is the function that gives the conformal factor
in the change of the contact form) we have that every solution u of (2)
corresponds to a solution v of (3) and it holds∫

Hn
|DHu|2 =

∫
S2n+1

|v|q∗
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At this point we can consider the variational problem on the sphere

I : S1(S2n+1)→ R, I(v) =
1

2

∫
S2n+1

(
|DHu|2 + c(n)v2

)
− 1

q∗

∫
S2n+1

|v|q∗

Since the embedding

S1(S2n+1) ↪→ Lq
∗
(S2n+1)

is not compact, the functional I does not satisfy the Palais-Smale condition.
The following lemma by Ambrosetti and Rabinowitz gives a condition on
some particular subspaces of the space of variations on which it is allowed to
perform the minmax argument; we will omit the proof (see Theorems 3.13
and 3.14 in [1])

Lemma 3.1. Let X be a closed subspace of S1(S2n+1). Suppose that the
embedding X ↪→ Lq

∗
(S2n+1) is compact. Then I|X , the restriction of I

on X, satisfies the Palais-Smale condition. Furthermore, if X is infinite-
dimensional, then I|X has a sequence of critical points {vk} in X, such that∫

S2n+1

|vk|q
∗ −→∞, as k →∞

Now let us suppose that we can find a closed and compact group G such
that the functional I is invariant under the action of G, namely:

I(v) = I(v ◦ g), ∀ g ∈ G

Let us set

XG = {v ∈ S1(S2n+1) s.t. v = v ◦ g, ∀ g ∈ G}

Then if XG satisfies the condition of Lemma (3.1), by the Principle of Sym-
metric Criticality [13], any critical point of the restriction I|XG is also a
critical point of I on the whole space of variations. We are going to prove
that such a XG exists. First we observe the following fact:

Lemma 3.2. The Reeb vector field T related to the standard contact form
θ0 on S2n+1 is a Killing vector field.

Proof. The proof is straightforward. The vector field T is Killing if

g0(∇V T,W ) + g0(V,∇WT ) = 0, ∀ V,W ∈ T (S2n+1) (4)
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where g0 is the metric induced by Cn+1 and ∇ is the Levi-Civita connection
(we will call g0 and ∇ also the standard metric and the related Levi-Civita
connection in Cn+1). Since we are on the sphere we can consider an or-
thonormal basis on T (S2n+1) of eigenvectors of the Weingarten operator
A (we recall that for every V ∈ T (S2n+1), then A(V ) := −∇VN) with
eigenvalues all equal to 1:

E = {X1, . . . , Xn, Y1, . . . , Yn, T}, Yj = JXj , j = 1, . . . , n

where J is the standard complex structure on Cn+1. Moreover T = JN ,
with N the unit inner normal to S2n+1. We have that

g0(·, ·) = g0(J ·, J ·), J∇(·)· = ∇(·)J ·

We also recall that T is a geodesic vector field, namely

g0(∇TT, V ) = 0, ∀ V ∈ T (S2n+1)

Since the formula (4) is linear in V and W , we can check it on the basis
E. Let us first fix W = T . Then g0(∇V T, T ) = 0 since T is unitary, and
g0(V,∇TT ) = 0 since T is geodesic. Now suppose (V,W ) = (Xj , Xk) or
(V,W ) = (Yj , Yk). Then

g0(∇XjT,Xk) = −g0(∇XjN,Yk) = 0

g0(∇YjT, Yk) = g0(∇YjN,Xk) = 0

as Xj and Yj are eigenvectors for A. The same holds for (V,W ) = (Xj , Yk)
with j 6= k. Finally let us consider (V,W ) = (Xj , Yj). Then we have

g0(∇XjT, Yj) + g0(Xj ,∇YjT ) = g0(∇XjN,Xj)− g0(Yj ,∇YjN) = 0

Then T generates a one-parameter family of diffeomorphisms, namely a
closed group G, and since T is Killing these diffeomorphisms are isometries.
Moreover on S2n+1 we have the following crucial property of commutation

T ∆θ0 = ∆θ0 T (5)

As we will see in the next section the sphere (S2n+1, θ0) is a particular case of
K-contact manifold according the definition in [4]. The formula (5) is then
true for every K-contact manifold (see Lemma 4.3. in[16]). In particular
we can conclude that the the functional I is invariant under the action of
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G. Moreover G is a closed subgroup of the compact Lie group O(2n+ 2) of
the isometries on S2n+1, in particular G is compact. Now we will call basic
a function that belongs to the following set:

{v ∈ S1(S2n+1) s.t. Tv = 0}

In other words, a basic function is a function on S2n+1 invariant for T .
There is an explicit way to characterize the basic functions on S2n+1: since
the orbits of T are circles, we can consider the following Hopf fibration:

S1 ↪→ S2n+1 p−→ CPn

where the fibers are exactly the orbits of T . Therefore a function v is basic
if and only if can be written as

v = w ◦ p

for some function w : CPn → R. Let us consider now the subspace of
functions XG ⊆ S1(S2n+1). We have

Lemma 3.3. The embedding

XG ↪→ Lq
∗
(S2n+1)

is compact.

Proof. The proof is based on the following simple observation. First note
that the Riemannian critical exponent

p∗ =
2m

m− 2
, m = 2n+ 1

is always greater than the sub-Riemannian critical exponent q∗. In addi-
tion for every basic function, the horizontal gradient (and the sub-Laplacian
as well) coincides with the usual Riemannian gradient (the Laplacian, re-
spectively). Therefore, denoting by H1(S2n+1) the usual Sobolev space on
S2n+1, we have the following chain of embeddings

XG ↪→ H1(S2n+1) ↪→ Lq
∗
(S2n+1)

and the second one is compact since q∗ is subcritical for the (Riemannian)
Sobolev embedding.

Remark 3.4. We explicitly note that our group is different from that used
by Ding in [8]. Moreover he needed to prove the compact embedding of the
subspace XG in a direct way; in our sub-Riemannian setting and with our
choice of the group G we can “lower” the dimension and switch from one
critical exponent to another.
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4 The case of K-contact manifolds

Let us consider the case of the Yamabe type equation on a general metric
contact manifold with the additional condition of being K-contact. Here
we give the basic definitions and properties, for a comprehensive presenta-
tion concerning the subject we refer the reader to [4]. Let (M2n+1, θ) be a
compact contact manifold and let ξ the Reeb vector field related to θ. A
Riemannian metric g associated with the contact structure defined by θ is
a metric with the following properties:

i) θ(X) = g(X, ξ), ∀ X ∈ TM
ii) there exists a tensor field J of type (1, 1) such that

J2 = −I + θ ⊗ ξ, dθ(·, ·) = g(·, J ·)

A contact manifold M with an associated metric is said contact metric man-
ifold. The sub-Laplacian ∆θ with respect to θ is defined by the following
relation:

∆g = ∆θ + ξ2

where ∆g is the standard Laplacian with respect to the metric g. The
contact Yamabe type equation is given by (see [15])

−∆θu+ c(n)Sθu = |u|
4
q−2u, q = 2n+ 2, u ∈ S1(M) (6)

where Sθ is the Webster scalar curvature of M with respect to θ, c(n) is a
suitable dimensional constant and S1(M) is the Follan-Stein Sobolev type
space defined on M . We want to show that equation (6) has infinitely many
changing sign solutions. We need the following definition:

Definition 4.1. Let M a contact metric manifold. If the Reeb vector field
ξ is a Killing vector field then M is said of K-contact type.

We have then:

Theorem 4.2. Let M be a compact contact metric manifold of K-contact
type. Then there exists a sequence of solutions {uk} of (6), with∫

M
|uk|q

∗ −→∞, as k →∞

The scheme of the proof is the same of that in the case of the sphere S2n+1.
Now we observe that on a general manifold there is no classification of
positive solutions of the Yamabe type equation. However we can prove the
following fact
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Proposition 4.3. Let (Mm, g) be a compact Riemannian manifold. There
exists a positive constant C such that for every smooth positive solution u of

−∆gu+ hu = up−1, 2 < p < p∗ =
2m

m− 2
(7)

with h any smooth bounded function on M , we have

‖u‖Lp(M) < C.

Proof. We will prove that

‖u‖L∞(M) < C

uniformly. Then since M is compact we have L∞(M) ⊆ Lp(M). We argue
by contradiction using a blow-up argument. Suppose that there exists a
sequence of functions {uk} that are solutions of (7) and that blow-up as
k →∞. Let us set

µk := uk(xk) = max
M

uk, for some xk ∈M

We can use local normal coordinates centered at xk, then we define

vk(x) = µ−1k uk(µ
2−p
2

k x)

We have vk(0) = 1 for every k. Moreover equation (7) becomes

−∆gvk + h̃µ2−pk vk = vp−1k (8)

with h̃(x) = h(µ
2−p
2

k x). Let v be the limit of vk as k →∞. Then v solves

−∆v = vp−1, on Rm

By the classification result of Caffarelli, Gidas and Spruck [5], any nonnega-
tive entire solution of the Yamabe equation with subcritical exponent must
be zero. This is a contradiction since v(0) = 1.

Now Let us consider the sequence {uk} that we found in Theorem (4.2). We
recall that they are basic functions, in particular they solve a Yamabe type
equation on M with subcritical exponent since q∗ < p∗. By Proposition
(4.3) we get that there exist infinitely many changing sign solutions to (6).
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