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Abstract In this paper we study contact type hypersurfaces embedded in four-dimensional Kähler man-

ifolds. We are interested whether the so called Legendre duality can be performed and we will show that

this can be related to some convexity assumptions, giving a sufficient condition. As an application, in the

case of convex hypersurfaces in R4, we will explicitly complete this duality.
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1 Introduction

Let (M,α) be an orientable and compact three dimensional contact manifold. We are interested
whether the Legendre transform, as defined by A.Bahri in some of his works (see [1, 2] for instance)
can be performed: let us briefly explain it. The standard contact form α0 on S3 is the pull-back
of the standard contact form on P (R3), that is the unit sphere cotangent bundle of S2; therefore
it is equipped with its canonical Liouville form. The Legendre duality can be completed for the
Liouville form. This Legendre transform can be viewed as the data of a non-vanishing vector field
v in ker(α0), such that β0(·) := dα0(v, ·) is a contact form with the same orientation of α0.
This duality has been extended by A.Bahri-D.Bennequin (see into the monograph [1]) to the more
general framework of contact forms α on three-dimensional compact orientable manifolds without
boundary M . So, let us give the following:

Definition 1.1. Let us consider a non-vanishing vector field v ∈ ker(α) and let us assume that:

(D) the dual form β(·) := dα(v, ·) is a
contact form on M with the same orientation than α.

Condition (D) is what we call Legendre duality for α with respect to v.

We observe that the condition on v to be non-vanishing ensures to have a non-singular dual form
β and a global flow defined by v, which is a crucial fact in the applications.
The previous condition appears in the following variational problem: let us define the functional

A(γ) =

∫ 1

0

α(γ̇)dt (1)

on the subspace of the H1-loops on M given by

Cβ = {γ ∈ H1(S1;M) s.t. β(γ̇) = 0; α(γ̇) = strictly positive constant}.

If ξ ∈ TM denotes the Reeb vector field of α, i.e. α(ξ) = 1, dα(ξ, ·) = 0, then the following
result by A.Bahri-D.Bennequin holds [1]:
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Theorem 1.1. A is a C2 functional on Cβ whose critical points are periodic orbits of ξ.

The existence of such a v for a given contact form α allows to compute the Contact Homology rel-
ative to α, by using the techniques of the theory of critical points at infinity developed by A.Bahri
[3, 4, 5, 6, 7, 8].
Recently in [18], we explicitly computed the relative Contact Homology for the three-dimensional
torus equipped with a family of tight contact structures: this has been possible since we were able
to construct an explicit vector field v satisfying the hypothesis (D).
Moreover, another application of the existence of such a vector field v allowed us to prove a topo-
logical property of Smale’s type: indeed in [15], by using a suitable flow along v, we showed that
the injection of the subspace Cβ into the full loop space is an S1-equivariant homotopy equivalence.
Therefore, we are motivated by these reasons to understand on which manifolds one can perform
this Legendre transform and most of all whether an explicit vector field v can be found in order
to carry out precise computations.
In [11], J.Gonzalo and F.Varela introduced a family {αn}n∈N of contact forms on S3, where α0 is
the standard contact form of the sphere and for n ≥ 1 they are all overtwisted and pairwise not
contactomorphic. In [20] it is considered the overtwisted contact form α1 on S3 and it is established
the existence of such a v, which is given explicitly (see [7] for the homology computation related to
that v); let us note that this is the first case in which such a v is given for an overtwisted contact
structure on a compact manifold.
In [21] it is given a sufficient condition on real strictly Levi-convex hypersurfaces M , embedded in
four-dimensional Kähler manifolds V , with the contact form on M whose kernel is the restriction
of the holomorphic tangent space of V : it is showed that if there exists a Legendrian Killing vec-
tor field, the Legendre duality can be performed (see also [9, 16, 19, 26], for further details and
applications of Killing vector fields on contact manifolds).

Here, starting by the definition of being of “contact type” in symplectic manifolds (see below), we
recognize a sort of convexity of the manifold along v: therefore we will consider hypersurfaces in
Kähler manifolds, where a canonical metric exists, and we relate our condition (D) to the standard
convexity defined by the Second Fundamental form, giving a sufficient condition (Proposition 3.1).
Finally, in the case of convex hypersurfaces in R4, we will explicitly exhibit a vector field v (Theorem
3.1).

2 Preliminaries

We will recall some basic definitions in symplectic and Kählerian geometry, see for instance [12, 14]
for further details.
Let (V, ω) be a symplectic four dimensional manifold and let M be an orientable embedded hyper-
surface. Since dimTM = 3, then the restriction of ω to TM must be degenerate and of rank 2.
Its kernel is therefore one dimensional and we define the one dimensional subspace:

QM :=
{
η ∈ TM s.t. ω(η, v) = 0, ∀v ∈ TM

}
.

Now, we give the following:

Definition 2.1. Let (V, ω) be a symplectic four dimensional manifold and let M be an orientable
embedded compact hypersurface. We say that (M,α) is of contact type if there exists a one-form
α on M such that:

(i) α(η) ̸= 0, for all η ∈ QM , η ̸= 0;

(ii) dα = ω, on TM.
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Indeed, it holds that α ∧ dα ̸= 0 on M, that motivates the terminology; moreover the one-form α
can be extended to a neighborhood of M in V . Thus, let (M,α) be a contact type hypersurface in
(V, ω) and let us assume that there exists a non-vanishing vector field v ∈ ker(α): we define on M
the dual one-form β(·) := dα(v, ·) and we let ξ ∈ QM be the Reeb vector field of α. We know that
[ξ, v] ∈ ker(α), so assuming for a moment that {ξ, v, [ξ, v]} is a basis for TM , a direct computation
shows that

β ∧ dβ(ξ, v, [ξ, v]) = β([ξ, v])dβ(ξ, v) = −
(
dα(v, [ξ, v])

)2

.

Since
α ∧ dα(ξ, v, [ξ, v]) = dα(v, [ξ, v]) ̸= 0,

then condition (D) reads as (β ∧ dβ/α ∧ dα > 0)

dα(v, [ξ, v]) < 0. (2)

For what we will do in the sequel, let us notice that if we use in the computations a vector field
η ∈ QM with α(η) > 0, instead of the Reeb vector field ξ, the condition on formula (2) remains
the same.
The last equation (2) can be thought as a convexity condition on M along ξ and v: our aim is to
show that, when a metric exists, then this is exactly the case.
Therefore, we are going to consider as ambient space, a four-dimensional Kähler manifold V ,
where a suitable metric exists: we refer to [10, 13, 14], for the notion of Kähler manifold and real
hypersurfaces in it; here we only recall some basic facts.
First V = V (ω, g, J) is said to be a Kähler manifold if there exist a symplectic structure ω, a
complex structure J and a Riemannian metric g such that they are compatible in the following
sense:

ω(X,Y ) = g(X,JY ) (3)

for every pair of vector fields X,Y ∈ TV .
We consider now a smooth compact, orientable, embedded manifold M on V , of codimension 1,
with the induced metric g, and we assume that there exists a one-form α such that (M,α) is of
contact type. Using the symplectic structure, by the rank condition on ω, there exists a non-
vanishing vector field ν transverse to M such that dα(η, ν) ̸= 0, for any non-zero η ∈ QM . Now,
we can use the complex structure J to make these choices unique; in fact, let us denote by ν the
inner unit normal to M , then we define T = Jν and by (3) we get that T ∈ QM and |T |g = 1. We
will need in the sequel also the following one-form on M :

θ(·) := g(T, ·) (4)

In general θ is a not a contact form on M : when this happens M is said a strictly Levi-convex
hypersurface. However the kernel of θ defines a two-dimensional subspace of TM which is called
horizontal : in particular the complexification of ker(θ) coincides with the restriction of the usual
holomorphic tangent space of V ; see for instance [17, 22, 23, 24, 25], for some properties and
applications regarding Levi-convex hypersurfaces. We observe that in general ker(α) and ker(θ)
intersect transversally (they could coincide as well), but the vector field T is always transverse
to both: in particular, by the very definition, T is g-orthogonal to ker(θ). Let now A be the
Weingarten operator, namely

A : TM → TM, AX := −∇Xν ,

where ∇ denotes the Levi-Civita connection of V ; we will denote by

h(·, ·) := g(A·, ·)
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the Second Fundamental Form of M : we recall that a hypersurface is said to be (strictly) convex
if the Second Fundamental Form is positive definite as quadratic form. We also recall that ∇ is
compatible with the complex structure J , i.e.:

J∇ = ∇J (5)

Since T ∈ QM , up to a change of sign, we can assume that α(T ) > 0; then let us write the equation
(2) in this situation:

dα(v, [T, v]) = ω(v, [T, v]) = g(v, J [T, v]) = g(v, J(∇T v −∇vT )) =

= g(v,∇TJv +∇vν)) = g(v,∇TJv)− h(v, v),

where v ∈ ker(α) is a non-vanishing vector field. Now let us suppose that we have a non-zero
vector field X ∈ ker(θ), then we can define v ∈ ker(α) as v = X + ρT , where ρ : M → R is a
function that solves the following equation:

0 = α(v) = α(X + ρT ) = α(X) + ρα(T ), α(T ) > 0 (6)

Remark 2.1. Let us also explicitly observe that since the vector fields X and T are both non-zero
and orthogonal, in particular |T |g = 1, we have that v is non-vanishing, in fact:

|v|2g = g(v, v) = g(X + ρT,X + ρT ) = |X|2g + ρ2 > 0.

Hence, since if X ∈ ker(θ) then also Y := JX ∈ ker(θ), we get:

dα(v, [T, v]) = g(v,∇TJv)− h(v, v) =

= g(X + ρT,∇TY − ρν)− h(X + ρT,X + ρT ) =

= g(X,∇TY )− h(X,X). (7)

Now, if M is convex, then h(X,X) > 0 for any non-zero vector field X ∈ TM ; therefore we have
showed the following:

Proposition 2.1. Let M be a convex real hypersurface in V of contact type. If there exists a
non-vanishing vector field X ∈ ker(θ), such that g(X,∇TY ) ≤ 0, then the condition (D) holds.

At this point, the fact that the manifold M is of contact type, convex and the existence of such a
vector field X depend on the ambient space V and on the manifold M itself: as an application, in
the next section we will examine the explicit case of convex hypersurfaces in C2.

3 Convex hypersurfaces

Here we consider convex real hypersurfaces in C2 with its canonical hermitian metric. We will use
the same notation of the previous section and we observe that all the computations we will make
can be repeated in the case of real hypersurfaces in the other two standard models of complex
space form: the complex projective space CPn+1 with the Fubini-Study metric, and the complex
hyperbolic space CHn+1 with the Bergman metric. These three prototypes differ in the sign of the
holomorphic sectional curvature (respectively zero, positive, and negative), but what one really
needs is the fact that the connection coefficients are constant with respect to suitable coordinates.
So, let us make the identification C2 ≃ R4, with

(z1, z2) ∈ C2, z1 = x1 + iy1, z2 = x2 + iy2, (x1, y1, x2, y2) ∈ R4
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and let us consider (R4, ω), where ω = dλ and λ is the standard Liouville one-form:

λ =
1

2
(y1dx1 − x1dy1 + y2dx2 − x2dy2)

We will denote by g, J,∇, the canonical metric, the complex structure, and the Levi-Civita con-
nection respectively. Now, let M be a convex and compact hypersurface in R4; we have that in
particular M bounds a starshaped domain, let us say with respect to the origin, so the restriction

α := λ|M , α(·) = 1

2
g(p, J ·), p ∈ M

is a contact form on M : therefore M is in particular a contact type hypersurface. Now, let us
recall a known sufficient condition (see [1], Proposition 1, pag. 2): if v ∈ ker(α) defines a Hopf
fibration, then the dual form β(·) = dα(v, ·) is a contact form. Of course if v generates a Hopf
type fibration, then it is non-vanishing and all its orbits are closed; anyway in general one does
not know such a v explicitly. Here we will prove the following result:

Theorem 3.1. Let M be a compact and convex embedded hypersurface in R4. Then there exists
a non-vanishing vector field Xd ∈ ker(θ), which is given explicitly, such that the Legendre duality
holds with respect to vd = Xd + ρT .

We recall that θ(·) := g(T, ·), T = Jν where ν is the unit (inner) normal to M and ρ is a function
such that vd ∈ ker(α).
First, we will prove the following lemma showing that in any embedded real hypersurface in C2 we
can find a non-vanishing vector field having a special property. We have:

Lemma 3.1. Let M be a compact embedded and orientable real hypersurface in C2. Then there
exists a non-vanishing vector field Xd ∈ ker(θ), such that

g(Xd,∇TY
d) = −h(T, T ),

where Y d := JXd.

Proof. Let f : C2 → R be a smooth defining function for M , namely

M = {(z1, z2) ∈ C2 : f(z1, z2) = 0}.

Denoting by ∂f = ( ∂f
∂z1

, ∂f
∂z1

) = (f1, f2) the complex gradient of f and by | · |2 = g(·, ·), then the
unit inner normal is given by:

ν = − 1

|∂f |
(f1̄∂z1 + f2̄∂z2 + f1∂z̄1 + f2∂z̄2)

Since

∂zk =
1

2
(∂xk

− i∂yk
), ∂z̄k =

1

2
(∂xk

+ i∂yk
), k = 1, 2

and
J(∂xk

) = ∂yk
, J(∂yk

) = −∂xk
, k = 1, 2,

we observe that the C-linear extension of the complex structure satisfies

J(∂zk) = i∂zk , JC(∂z̄k) = −i∂z̄k , k = 1, 2.

Therefore

T = J(ν) = − i

|∂f |
(f1̄∂z1 − f1∂z̄1 + f2̄∂z2 − f2∂z̄2).
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Now, we define the unit vector field

Zd =

√
2

|∂f |
(f2∂z1 − f1∂z2),

where “d” stands for the defining function. For a compact notation, let us set

νk =
fk
|∂f |

, µ1 = ν2 , µ2 = −ν1,

and let us use the summation convention, so that:

ν = −(ν̄k∂zk + νk∂z̄k),

T = −i(ν̄k∂zk − νk∂z̄k),

Zd =
√
2(ν2∂z1 − ν1∂z2) =

√
2µk∂zk .

We have:
g(∇TT,N) = ig(∇TZ

d
, Zd). (8)

In fact, first of all, we notice that

W (ν̄k)νk = W (µ̄k)µk, ∀ W ∈ TM.

Then
g(∇TZ

d
, Zd) = g(∇T

√
2µ̄k∂z̄k ,

√
2µj∂zj ) =

= T (µ̄k)µk = T (ν̄k)νk,

and
g(∇TT,N) = ig(∇T (ν̄

k∂zk − νk∂z̄k), ν̄
j∂zj + νj∂z̄j ) =

=
i

2
(T (ν̄k)νk − T (νk)ν̄k) = iT (ν̄k)νk.

Now, we denote by Xd and Y d the unitary real and the imaginary part of Zd, i.e.:

Zd =
1√
2
(Xd − iY d), Y d = J(Xd), |Xd| = |Y d| = 1.

We have that:

0 = g(T,Zd) =
1√
2

(
g(T,Xd)− ig(T, Y d)

)
,

therefore Xd, Y d ∈ ker(θ) and {Xd, Y d, T} is an orthonormal basis for TM . Moreover

g(∇TZ
d
, Zd) = g(∇T

1√
2
(Xd + iY d),

1√
2
(Xd − iY d)) =

=
1

2
{g(∇TX

d, Xd) + g(∇TY
d, Y d) + i(g(∇TY

d, Xd)− g(∇TX
d, Y d))} = ig(∇TY

d, Xd).

Hence, by (8) we get that

g(Xd,∇TY
d) = −g(∇TT,N) = −h(T, T ).
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Remark 3.1. Actually, once a defining function is given, since |Xd| = |Y d| = 1, one has that any
linear combination of Xd and Y d with non-zero constant a, b ∈ R has the following property: if
X̃ = aXd + bY d, then X̃ is a non-vanishing vector field in ker(θ) such that

g(X̃,∇TJX̃) = −(a2 + b2)h(T, T ).

Now the proof of the main result is an easy corollary:

Proof of Theorem 3.1. If M is convex , then M is starshaped and we can assume it is with respect
to the origin. Therefore, since ν is the inward unit normal, we get

α(T ) =
1

2
g(p, JT ) = −1

2
g(p, ν) > 0.

So, if we consider the vector field Xd given by the previous lemma, we get by (6) that

ρ = −α(Xd)

α(T )
=

g(p, Y d)

g(p, ν)

Finally, since M is convex, by the previous lemma and (7) we have

dα(vd, [T, vd]) = g(Xd,∇TY
d)− h(Xd, Xd) = −

(
h(T, T ) + h(Xd, Xd)

)
< 0.

Let us give next some examples in which we compute everything explicitly, showing also different
dynamics of the vector fields Xd and T .

Example 3.1. (The ellipsoid E1 in C2)
Let us consider C2 with coordinates zk = xk + iyk, k = 1, 2 and

E1 = {(z1, z2) ∈ C2 s.t. f(z1, z2) := a|z1|2 + c|z2|2 − 1 = 0, a, c > 0}.

Then (E1, α) is a convex and contact type hypersurface. Now, we have

Zd =

√
2

|∂f |
(f2∂z1 − f1∂z2) =

√
2

|∂f |
(cz̄2∂z1 − az̄1∂z2),

and thus

Xd =
1

|∂f |
(2cx2∂x1 − 2cy2∂y1 − 2ax1∂x2 + 2ay1∂y2),

Y d =
1

|∂f |
(2cy2∂x1 + 2cx2∂y1 − 2ay1∂x2 − 2ax1∂y2),

and

ν = − 1

|∂f |
(2ax1∂x1 + 2ay1∂y1 + 2cx2∂x2 + 2cy2∂y2),

T =
1

|∂f |
(2ay1∂x1 − 2ax1∂y1 + 2cy2∂x2 − 2cx2∂y2).

Moreover, since α(T ) = 1/|∂f | we get:

ρ = −α(Xd)

α(T )
=

g(p, Y d)

g(p, ν)
= (a− c)(x1y2 + y1x2).
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Example 3.2. (The ellipsoid E2 in R4)
Let us consider R4 with coordinates (x1, y1, x2, y2) and

E2 = {(x1, y1, x2, y2) ∈ R4 s.t. f(x1, y1, x2, y2) := ax2
1 + by21 + cx2

2 + dy22 − 1 = 0},

with a, b, c, d > 0. Then (E2, α) is a convex and contact type hypersurface. Now, we have

Xd =
1

|∂f |
(2cx2∂x1 − 2dy2∂y1 − 2ax1∂x2 + 2by1∂y2),

Y d =
1

|∂f |
(2dy2∂x1 + 2cx2∂y1 − 2by1∂x2 − 2ax1∂y2),

and

ν = − 1

|∂f |
(2ax1∂x1 + 2by1∂y1 + 2cx2∂x2 + 2dy2∂y2),

T =
1

|∂f |
(2by1∂x1 − 2ax1∂y1 + 2dy2∂x2 − 2cx2∂y2).

Also:

ρ = −α(Xd)

α(T )
=

g(p, Y d)

g(p, ν)
= (a− d)x1y2 + (b− c)y1x2.

We notice that, of course if a = b and c = d, then E2 coincides with E1. The difference between
the two ellipsoids is in the structure of the vector fields Xd and T . In fact, in E1, the vector field
Xd has always closed orbits, therefore it defines a Hopf fibration; the vector field T in general
does not have closed orbits, unless the ratio b/a is rational: when this happens both Xd and T
generate a Hopf fibration. On the other hand, for the second ellipsoid E2, depending on the choice
of a, b, c, d, both the vector fields Xd and T do not have in general closed orbits.
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