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Abstract We show some integral formulas involving the characteristic curvature for closed real

hypersurfaces in complex spaces.
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1 Introduction

Let M denote a closed embedded hypersurface in Rn+1. In a series of well known papers
[23], [22], R.C.Reilly first proved some integral formulas involving the symmetric elementary
functions of the eigenvalues of the Hessian of a given defining function for M and the cur-
vatures related to the second fundamental form of M ; then he used these formulas to prove
some isoperimetric inequalities involving the curvatures of M and finally with the help of
the Minkowski formula he gave an new elegant proof of the Alexandrov theorem [1].

Many generalizations of the previous results have been investigated in different contexts by
several authors, see for instance [5], [24], [20], [26] and the references therein. In general, one
is interested in some special subspaces of the tangent space: usually the so called horizontal
space. In particular, in [13], we focused on the Levi curvatures for a real hypersurface M in
Cn+1: these are elementary symmetric functions of the eigenvalues of the Levi Form, which
is defined on a (horizontal) subspace HM of codimension one in the full tangent space of M ;
there we proved an integral formula that led to an isoperimetric estimate and a Alexandrov
type result (see also [21], [4] or [16], [17] for other symmetry results on Levi curvatures).
In this short note we will focus on the curvature related to the missing direction. As we will
see in the sequel, this characteristic curvature is highly degenerate as differential operator:
nevertheless we will prove that some integral formulas still hold with respect to this charac-
teristic curvature.
Here for the sake of clarity, we will present the case of real hypersurfaces in Cn+1 with its
canonical hermitian metric. However generalizations of these formulas can be easily ob-
tained in the case of real hypersurfaces in the other two standard models of complex space
forms: the complex projective space CPn+1 with the Fubini-Study metric, and the complex
hyperbolic space CHn+1 with the Bergman metric (see Remark 2.2).
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So, let M be a closed and embedded smooth real hypersurface in Cn+1 and let us identify
Cn+1 ≈ R2n+2, with

z = (z1, . . . , zn+1) ≃ (x1, . . . , xn+1, y1, . . . , yn+1), zk = x+ iy, k = 1, . . . , n+ 1.

Therefore M can be seen as a CR-manifold of CR-codimension equal to one, with the
standard CR structure induced by the holomorphic structure of Cn+1. Thus for every
p ∈ M the tangent space TpM splits in two subspaces: the 2n-dimensional horizontal
subspace HpM (the largest subspace in TpM invariant under the action of the standard
complex structure J of Cn+1) and the vertical one-dimensional subspace generated by the
characteristic direction Tp := JNp, where Np is the unit inward normal at p. Moreover, if g
is the standard metric on Cn+1 (that we induce on M as well), then it holds

TpM = HpM ⊕ RTp ,

and the sum is g-orthogonal. Let us denote by h the Second Fundamental Form on TM

h(U, V ) = g(∇UV,N), U, V ∈ TM ,

where ∇ is the Levi-Civita connection for g.

Definition 1.1. We will call the characteristic curvature of M , the following

C := h(T, T ) = g(∇TT,N) .

A defining function for M is a smooth function f : Cn+1 → R such that

Ω = {z ∈ Cn+1 : f(z) < 0}, M = ∂Ω = {z ∈ Cn+1 : f(z) = 0},

with Df ̸= 0 on ∂Ω. Hence N = −Df/|Df | is the inner unit normal and the characteristic
direction T ∈ TM is basically the normalized Hamiltonian vector field related to the Hamil-
tonian f (see [11] or [9], for instance).
A direct computation shows that for any z ∈ M , we have an explicit formula for C that
involves a defining function f :

T f(z) := C(z) = 1

|Df(z)|3
tra

(
A(Df(z))D2f(z)

)
, (1)

where A is the following (2n+ 2)× (2n+ 2) symmetric matrix:

A(Df(z)) =

(
fy ⊗ fy −fy ⊗ fx

−fx ⊗ fy fx ⊗ fx

)
.

Due to the structure of the matrix A, the characteristic curvature is highly degenerate as
differential operator acting on functions; to see this, let us consider the hypersurface M
(locally) as the graph of some function u : R2n+1 ⊇ Ω → R such that (ξ, u(ξ)) ∈ M for all
ξ ∈ Ω. So we set

x = (x1, . . . , xn), y = (y1, . . . , yn), xn+1 = t, yn+1 = s, ξ = (x, y, t) ,

and we take as defining function

f(z) = f(x, y, t, s) = u(x, y, t)− s = u(ξ)− s, |Df |2 = 1 + |Du|2 .

2



Then we have

T u :=
1

(1 + |Du|2) 3
2

tra
(
A(Du)D2u

)
,

where A is the following symmetric matrix:

A(Du) =

 uy ⊗ uy −uy ⊗ ux −uy

−ux ⊗ uy ux ⊗ ux ux

−uy ux 1

 . (2)

The characteristic curvature operator T is a second order quasilinear degenerate elliptic
operator on R2n+1: in fact, by (2) we see that the following 2n independent vector fields

∂xk
+ uyk

∂t , ∂yk
− uxk

∂t , k = 1, . . . , n ,

are eigenvectors for A with eigenvalue identically equals to zero; instead the vector field

−uy1∂x1 − uyn∂xn + ux1∂y1 + uxn∂yn + ∂t ,

is an eigenvector for A with eigenvalue equals to (1+ |ux|2+ |uy|2). Anyway, in [11] we prove
for this operator existence and uniqueness of viscosity solutions for the Dirichlet Problem
with prescribed curvature and we get also the Lipschitz regularity of solutions by using a
Bernstein method (see [25], [14], [12] for the same results on the Levi curvatures); on the
other hand, we show with two counterexamples, that neither the Strong Comparison Prin-
ciple nor the Hopf Lemma hold for this operator T . This is a substantial difference between
the highly degenerate Characteristic Curvature operator and the Levi Curvature operators,
for which Lanconelli and Montanari in [8] proved the Strong Comparison Principle: indeed
the principal part of Levi Curvature operators are degenerate only with respect to one di-
rection and when computed on strictly pseudoconvex functions, the 2n vector fields, respect
to which the operator is strictly elliptic, satisfy the Hörmander rank condition. Moreover
in [15] we also proved some properties of the characteristic curvature by using the Codazzi
equations.

Here we show that regarding some integral formulas instead, the horizontal and the charac-
teristic curvature have the same behavior. We have the following representation formula:

Theorem 1.1. Let Ω be a bounded domain of Cn+1 with boundary a real smooth hypersurface
M . For every defining function f of M , we have∫

Ω

{
σ2(D

2f(z))− 16σ2(∂∂̄f(z))
}
dz =

1

2

∫
M

C(z)|Df(z)|2dσ(z), (3)

where σ2(D
2f) and σ2(∂∂̄f) denote the second elementary symmetric functions of the eigen-

values of the real Hessian D2f and the Hermitian complex Hessian ∂∂̄f , respectively.

We have also the following integral formula of Minkowski type

Theorem 1.2. Let M be a smooth, closed and embedded hypersurface in Cn+1. We have∫
M

1 + λ(z)C(z) +Q(z)dσ(z) = 0 , (4)

where λ(z) = g(z,N), for all z ∈ M .
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Here Q depends on some coefficients of the Second fundamental Form and will be explicitly
written in the proof: in particular, when M is of Hopf type then Q vanishes identically.
We recall that there are many generalizations of the various Minkowski formulas, in partic-
ular in [20] and [26], it is proved the analogous of the classical Minkowski formula for the
horizontal mean curvature for Hopf hypersurfaces in complex space forms: we can recover
those formulas by (4), differentiating only along the characteristic vector field T , without
any differentiation along horizontal vector fields, getting an easier proof; moreover we can
relax the assumption on being Hopf (see Remarks 2.1 and 2.3).

2 Proofs of the results

Proof. (of Theorem 1.1)
The proof of the representation formula is straightforward: as in [23] and [13], we will use
the null lagrangian property for elementary symmetric functions in the eigenvalues of both
the Hessians and then the divergence theorem.
Let M be a smooth boundary of a bounded domain Ω in Cn+1 with defining function f .
For every k, l = 1, . . . , n we have

∂f

∂zk
=

1

2

( ∂f

∂xk
− i

∂f

∂yk

)
, |∂f | = 1

2
|Df | ,

and
∂2f

∂zk∂z̄ℓ
=

1

4

( ∂2f

∂xk∂xl
+

∂2f

∂yk∂yl

)
+

i

4

( ∂2f

∂xk∂yl
− ∂2f

∂yk∂xl

)
.

Therefore we have:

n+1∑
l=1

∂

∂zl

(
∂σ2(∂∂̄f)

∂fzlz̄k

)
= 0, ∀k = 1, . . . , n+ 1

and
2n+2∑
l=1

∂

∂ξl

(
∂σ2(D

2f)

∂fξlξk

)
= 0, ∀k = 1, . . . , 2n+ 2,

where ξk = xk for k = 1, . . . , n+1 and ξk = yk for k = n+2, . . . , 2n+2. The null lagrangian
properties read as:

n+1∑
l,k=1

∂σ2(∂∂̄f)

∂fzlz̄k

∂f

∂zl

∂f

∂z̄k
= −

∑
1≤i1<i2≤n+1

∆(zi1 ,zi2 )
(f)

and
2n+2∑
l,k=1

∂σ2(D
2f)

∂fξlξk

∂f

∂ξl

∂f

∂ξk
= −

∑
1≤i1<i2≤2n+2

∆(ξi1 ,ξi2 )
(f) ,

where

∆(zi1 ,zi2 )
(f) = det

 0 fz̄i1 fz̄i2
fzi1 fzi1 ,z̄i1 fzi1 ,z̄i2
fzi2 fzi2 ,z̄i1 fzi2 ,z̄i2

 ,
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∆(ξi1 ,ξi2 )
(f) = det

 0 fξi1 fξi2
fξi1 fξi1 ,ξi1 fξi1 ,ξi2
fξi2 fξi2 ,ξi1 fξi2 ,ξi2

 .

Now, by the homogeneity of the function σ2 and using the divergence theorem, a direct
computation shows that: ∫

Ω

{
σ2(D

2f)− 16σ2(∂∂̄f)
}
dz =

=
1

2

∫
Ω

2n+2∑
l,k=1

∂

∂ξl

(
∂σ2(D

2f)

∂fξlξk

∂f

∂ξk

)
− 16

n+1∑
l,k=1

∂

∂zl

(
∂σ2(∂∂̄f)

∂fzlz̄k

∂f

∂z̄k

)
dz =

=
1

2

∫
M

1

|Df |

2n+2∑
l,k=1

(
∂σ2(D

2f)

∂fξlξk

∂f

∂ξk

∂f

∂ξl

)
− 16

|Df |

n+1∑
l,k=1

(
∂σ2(∂∂̄f)

∂fzlz̄k

∂f

∂z̄k

∂f

∂zl

)
dσ(z) =

=
1

2

∫
M

− 1

|Df |
∑

1≤i1<i2≤2n+2

∆(ξi1 ,ξi2 )
(f) +

16

|Df |
∑

1≤i1<i2≤n+1

∆(zi1 ,zi2 )
(f)dσ(z) =

=
1

2

∫
M

1

|Df |
tra

(
A(Df(z))D2f(z)

)
dσ(z) =

1

2

∫
M

C(z)|Df |2dσ(z).

Now we are going to prove the Theorem 1.2.

Proof. (of Theorem 1.2)
We will denote by z ∈ M the position vector (with respect to the origin) and we will consider
the squared distance function:

φ : M → R, φ(z) =
|z|
2

2

=
g(z, z)

2
.

For any tangent vector field V ∈ TM , the derivative of φ along V is

V (φ(z)) =
1

2
V (g(z, z)) = g(z, V ) .

So, if {X1, . . . , Xn, Y1, . . . , Yn} is any orthonormal basis of the horizontal space HM , with
Yk = JXk and k = 1, . . . , n, then we have

z = λN + T (φ)T +
n∑

k=1

{
Xk(φ)Xk + Yk(φ)Yk

}
,

where we have set
λ(z) = g(z,Nz) .

Now we observe that the characteristic vector field T is divergence free, in fact:

div(T ) = g(∇TT, T ) +
n∑

k=1

{
g(∇Xk

T,Xk) + g(∇Yk
T, Yk)

}
=

=
n∑

k=1

{
g(−∇Xk

N,Yk) + g(∇Yk
N,Xk)

}
=

n∑
k=1

{
h(Xk, Yk)− h(Yk, Xk)

}
= 0 .
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Now, we differentiate the function φ twice along T to get

T 2(φ) = T (g(z, Tz)) = g(T, T ) + g(z,∇TT ) =

= 1 + g(λN + T (φ)T +
n∑

k=1

{
Xk(φ)Xk + Yk(φ)Yk

}
,∇TT ) =

= 1 + λC +
n∑

k=1

{
Xk(φ)h(T, Yk)− Yk(φ)h(T,Xk)

}
= 1 + λC +Q ,

where we have called

Q :=
n∑

k=1

{
Xk(φ)h(T, Yk)− Yk(φ)h(T,Xk)

}
.

Therefore we have that

0 =

∫
M

T 2(φ(z))dσ(z) =

∫
M

1 + λ(z)C(z) +Q(z)dσ(z) .

Remark 2.1. We can recover the formula for the horizontal subspace, in fact we have on
M that

∆M = ∆H + T 2 ,

where we have denoted by ∆H the sublaplacian related to HM . Now, let H and L be the
classical mean curvature and the horizontal (Levi) mean curvature, respectively. Since it
holds (2n+ 1)H = 2nL+ C, then by the classical Minkowski formula, we have

0 =

∫
M

∆H(φ(z))dσ(z) =

∫
M

2n+ 2nλ(z)L(z)−Q(z)dσ(z) .

Remark 2.2. Let us explicitly observe, that the same computations can be repeated in the
case of real hypersurfaces in the other two standard models of complex space form other than
Cn+1: the complex projective space CPn+1 with the Fubini-Study metric, and the complex
hyperbolic space CHn+1 with the Bergman metric. These three prototypes differ in the sign
of the holomorphic (constant) sectional curvature K, respectively zero, positive, and nega-
tive. Denoting by r the geodesic distance function of z ∈ M from a given point o, in the
case of CHn+1 the function to consider is φ(z) = log cosh r; instead in the case of CPn+1

the function to differentiate is φ(z) = log cos r: the only assumption to add in the case of
CPn+1 is that the hypersurface M must be contained in the geodesic ball of center o and ra-
dius smaller that π/

√
−K in order to avoid conjugate points and to ensure that the function

φ is smooth.

Remark 2.3. The previous formulas simplify in the case M is a Hopf hypersurface, namely
whether the characteristic vector field is an eigenvector for the Second Fundamental form

∇TT = CN, h(T,Xk) = h(T, Yk) = 0 .

We address the reader, for instance to [3], [19], or [7] and the references therein, for fur-
ther details on Hopf hypersurfaces. However on these manifolds we have that Q identically
vanishes, so the Minkowski formula holds for both the horizontal (see [20] and [26]) and the
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characteristic subspaces.
However, in a paper with G.Tralli [18], using the Codazzi equations we found that there
exists a special vector field V ∈ HM such that∫

M

Q(z)dσ(z) =

∫
M

φ(z)div(V )dσ(z) .

Therefore, we can relax the assumption on being Hopf in order to obtain the Minkowski
formula: in particular, we can exhibit explicit examples of hypersurfaces that are not Hopf
but for which the Minkowski formula still holds.

Finally let us recall that in the case of the Reinhardt domains (i.e. toric domains), it holds
identically

T (φ(z)) = g(z, T ) = 0, ∀z ∈ M .

In [10] we proved with this technique a symmetry result of Alexandrov type with respect to
the characteristic curvature C, even though the Minkowski formula does not hold.
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