Integral formulas for a class of curvature PDE's and applications to isoperimetric inequalities and to symmetry problems

(Forum Mathematicum, 22, 2010, 255-267) Corrigendum

Vittorio Martino ${ }^{(1)}$ \& Annamaria Montanari ${ }^{(2)}$

In the proof of Theorem 1.2 (Isoperimetric estimates) in [2], we used inequality (15) without actually knowing the sign of the eigenvalues of $\partial \bar{\partial} f$, where f is a solution of (14); we thank Professor Zbigniew Błocki for having pointed out it to us.

So, Theorem 1.2 in [2] is true for $j=1$, since in that case the inequality (15) holds without any hypothesis on the sign of the eigenvalues of the matrix A (the case $j=1$ in the statement of Theorem 1.2 corresponds to $j=2$ in formula (15)).
However, here we show that once one has the case $j=1$, by using some Gärding inequalities, one can prove the formula (2) in Theorem 1.2 also for $j>1$.
We use the same notation as in [2]. Let $K_{\partial \Omega}=K_{\partial \Omega}^{(1)}$, then we have the following
Theorem (ISOPERIMETRIC ESTIMATE). Let Ω be a bounded domain of \mathbb{C}^{n+1} with boundary a real hypersurface of class C^{∞}. If $K_{\partial \Omega}$ is positive then

$$
\begin{equation*}
\int_{\partial \Omega} \frac{1}{K_{\partial \Omega}(x)} d \sigma(x) \geq 2(n+1)|\Omega| \tag{1}
\end{equation*}
$$

where $|\Omega|$ is the Lebesgue measure of Ω. If $K_{\partial \Omega}$ is constant, then the equality holds in (1) if and only if Ω is a ball of radius $\frac{1}{K_{\partial \Omega}}$.

Proof. As in [2], Theorem 1.2, case $j=1$.
Here we recall some inequalities from [1]. Let $\lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ the vector of eigenvalues of a $n \times n$ Hermitian Matrix A. For $k \in\{1, \ldots, n\}$ we define the normalized k-th elementary symmetric function of the eigenvalues of A as $s_{k}(A)=\frac{\sigma_{k}(A)}{\left(\begin{array}{l}\binom{n}{k}\end{array} \text {. We also denote }{ }^{2} \text {. }\right.}$

[^0]by $\Gamma_{k} \subseteq \mathbb{R}^{n}$ the connected component of the set $\left\{\lambda \in \mathbb{R}^{n} ; s_{k}(A)>0\right\}$ which contains the vector $(1, \ldots, 1)$. We have that $\Gamma_{k} \subseteq \Gamma_{i}$, if $i \leq k$ and moreover if $\lambda(A) \in \Gamma_{k}$ then it holds
\[

$$
\begin{equation*}
\left(s_{k}(A)\right)^{1 / k} \leq s_{1}(A) \tag{2}
\end{equation*}
$$

\]

Now, we have the following
Corollary. Let $j \in\{2, \ldots, n\}$. Let Ω be a bounded domain of \mathbb{C}^{n+1} with boundary a real hypersurface of class C^{∞}. If $K_{\partial \Omega}^{(j)}$ is positive then

$$
\begin{equation*}
\int_{\partial \Omega}\left(\frac{1}{K_{\partial \Omega}^{(j)}(x)}\right)^{1 / j} d \sigma(x) \geq 2(n+1)|\Omega| \tag{3}
\end{equation*}
$$

where $|\Omega|$ is the Lebesgue measure of Ω. If $K_{\partial \Omega}^{(j)}$ is constant, then the equality holds in (3) if and only if Ω is a ball of radius $\left(\frac{1}{K_{\partial \Omega}^{(j)}}\right)^{1 / j}$.

Proof. Since $\partial \Omega$ is compact, there exists at least a point of ellipticity, namely there exists $p_{0} \in \partial \Omega$ such that all the eigenvalues of the second fundamental form (at p_{0}) are strictly positive; therefore all the eigenvalues of $L_{p_{0}}$ (the Levi form at p_{0}) are strictly positive: in particular $\lambda\left(L_{p_{0}}\right) \in \Gamma_{j}$. Now, since the function $K_{\partial \Omega}^{(j)}:=s_{j}\left(L_{p}\right)$ is positive and continuous on $\partial \Omega$, we have that $\lambda\left(L_{p}\right) \in \Gamma_{j}, \forall p \in \partial \Omega$. Hence, by (1) and (2), we obtain

$$
\int_{\partial \Omega}\left(\frac{1}{K_{\partial \Omega}^{(j)}(x)}\right)^{1 / j} d \sigma(x) \geq \int_{\partial \Omega} \frac{1}{K_{\partial \Omega}(x)} d \sigma(x) \geq 2(n+1)|\Omega|
$$

References

[1] L.Gärding, An inequality for hyperbolic polynomials. J. Math. Mech. 81959 957-965.
[2] V.Martino, A.Montanari, Integral formulas for a class of curvature PDE's and applications to isoperimetric inequalities and to symmetry problems Forum Mathematicum, vol. 22, 2010, 255-267

[^0]: ${ }^{1}$ Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5, 40126 Bologna, Italy. E-mail address: vittorio.martino3@unibo.it
 ${ }^{2}$ Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5, 40126 Bologna, Italy. E-mail address: annamaria.montanari@unibo.it

