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Abstract In this paper, we use a perturbed version of the Rabinowitz-Floer ho-

mology to find solutions to PDE’s with jumping nonlinearities. As applications, we

find branches for the Fucik spectrum for the Laplace equation and for systems on

manifolds that fiber over S1.

1 Introduction and main results

In this paper we will extend the Rabinowitz-Floer homology approach to
semilinear problems, in particular we will deal with perturbed functionals.
The unperturbed version has been studied in [20] leading to find multiple
solutions to many classical problems and to the Dirac equation as in [19]; in
fact one observes that the method is mainly effective for problems having a
certain homogeneity: this is the reason why in this work, we will introduce
a perturbation outside of the Lagrange multiplier action. This approach
was first used by P. Rabinowitz [30] for hamiltonian systems in order to
find periodic orbits of the Reeb vector field. This idea was then exploited
in [8, 9, 10] by including the Lagrange multiplier as a variable and using
a Floer type homology in a symplectic setting again, in order to exhibit
periodic orbits of the Reeb vector field. This has a kind of parallel in the
symplectic geometry terminology which is the leaf-wise intersection problem.
A Rabinowitz-Floer homology was defined for that kind of problem in [3] and
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[4]. In our case we complete the construction for general strongly indefinite
functionals with main nonlinearity having a starshaped potential. We use
this method to deal with elliptic problems with jumping nonlinearities of
the type

−∆u = λ+u
p
+ − λ−u

p
− on M (1)

or infinite dimensional systems of the form (and the related dynamical one){
−∆u = λ+|v|q−1v+ − λ−|v|q−1v− + g in M
−∆v = β+|u|p−1u+ − β−|u|p−1u− + f in M

(2)

where we used the notation u+ = max{0, u}, u− = u+ − u and here
M = S1 ×N where N is a compact closed manifold: we refer the reader to
Section 6 for these kind of applications.
Indeed, this method can be adapted to more general perturbations and non-
linearities: here we will show explicitly the computations for the previous
mentioned applications; the reader can check that in fact it can be adapted
to a greater class of non-linearities.

Now we will briefly recall the notations and definitions we introduced in [20].
So, let E be a Hilbert space and let H̃ ⊂ E be a dense subspace compactly
embedded in E. We consider a linear operator

L : H̃ −→ E

invertible and auto-adjoint. Hence L will have a basis of eigenfunctions
{φi}i∈Z

L(φi) = λiφi

with the convention that if λi > 0 then i > 0. This allows us to define the
unbounded operator |L|

1
2 in the following way: if

u =
∑
i∈Z

aiφi

then
L(u) =

∑
i∈Z

λiaiφi

and therefore
|L|

1
2u =

∑
i∈Z

|λi|
1
2aiφi
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Now we define the space

H :=
{
u ∈ E :

∑
i∈Z

|λi|a2i <∞
}
.

We have H̃ ⊂ H ⊂ E and by denoting ⟨·, ·⟩ the inner product in E, we
define then the inner product of H as follows

⟨u, v⟩H = ⟨|L|
1
2u, |L|

1
2 v⟩

We obtain the decomposition

H = H+ ⊕H−

where
H− = span{φi, i < 0}, H+ = span{φi, i > 0}

We will write
u = u+ + u−, ∀ u ∈ H

according to the previous splitting. We explicitly note that

L(u+ + u−) = |L|(u+ − u−)

therefore we will write ⟨Lu, u⟩ in place of ∥u+∥2H + ∥u−∥2H . So, now we
consider the following functional defined on H = H × R by

I(u, λ) =
1

2
⟨Lu, u⟩ − λF (u)−G(u)

where F,G : E → R are C2 functions with the following properties:

(F1) |L|−1∇F and |L|−1∇G are compact;

(F2) the set S = {u ∈ E s.t. F (u) = 0} bounds a strictly starshaped
bounded domain in E;

(G) The maps u→ ⟨∇G(u), u⟩ and u→ G(u) are bounded on S.

In the following, if (F2) holds, we will simply say that S is a bounded strictly
starshaped surface and F is a starshaped potential. Our main result is the
following
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Theorem 1.1. If F and G satisfy the hypotheses (F1), (F2) and (G) then
the Rabinowitz-Floer homology H∗(I) is well defined. Moreover

H∗(I) = 0

If in addition I is S1-equivariant, then we have

HS1

∗ (I) = H∗(CP∞) =


Z2 if ∗ is even

0 otherwise

Remark 1.2. From the proof of the result (see Section 6 also) we will show
that in particular the homology we compute depends strongly on the set S in
the hypothesis (F2), rather than the defining function F ; therefore we could
use the notation H∗(S) as well.

Acknowledgement The authors aknowledge the financial support of the
Seed Grant of AURAK, No.: AAS/001/15, Extensions of the Rabinowitz-
Floer Homology and Applications to more General PDEs

2 Relative index and moduli space of trajectories

First of all, we note explicitly that critical points of I satisfy the following
equations: 

Lu = λ∇F (u) +∇G(u)

F (u) = 0
(3)

Moreover if we compute the Hessian of I at a critical point (λ, u), we get

Hess(I)(u, λ) =

 |L|−1L− λ|L|−1∇2F (u)− |L|−1∇2G(u) −|L|−1∇F (u)

−|L|−1∇F (u) 0


Hence the index and co-index of the critical point are infinite. So we need
to introduce an alternative way of grading (as in [2] for instance).

Definition 2.1. Consider two closed subspaces V and W of a Hilbert space
E. We say that V is a compact perturbation of W if PV −PW is a compact
operator.
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PV in the previous definition denote the orthogonal projection on V . Now,
if V is a compact perturbation of W , we can define the relative dimension
as

dim(V,W ) = dim(V ∩W⊥)− dim(V ⊥ ∩W ).

One can check that it is well defined and finite. Now if we have three
subspaces V , W and U such that V and W are compact perturbations of
U . Then V is also a compact perturbation of W and

dim(V,W ) = dim(V,U) + dim(U,W ).

Using this concept of relative dimension we can define a relative index as
our grading.

Definition 2.2. We denote by V −(u, λ) the closure of the span of the eigen-
function of the Hessian of I at a critical point (u, λ), corresponding to neg-
ative eigenvalues.
The relative index is defined as

irel(u, λ) = dim(V −(u, λ),H− × R)

Lemma 2.3. If I is Morse and (F1) holds then the relative index is well
defined for critical points of I.

Proof. Let Γ = H− × R, and (u, λ) a critical point of I. The operator

v 7→ Lv − λ∇2F (u)v −∇2G(u)v

has discrete spectrum since |L|−1 is a compact operator. Then V −(u, λ) is
well defined and it is a compact perturbation of Γ. This follows from the
fact that(

|L|−1L 0
0 1

)
−
(

|L|−1L− λ|L|−1∇2F (u)− |L|−1∇2G(u) |L|−1∇F (u)
|L|−1∇F (u) 0

)
,

is a compact operator.

We define now the moduli space of H-gradient trajectories. Let us consider
the following differential system:

∂u

∂t
= u− − u+ + λ|L|−1∇F (u) + |L|−1∇G(u)

∂λ

∂t
= F (u)

(4)
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This system is in fact the descending gradient flow of our functional in
H = H×R and since the right hand side is C1, then we have local existence
of the flow.
Now, given two critical points z0 = (u0, λ0) and z1 = (u1, λ1) such that

I(zi) ∈ [a, b], for i = 0, 1

we define the space of connecting orbits from z0 to z1 by

Ma,b(z0, z1) =
{
z = (u, λ) ∈ C1(R,H) satisfying (4) with z(−∞) = z0 , z(+∞) = z1

}
where we have denoted by

z(−∞) := lim
t→−∞

z(t), z(+∞) := lim
t→+∞

z(t)

The moduli space of trajectories is then defined by

Ma,b(z0, z1) = Ma,b(z0, z1)/R.

Proposition 2.4. Assume that irel(z0) > irel(z1), then if I is Morse-Smale,

dim
(
Ma,b(z0, z1)

)
= irel(z0)− irel(z1)− 1

Proof. We first note that Ma,b(z0, z1) = F−1(0) where

F : C1(R,H) 7→ Q0 = C0(R,H)

is defined by

F(z) =
dz

dt
+∇I(z)

We will use the implicit function theorem to prove our result: we need to
show that the linearized operator of F is Fredholm and onto. The linearized
operator corresponds to

∂F(z) =
d

dt
+Hess(I(z))

and this is a linear differential equation in the Banach space H (see [1]). In
order to show that it is Fredholm, we first notice that

Hess(I(z)) =

(
|L|−1L 0

0 1

)
+

(
−λ|L|−1∇2F (u)− |L|−1∇2G(u) −|L|−1∇F (u)

−|L|−1∇F (u) −1

)
.
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Now, the operator (
|L|−1L 0

0 1

)
is time independent and hyperbolic, while the operator(

−λ|L|−1∇2F (u)− |L|−1∇2G(u) −|L|−1∇F (u)
−|L|−1∇F (u) −1

)
is compact. Hence we have that ∂F is a Fredholm operator with index

ind(∂F(z)) = dim(V −(F(z0), V
−(F(z1))

= dim(V −(F(z0),Γ) + dim(Γ, V −(F(z1))

= irel(z0)− irel(z1).

Moreover, from [1], we have also that ∂F(z) is onto if and only if the inter-
section is transverse.
To finish the proof now, it is enough to notice that the action of R is free
and hence we can mod out by that action to get the desired result.

3 Compactness

3.1 Palais-Smale condition and compactification of the mod-
uli spaces

We recall that a functional I is said to satisfies the Palais-Smale condition
(PS), at the level c, if every sequence (zk) such that

I(zk) −→ c

and
∇I(zk) −→ 0

as k → ∞, has a convergent subsequence. We will say that I satisfies (PS)
if the previous condition is satisfied for all c ∈ R.

Proposition 3.1. Under the assumption (F1), (F2) and (G), I satisfies
the (PS) condition.
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Proof. Let zk = (uk, λk) be a (PS) sequence at the level c, that is
Luk − λk∇F (uk)−∇G(uk) = εk

F (uk) = εk

and
I(uk, λk) = c+ εk

Thus if we consider

⟨Luk − λk∇F (uk)−∇G(uk), uk⟩ − 2I(uk, λk)

we get

λk⟨∇F (uk), uk⟩ = 2c+ ⟨∇G(uk), uk⟩ − 2G(uk) + εk(∥uk∥H + 2|λk|)

Since, F (uk) → 0 and S is strictly starshaped, there exists a > 0 such that

⟨∇F (uk), uk⟩ > a.

Also by (G), there exists C > 0 such that

|⟨∇G(uk), uk⟩ − 2G(uk)| ≤ C.

Thus
|λk| = C + εk(∥uk∥H + |λk|) (5)

and we have

⟨Luk−λk∇F (uk)−∇G(uk), u+k ⟩ = ∥u+k ∥
2
H−λk⟨∇F (uk), u+k ⟩−⟨∇G(uk), u+k ⟩

and

⟨Luk−λk∇F (uk)−∇G(uk), u−k ⟩ = −∥u−k ∥
2
H−λk⟨∇F (uk), u−k ⟩−⟨∇G(uk), u−k ⟩

Hence,

∥uk∥2H = λk⟨∇F (uk), u+k − u−k ⟩+ ⟨∇G(uk), u+k − u−k ⟩+ εk∥uk∥H

therefore

∥uk∥2H ≤ C (|λk|∥∇F (uk)∥+ ∥∇G(uk)∥) ∥uk∥+ εk∥uk∥H

Now, since S is a bounded hypersurface, we have that uk is bounded in E
thus

∥uk∥H ≤ C|λk|+ εk (6)
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By adding (6) and (5), one has

∥uk∥H + |λk| ≤ C + Cεk(∥uk∥H + |λk|) + εk

Thus both uk and λk are bounded. Hence we can extract a weakly conver-
gent subsequence of uk and a convergent subsequence of λk. That is λk → λ
and uk ⇀ u. Now notice since |L|−1∇F and |L|−1∇G are compact we have
that

∥u+k ∥
2
H → λ⟨∇F (u), u+⟩+ ⟨∇G(u), u+⟩

similarly
∥u−k ∥

2
H → −λ⟨∇F (u), u−⟩ − ⟨∇G(u), u−⟩

But again,

⟨Luk − λk∇F (uk)−∇G(uk), u+⟩ → ∥u+∥2H − ⟨λ∇F (u)−∇G(u), u+⟩

and

⟨Luk − λk∇F (uk)−∇G(uk), u−⟩ → −∥u−∥2H − ⟨λ∇F (u)−∇G(u), u−⟩

Combining both we get

∥u∥2H = ⟨λ∇F (u)−∇G(u), u+ − u−⟩

Hence we have the convergence in norm of uk and thus (PS) holds.

In fact following the previous proof, we have proved the following

Lemma 3.2. If
∥∇I(u, λ)∥ ≤ ε

and
|I(u, λ)| ≤M

for some ε,M > 0, then there exists C = C(M) > 0 such that

|λ| ≤ C

and
∥u∥H ≤ C.

Next we state a uniform boundedness on the flow lines as in [8], for instance.
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Proposition 3.3. Under hypotheses (F1), (F2) and (G), the flow lines
between critical points (or more precisely the moduli space) are uniformly
bounded.

The proof of the previous Proposition is similar to the one in [20] (Proposi-
tion 3.3.), since the presence of the perturbation G does not play a crucial
role: for this reason we will omit it.

Proposition 3.4. There exists a space Ĥ that embeds compactly in H such
that any gradient flow-line is bounded in

Ĥ = Ĥ × R

Proof. We recall again that the space H is characterized by

∥u∥2H =
∑
i∈Z

|ai|2|λi| <∞

for any u ∈ E. In a similar way, one can define Ĥ to be the set of vectors
u ∈ E such that

∥u∥2
Ĥ

=
∑
i∈Z

|ai|2|λi|2 <∞

Now let G̃ be the fundamental solution of the operator

d

dt
+ P+ − P−

where P± is the projection on H±, then from the equation of the flow, we
have that

u(t) =

∫ +∞

−∞
G̃(t− s)

(
λ(s)|L|−1∇F (u) + |L|−1∇G(u)

)
ds

and since ∇F and ∇G map H to E, we have that

|L|−1∇F ∈ Ĥ, |L|−1∇G ∈ Ĥ

and therefore u ∈ Ĥ.

From the previous proposition we have that the moduli spaces are modeled
on the affine spaces

Q1(z0, z1) = z̃ + C1
0 (R, Ĥ)
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where z̃ is a flow line between z0 and z1. We will consider the map

ev : M(z0, z1) 7−→ Ĥ

defined by ev(z) = z(0). This map is onto and hence the set M(z0, z1) is
precompact.
Now the arguments for the compactification by broken trajectories follow the
same construction in [20] (Subsection 3.1.1), therefore we refer the reader
to [20] for the details.

4 Construction of the homology

In this section we will define the different chain complexes and their ho-
mologies. We will give an explicit computation later on, under specific
assumptions.
Let F and G be functions satisfying (F1), (F2) and (G), and let I denote
the related energy functional. For a < b we define the critical sets

Crit
[a,b]
k (I)

as the set of critical points of I with energy in the interval [a, b] and relative
index k.
We notice that if I is Morse and satisfies (PS) (which we can always assume

as we will see later on), then Crit
[a,b]
k (I) is always finite. Now we define the

chain complex C
[a,b]
k (I) as the vector space over Z2 generated by Crit

[a,b]
k (I),

for every k ∈ Z. That is

C
[a,b]
k (I) = Crit

[a,b]
k (I)⊗ Z2

The boundary operator ∂ is defined for any z ∈ Crit
[a,b]
k (I) by

∂z =
∑

y∈Crit
[a,b]
k−1(I)

(
♯M(z, y)mod[2]

)
y

Using the compactness results of the previous subsections we have that

∂2 = 0

and therefore (C
[a,b]
∗ (I), ∂) is indeed a chain complex and we will denote it

by

H
[a,b]
∗ (I) = H∗(C

[a,b]
∗ (I), ∂)

its homology.
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4.0.1 The S1-equivariant case

Here we will define the equivariant homology for a particular group action,
namely the S1 action. Hence in this case, we assume F and G to be S1-
invariant, that is

F (eiθu) = F (u), G(eiθu) = G(u) θ ∈ R

We define the critical groups by

C
[a,b],S1

k (I) =
Crit

[a,b]
k (I)

S1
⊗ Z2

We notice that this definition makes sense since here the critical points are
in fact critical circles, since I is equivariant. Now, by breaking the symmetry
perturbing the functional, each

zk ∈
Crit

[a,b]
k (I)

S1

splits into a max and a min respectively

z+k ∈ Crit
[a,b]
k+1(Ĩ), z−k ∈ Crit

[a,b]
k (Ĩ)

where Ĩ is the perturbed functional. Hence we define for any

zk+1 ∈
Crit

[a,b]
k+1(I)

S1

the boundary operator

∂S1zk+1 =
∑

zk∈
Crit

[a,b]
k

(I)

S1

♯
(
M(z+k+1, z

+
k )mod[2]

)
zk

We see that ∂S1 is well defined; now we need to show that indeed it is a
boundary operator.

Lemma 4.1. We have
∂2S1 = 0

Proof. First we define the following chain complex

Ck =
⊕

zk∈
Crit

[a,b]
k

(FB)

S1

(z+k , z
−
k )⊗ Z2
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with the following boundary operator

∂(z+k+1, z
−
k+1) =

∑
zk∈

Crit
[a,b]
k

(FB)

S1

(< z+k+1, z
+
k > z+k , < z−k+1, z

−
k > z−k )

where we put

< x, y >= ♯
(
M(x, y)mod[2]

)
We claim that ∂

2
= 0, so that (C∗, ∂) is a chain complex. Indeed this claim

is the same of the one in [20] (Lemma 4.1.), so we will omit its proof.
Next, we consider the map

f∗ : C∗ −→ C
[a,b],S1

∗ (I)

defined by
f∗((z

+
k , z

−
k ) = zk

We notice that f is well defined and it is an isomorphism. By the S1 action
we have that

< z+k+1, z
+
k >=< z−k+1, z

−
k >

and we obtain that
∂S1 = f−1 ◦ ∂ ◦ f

Which completes the proof of the lemma.

5 Stability and transversality

5.1 Stability

In this section we will consider, for a fixed function F , two functions G1 and
G2 satisfying (G) and we will show that under suitable conditions

H∗(I1) = H∗(I2)

where we called Ii the energy functional related to Gi, with i = 1, 2. The
proof will be done in the general case and there is absolutely no difference
in the equivariant case since all the perturbations can be taken to be equiv-
ariant. So, let η be a smooth function on R such that

η(t) = 1, t ≥ 1

η(t) = 0, t ≤ 0
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Gt = (1− η(t))G1 + η(t)G2

and for a fixed t ∈ R, we will denote by It the energy functional related to
Gt. Now we define the non-autonomous gradient flow by

z′(t) = −∇It(z(t)),

where ∇It is the gradient with respect to z for a fixed t. Given z1 a critical
point of I1 and z2 a critical point of I2, we let z(t) be the flow line from z1
to z2.

Lemma 5.1. Assume that G1−G2 is bounded then z(t) is uniformly bounded
by a constant depending only on z1 and z2.

Proof. Here again one needs to worry about the boundedness of λ along the
flow. First we notice that

∂It(z(t))

∂t
= −∥z′(t)∥2 + η′(t) (G1 −G2)

Therefore, we have

It(z(t)) ≤ I1(z1) + C

∫ t

0
|η′(s)|ds

and ∫ +∞

−∞
∥z′(t)∥2dt ≤ I2(z2)− I1(z1) + C.

So we consider the following function:

τ(s) = inf{t ≥ 0; ||∇It(z(t+ s)|| ≥ ε} (7)

where ε is as in Lemma (3.2), where I has to be replaced by It. We need a
bound for this last one. We have∫ +∞

−∞
∥∇It(z)(t)∥2dt ≤ I2(z2)− I1(z1) + C

hence ∫ s+τ(s)

s
∥∇It(z)(t)∥2dt ≤ I2(z2)− I1(z1) + C

Thus
ε2τ(s) ≤ I2(z2)− I1(z1) + C
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Now

λ(s) = λ(s+ τ(s))−
∫ s+τ(s)

s
λ′(t)dt

and

|λ(s)| ≤ C +
√
τ(s)

(
I2(z2)− I1(z1) + C

) 1
2

This leads to

|λ(s)| ≤ C +
I2(z2)− I1(z1) + C

ε

Therefore we have the uniform bound for λ.
Similarly ∥u∥H is uniformly bounded. In fact,

∥u(s)∥H ≤ ∥u(s+ τ(s))∥H +
I2(z2)− I1(z1) + C

ε

and since ∥u(s+ τ(s))∥H ≤ C and λ is bounded, we have the desired result.

Now, as in the autonomous case, this uniform boundedness implies pre-
compactness, therefore we can define the moduli space of trajectories of the
non-autonomous gradient flow,

M(z1, z2)

and we omit the similar gluing construction that can be done to compactify
it. In fact, we can show that it is a finite dimensional manifold with

dim
(
M(z1, z2)

)
= irel(z1)− irel(z2)

Moreover, if
irel(z1)− irel(z2) = 1

we have that

∂M(z1, z2) =
∪

x∈Critirel(z2)(I1)

M(z1, x)×M(x, z2)

∪
y∈Critirel(z1)(I2)

M(z1, y)×M(y, z2)

With this in mind we can construct the continuation isomorphism

Φ12 : C∗(I1) −→ C∗(I2)
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defined at the chain level by

Φ12(z) =
∑

x∈Critirel(z)(I2)

(♯M(z, x)mod[2])x

By the previous remark on the boundary of the moduli space in the non-
autonomous case, one sees that

∂1Φ12 +Φ12∂2 = 0

this shows that it is a chain homomorphism, hence it descends at the ho-
mology level. The last thing to check is that it is an isomorphism, by taking
a homotopy of homotopies (see for instance Schwarz [33]). Finally we have
the following result

Corollary 5.2. Assume that F , G1 and G2 satisfy the assumptions (F1),
(F2) and (G), such that G1 −G2 is bounded. Then

H∗(I1) = H∗(I2)

As we said before, the same stability results hold for the equivariant cases.

5.2 Transversality

In this section we will show that up to a small and smooth perturbation of
F we can always assume that I is Morse. Then, it can be approximated
by a Morse-Smale functional with the same critical points and the same
connections.

Lemma 5.3. Consider two functions F and G satisfying (F1), (F2) and
(G), then for a generic perturbation K in C3

0 (E), the energy functional Ĩ
related to G+K is Morse.

Proof. We consider the functional

ψ : H× C3
0 (E) −→ H

defined by
ψ(z,K) = ∇Ĩ(z)

Let us notice first that the inverse image of zero corresponds to critical
points of the functional related to G+K. Also, for (z,K) ∈ ψ−1(0) we have

∂zψ(z,K)v = Hess(Ĩ(z))v,
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which is a perturbation of a compact operator, and hence it is a Fredholm
operator of index zero. Now it remains to show that ∇ψ(z,K) is surjective.
So, let us compute the differential with respect to K:

∂Kψ(z,K)(H, 0) =

(
−|L|−1∇H(u)

0

)
Therefore, for the functional component of the space, we see that by taking

H(u) = ⟨f, u⟩

then we have that the range of the first component is dense since f can be
any function of E and the operator |L|−1 maps E to a dense subspace. Now
for the scalar component, we consider the differential with respect to u for
(z,K) ∈ ψ−1(0) :

∂λψ(z,K)(0, α) =

(
0

α|L|−1∇F (u)

)
with α ∈ R. Since S is starshaped, we have that ∇F ̸= 0 for u ∈ S. Thus
we have the surjectivity. Therefore by the transversality theorem, 0 is a
regular point of ψ(·,K) for a generic K and this is equivalent to say that Ĩ
is Morse.

Notice also that the perturbation K can be chosen to be S1-equivariant if
F and G are so.

Lemma 5.4. Assume that I is Morse and satisfies (PS) in [a, b], then for
every ε > 0 there exists a functional Iε such that

(i) ∥I − Iε∥C2 < ε

(ii) Iε satisfies (PS) in [a− ε, b+ ε]

(iii) Iε has the same critical points than I with the same connections (num-
ber of connecting orbits).

The proof of this result is similar to the one in [2] for that it will be omitted.
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6 Computation of the homology and applications

Here we point out that in fact the most important assumption on F , is the
hypothesis (F2). Indeed, F needs to have the geometry of a local minimum
around 0. In fact, the homology that we compute is intrinsically related to
the surface S since the critical points will be located on S itself: given F , if
G1, G2 are bounded functions on S and if we use the notation H∗(S) instead
of H∗(I), then H∗(S) = H∗(I1) = H∗(I2). This can be done using a cut off
function η: if the hypersurface S is located in the ball BA(0) we choose η
such that

η(t) =

{
1 for 0 ≤ t ≤

√
A

0 for t > 2
√
A

Thus we consider the modified perturbation

Gη = η(∥u∥2)G2(u) + (1− η(∥u∥2))G1(u).

Then Gη is bounded. Hence if we are interested in critical points in a spe-
cific surface S, we can disregard the behavior of the perturbation outside a
bounded set and make it equal to a reference functional that we know how
to compute its homology and this is the main trick in order to compute the
homology.
Using this fact, it is enough to know the value of the homologyH∗(I0), where
I0 corresponds to the unperturbed functional (that is G0 ≡ 0), as computed
in [20] to obtain the main result.
Moreover, if the functional has some invariance, the homology is richer and
has infinitely many generators which yield infinitely many solutions to the
desired equations. On the other hand, in the case of vanishing of the homol-
ogy, one needs to consider the local version of it, that is one has to restrict
the energy on an interval [a, b]. By following the variation of the energy
along the perturbation one can exhibit the existence of at least one solution,
see for instance [19].

Now we present some examples of PDEs and systems for which one can
apply our previous results to get existence and multiplicity of solutions.We
observe that as in [20] here we will consider only examples in which the
relevant operator L has unbounded spectrum from above and below, which
is the interesting case for our methods; however our results apply to operator
such as laplacian, bilaplacian or sublaplacian as well, giving rise to the usual
Morse homology: for instance, we address the reader to the papers [17], [15],
[16], [24], [22], [31], [21], [26], [23], [25] and the reference therein, for other
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kind of methods to obtain different type of existence and multiplicity results,
even with perturbations.
In the following two examples we will consider a manifold M = S1 × N
where N is a compact closed manifold. Thus, we can define the S1 action
on functions by translation on the first component. That is,

eit · u(eis, y) = u(ei(s+t), y)

6.1 Non-linear Fucik spectrum

We start here by taking a simple differential operator. We consider the
problem

−∆u = λ+u
p
+ − λ−u

p
−, on M (8)

for 1 ≤ p < n+2
n−2 . This type of problem was heavily investigated since the

nonlinearity has different behavior at +∞ and −∞ (see for instance [13]
and the references therein). We notice that in our case, we take p to be
subcritical to insure compactness of the embedding H1(M) ⊂ Lp+1(M); the
critical case, p = n+2

n−2 presents other phenomena such as bubbling and con-
centration: however under the assumption of the symmetry of the domain
(for instance when there is a group action for which also the operator is
invariant), one could try to get the compactness on some subspace (as in
[23, 25], for instance) and then extend these techniques even to the critical
case. Regarding (8) we will take the operator L = −∆,

F (u) =
1

p+ 1

∫
M
(|u|p+1 − 1)dx (9)

and

G(u) =
α

p+ 1

∫
M

|u+|p+1dx (10)

with any non-zero real parameter α. Then we have the following byproduct
of the main Theorem 1.1:

Corollary 6.1. Let M = S1×N where N is a compact closed manifold and
let us consider the problem (8) with F and G given by (9) and (10) respec-
tively. Therefore we have the existence of an infinite sequence of solutions
(λk, uk)k≥0 such that

−∆uk = λ+,k|uk|p−1u+,k − λ−,k|uk|p−1u−,k

where
λ+,k = λk + α, λ−,k = λk
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In fact, we first notice that the assumptions (F1), (F2), (G) are fulfilled; in
particular the choice of the exponent p ensures the compactness hypothesis.
Then, since the manifold M is a product S1 × N , it is easy to see that
the functional I is invariant under the S1 action on u. Therefore the thesis
follows by the considerations in the previous sections.
We also notice that in the case p = 1. we are dealing with the classical Fucik
spectrum (see [32, 27, 29]), namely we find a sequence of solutions to the
problem

−∆u = λ+u+ − λ−u−

One can also consider problems with different kinds of non-linearities, for
instance different exponents on p and q for F and G as long as 1 ≤ q ≤ p <
n+2
n−2 , in order to ensure the compactness of the Sobolev embedding as stated
above and the boundedness of G.

6.2 Systems of elliptic equations with jumping nonlinearities

Let us consider again M = S1 ×N as before and let us define the following
elliptic system:{

−∆u = λ+|v|q−1v+ − λ−|v|q−1v−, on M
−∆v = β+|u|p−1u+ − β−|u|p−1u−, on M

(11)

We take

L =

(
0 −∆

−∆ 0

)
so this operator have a discrete unbounded spectrum from above and below.
Next we define

F (u, v) =

∫
M

(
1

p+ 1
|u|p+1 +

1

q + 1
|v|q+1 − 1

)
dx (12)

and

G(u, v) =

∫
M

α1

p+ 1
|u+|p+1 +

α2

q + 1
|v+|q+1dx (13)

with 1
p+1 +

1
q+1 >

n−2
n and non-zero real parameters α1, α2 (see [18, 5, 14]).

We have

Corollary 6.2. Let M = S1 × N where N is a compact closed manifold
and let us consider the problem (11) with F and G given by (12) and (13)
respectively. Therefore this system admits infinitely many solutions with
energy going to infinity.

20



Indeed, even in this case, the level set {F = 0} bounds a spherical domain
so in particular it is strictly starshaped and thus (F2) holds; moreover from
the restriction on p and q we have that assumptions (F1) and (G) hold as
well, so that the results follows again.

We observe that one can also consider the non-homogeneous case by taking

G(u, v) =

∫
M

α1

p+ 1
|u+|p+1 +

α2

q + 1
|v+|q+1 + fu+ gvdx

for some suitable functions f, g (for instance in L∞). This will give a se-
quence of solutions to the problem{

−∆u = λ+|v|q−1v+ − λ−|v|q−1v− + g, on M
−∆v = β+|u|p−1u+ − β−|u|p−1u− + f, on M

(14)

Also, by taking p = q = 1 and α1 = 0 then one has a sequence of solutions
to the Fucik spectrum of the bi-Laplacian (see [28] for a similar result on a
fourth order problem): that is

∆2v = λ+v+ − λ−v−

6.3 An infinite dimensional dynamical system with jumping
nonlinearities

We consider here any compact closed manifold N as domain for the space
variables (on which we apply the laplacian) and we propose to find periodic
solutions (in time) to the following infinite dimensional dynamical system:{

∂
∂tu−∆u = λ+|v|q−1v+ − λ−|v|q−1v− + g, on S1 ×N

− ∂
∂tv −∆v = β+|u|p−1u+ − β−|u|p−1u− + f, on S1 ×N

(15)

for

1 >
1

p+ 1
+

1

q + 1
>

n

n+ 2
.

We define then

F (u, v) =

∫
S1×N

(
1

p+ 1
|u|p+1 +

1

q + 1
|v|q+1 − 1

)
dt dx (16)

and

G(u, v) =

∫
S1×N

α1

p+ 1
|u+|p+1 +

α2

q + 1
|v+|q+1 + fu+ gvdt dx (17)

with non-zero real parameters α1, α2 and for functions f, g ∈ L∞(S1 ×N).
We have
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Corollary 6.3. Let us consider the problem (15) with F and G given by
(16) and (17) respectively. Therefore there is a sequence of periodic solutions
with energy going to infinity.

This type of problems has been deeply investigated in the case of power
type non-linearity, we cite for example the works [11], [12], [6], [7] and the
references therein: however, to the best of our knowledge, we do not know
any references solving this type of problems with jumping non-linearity. In
order to prove our statement, we have in this case to define the operator

L =

(
0 ∂

∂t −∆

− ∂
∂t −∆ 0

)
.

This is an unbounded operator on L2(S1 × N) and it is auto-adjoint with
spectrum

σ(L) = {±
√
j2 + λ2k; j ∈ Z, λk ∈ σ(−∆), k ∈ N}

The corresponding eigenfunctions, in complex notations, are of the form

ψj,k = eijtφk(x)

where the φk are eigenfunctions of the Laplace operator on N . The natural
space of functions to consider is then

H = {u =
∑
k,j

uk,jψk,j ∈ L2(S1 ×N);
∑
k,j

|j2 + λ2k|
1
4uk,jψk,j ∈ L2(S1 ×N)}

Then we again notice that the assumptions (F1), (F2), (G) are fulfilled; in
particular the assumption on p, q ensures the compactness hypothesis. Then,
since in this case the group action of S1 is explicit, the thesis follows again
by the considerations in the previous sections.

Finally, we notice that in particular, this allows us to find periodic solutions
to the beam equation with jumping non-linearity by taking p = 1 and f = 0.

References

[1] A. Abbondandolo; M. Pietro, Ordinary differential operators in
Hilbert spaces and Fredholm pairs. Math. Z. 243 (2003), no. 3, 525-
562.

22



[2] A. Abbondandolo; M. Pietro, Morse homology on Hilbert spaces.
Comm. Pure Appl. Math. 54 (2001), no. 6, 689-760.

[3] P. Albers, U. Frauenfelder, Leaf-wise intersections and Rabinowitz
Floer homology, Journal of Topology and Analysis (2010), 77-98.

[4] P. Albers, U. Frauenfelder, Infinitely many leaf-wise intersection points
on cotangent bundles, (2008), arXiv:0812.4426

[5] S. Angenent; R. van der Vorst, A superquadratic indefinite elliptic
system and its Morse-Conley-Floer homology. Math. Z. 231 (1999),
no. 2, 203-248.

[6] T. Bartsch, Y. Ding, Homoclinic solutions of an infinite-dimensional
Hamiltonian system. Mathematische Zeitschrift 240 (2002), 289-310.

[7] T. Bartsch, Y. Ding, Periodic solutions of superlinear beam and mem-
brane equations with perturbations from symmetry. Nonlinear Anal-
ysis 44 (2001), 727-748.

[8] K. Cieliebak; U. Frauenfelder, A Floer homology for exact contact
embeddings. Pacific J. Math. 239 (2009), no. 2, 251-316.

[9] K. Cieliebak; U. Frauenfelder, Morse homology on noncompact mani-
folds. J. Korean Math. Soc. 48 (2011), no. 4, 749-774.

[10] K. Cieliebak; U. Frauenfelder, A. Oancea, Rabinowitz Floer homology
and symplectic homology. Ann. Sci. Ec. Norm. Super. (4) 43 (2010),
no. 6, 957-1015

[11] Clément, Ph.; Felmer, P.; Mitidieri, E. Homoclinic orbits for a class
of infinite-dimensional Hamiltonian systems. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. (4) 24 (1997), 2, 367-393.

[12] Clément, Ph.; van der Vorst, R. C. A. M. On the non-existence of ho-
moclinic orbits for a class of infinite-dimensional Hamiltonian systems.
Proc. Amer. Math. Soc. 125 (1997), no. 4, 1167-1176.

[13] E.N. Dancer, Y. Du, Existence of changing sign solutions for semi-
linear problems with jumping nonlinearities at zero, Proc. Roy. Soc.
Edinburgh Sect. A, 124 (1994), 1165-1176

[14] D. De Figueiredo; Y. Ding, Strongly indefinite functionals and multiple
solutions of elliptic systems, Trans. Amer. Math. Soc. 355 (2003), 2973-
2989.

23



[15] M. del Pino, P. Felmer, M. Musso, Two-bubble solutions in the super-
critical Bahri-Coron’s problem, Calc. Var. Partial Differential Equa-
tions 16:2 (2003), 113-145.

[16] W.Y. Ding, On a conformally invariant elliptic equation on Rn, Comm.
Math. Phys. 107 (1986), no. 2, 331-335.

[17] N. Hirano, Multiplicity of solutions for nonhomogeneous nonlinear el-
liptic equations with critical exponents, Topol. Methods Nonlinear
Anal., 18 (2001), 269-281.

[18] Hulshof, Josephus; van der Vorst, Robertus Differential systems with
strongly indefinite variational structure. J. Funct. Anal. 114 (1993),
no. 1, 32-58.

[19] A. Maalaoui, Rabinowitz-Floer Homology for Super-quadratic Dirac
Equations On spin Manifolds, Journal of fixed point Theory and Ap-
plications. Vol 13, (2013), Issue 1. pp 175-199.

[20] A. Maalaoui, V. Martino, The Rabinowitz-Floer homology for a class
of semilinear problems and applications, J. Funct. Anal. 269 (2015),
12, 4006-4037.

[21] A. Maalaoui, V. Martino, Multiplicity result for a nonhomogeneous
Yamabe type equation involving the Kohn Laplacian, Journal of Math-
ematical Analysis and Applications, 399,1, (2013), 333-339

[22] A. Maalaoui, V. Martino, Existence and Concentration of Positive So-
lutions for a Super-critical Fourth Order Equation, Nonlinear Analysis
75, (2012), 5482-5498

[23] A. Maalaoui, V. Martino, Changing sign solutions for the CR-Yamabe
equation, Differential and Integral Equations, Volume 25, Numbers 7-
8, (2012), 601-609

[24] A. Maalaoui, V. Martino, Existence and Multiplicity Results for a
non-Homogeneous Fourth Order Equation, Topological Methods in
Nonlinear Analysis, Vol. 40, No. 2, (2012), 273-300

[25] A. Maalaoui, V. Martino, G.Tralli, Complex group actions on the
sphere and changing sign solutions for the CR-Yamabe equation, J.
Math. Anal. Appl., 431, (2015), 126-135.

24



[26] A. Maalaoui, V. Martino, A. Pistoia, Concentrating Solutions for a
Sub-Critical Sub-Elliptic Problem, Differential and Integral Equations,
Volume 26, Numbers 11-12, (2013), 1263-1274

[27] E. Massa, B. Ruf, On the Fucik spectrum of the Laplacian on a torus,
Journal of Functional Analysis, Vol. 256, (2009), no. 5, 1432-1452.

[28] R. Pei, J. Zhang, Multiple solutions for a fourth-order nonlinear elliptic
problem which is superlinear at +∞ and linear at −∞. Bound. Value
Probl. 2014, 2014:12.

[29] K. Perera, M. Schechter, Double resonance problems with respect to
the Fucik spectrum. Indiana Univ. Math. J. 52 (2003), no. 1, 1-17.

[30] P.Rabinowitz, Periodic solutions of Hamiltonian systems, Comm.Pure
Appl.Math. 31 (1978), no 2, 157-184.

31-68.

[31] N. Saintier, Changing sign solutions of a conformally invariant fourth-
order equation in the Euclidean space, Comm. Anal. Geom. 14 (2006),
no. 4, 613624.

[32] M. Schechter, The Fucik spectrum, Indiana Univ. Math. J., 43 (1994),
1139-1157

[33] M. Schwarz, Morse homology, Birkhauser Verlag (1993).

25


