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Abstract In this paper we will give a sufficient condition on real strictly Levi-

convex hypersurfaces M , embedded in four-dimensional Kähler manifolds V , such

that Legendre duality can be performed. We consider the contact form θ on M

whose kernel is the restriction of the holomorphic tangent space of V : we will

show that if there exists a Legendrian Killing vector field v, then the dual form

β(·) := dθ(v, ·) is a contact form on M with the same orientation than θ.

1 Introduction

In this paper we will give a sufficient condition on real strictly Levi-convex
hypersurfaces, embedded in four-dimensional Kähler manifolds, such that
Legendre duality can be performed, as stated by Bahri in some of his works
[1], [2] for instance. Here we will consider the contact form whose kernel is
the horizontal subspace, namely the restriction of the holomorphic space of
the Kähler manifold.
We are going to explain what we mean by Legendre duality. We are moti-
vated by the following fact: the standard contact form α0 on S3 is a pull-back
from the standard contact form on P (R3), that is the unit sphere cotangent
bundle of S2; therefore it is equipped with its canonical Liouville form. The
Legendre duality can be completed for the Liouville form. This Legendre
transform can be viewed as the data of a vector field v in ker(α0), such that
β0(·) := dα0(v, ·) is a contact form with the same orientation than α0.
The Legendre transform allows the transformation of a Hamiltonian prob-
lem on the cotangent sphere of S2 into a Lagrangian problem. This duality
has been extended by A.Bahri-D.Bennequin (see into the monograph [1], the
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note at pag.5) to the more general framework of contact forms α on three-
dimensional compact orientable manifolds without boundary M , leading to
a variational problem on a suitable space of curves. In fact, if we consider a
non-vanishing tangent vector field v ∈ ker(α), let us assume that:

(D) the non-singular dual form β(·) := dα(v, ·) is a
contact form on M with the same orientation than α;

Condition (D) is what we call Legendre duality for α with respect to v. Now
let us define the Action functional

A(γ) =

∫ 1

0
α(γ̇)dt (1)

on the subspace of the H1-loops on M given by

Cβ = {γ ∈ H1(S1;M) s.t. β(γ̇) = 0; α(γ̇) = strictly positive constant}

If ξ ∈ TM denotes the Reeb vector field of α, i.e.

α(ξ) = 1, dα(ξ, ·) = 0, (2)

then the following result by A.Bahri-D.Bennequin holds [1]:

Theorem 1.1. A is a C2 functional on Cβ whose critical points are periodic
orbits of ξ.

We observe that this construction is “stable under perturbation”, that is
the same v can be used to complete the Legendre duality for forms uα, with
u ∈ C2 a non-vanishing function defined on M and |u− 1| small.
In [12], J.Gonzalo and F.Varela introduced a family {αn}n∈N of contact
forms on S3, where α0 is the standard contact form of the sphere and for
n ≥ 1 they are all overtwisted and pairwise not contactomorphic. In [19]
we considered the overtwisted contact form α1 on S3 and we established
the existence of such a v, which is given explicitly. We then studied the
cases with n > 1 of that family given by Gonzalo-Varela: we found that the
definition of v extends, but hypothesis (D) is not satisfied anymore by this
extension; another extension might work.
The existence of such a v for a given contact form on a manifold allows to
compute the relative Contact Homology, by setting the problem in a suitable
variational framework and by using the techniques of the theory of critical
points at infinity developed by A.Bahri [3], [4], [5], [6], [7].
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Recently with A.Maalaoui in [18], we computed explicitly the relative Con-
tact Homology, giving also some algebraic equivariant homology reductions,
for the three-dimensional torus equipped with a family of tight contact struc-
tures: this has been possible since we were able to construct an explicit
vector field v satisfying the hypothesis (D).
Finally, another application of the existence of such a vector field is that the
knowing of v also allows to prove topological properties of the subspace Cβ :
indeed by using a particular flow along v, in [16] we showed that the injec-
tion of this subspace into the full loop space is an S1-equivariant homotopy
equivalence.
Here we will consider the case of an hypersurface M embedded in a four-
dimensional Kähler manifold V , we refer the reader to the paper of Klingen-
berg [13] for the general notions of real hypersurfaces in Kähler manifolds;
here we only recall some basic facts. First V is said to be a Kähler manifold
if there exists a symplectic structure ω, a complex structure J and a Rie-
mannian metric g such that they are compatible in the following sense (see
for instance [14]):

ω(X,Y ) = g(X, JY ) (3)

for every pair of vector fields X,Y ∈ TV . Let us consider now a smooth
compact, orientable, without boundary, embedded manifold M on V , of
codimension 1, with the induced metric g. We denote by ν the inner unit
normal to M , and we define the following differential form:

θ(X) := g(Jν,X) (4)

for every vector field X ∈ TM .

Definition 1.1. If θ is a contact form on M , we will say that M is a strictly
Levi-convex hypersurface.

We will explain in the next section the use of the previous terminology.
Since V is by definition also a symplectic manifold, we note that there exists
another natural differential form defined on M : since

rank(ω
∣∣
TM

) = 2, dim(ker(ω
∣∣
TM

)) = 1

let α be the form defined on TM such that dα = ω
∣∣
TM

; in this situation if
α is a contact form on M , then M is said to be of contact type.

Example 1.1. (The case C2) If one considers an hypersurface M embedded
in the usual complex space C2(≃ R4) as Kähler manifold, and if λ denotes
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the standard Liouville form in C2, then λ
∣∣
TM

is a contact form if M is
the boundary of a star-shaped domain in C2. On the other hand, θ is a
contact form if M is the boundary of a strictly pseudo-convex domain in C2;
moreover the complexification of ker(θ) coincides with the restriction of the
usual holomorphic tangent space of C2.

Next we recall the definition of Killing vector fields:

Definition 1.2. Given a Riemannian manifold (M, g), a vector field v ∈
TM is said a Killing vector field if:

Lvg = 0,

where L denotes the Lie derivative. In particular it means that the flow of
v generates isometry on M .

We are now ready to state our result. We will prove the following

Theorem 1.2. Let M be a strictly Levi-convex hypersurface. If there exists
a unit non-vanishing Killing vector field v ∈ ker(θ) then hypothesis (D)
holds.

Remark 1.1. We note that a similar condition already exists on contact
metric manifolds, in fact if one requires that the Reeb vector field of the
contact form is a Killing vector field, this gives rise to the notion of K-
contact manifold (see for instance [9], [23] and [17] for definition and some
applications). Here, instead, we require the existence of a Legendrian Killing
vector field.

Remark 1.2. For the sake of simplicity and in order to have a neat state-
ment we required that v is a Killing vector field: we will see from the proof
that we need less. In fact condition (1.2) means that

Lvg(X,Y ) = 0,

for every pair of vector fields X,Y ∈ TM ; actually we will only need the
following two terms to vanish:

Lvg(Jν, Jν) = Lvg(Jν, Jv) = 0

Also, the requirement on v to be unitary only simplifies the computations:
the result remains true with any non-vanishing Legendrian Killing vector
field.
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Remark 1.3. (The case C2) If one considers the boundary of a star-shaped
domain in C2(≃ R4) as hypersurface M , then the standard Liouville form λ
restricts to a contact form on M . By direct computation one has that if in
addition M is strictly convex, then there always exists a tangent vector field
v ∈ ker(λ) such that the Legendre duality holds.

At the end of the paper we will show some easy examples of strictly Levi-
convex hypersurfaces on which there exists a unit non-vanishing Killing vec-
tor field v ∈ ker(θ) such that hypothesis (D) holds.

Acknowledgement I want to thank Professor A.Bahri for having pointed
me out the property in Remark (1.3) and Dr. A.Maalaoui for having care-
fully proofread the manuscript.
Moreover the paper was completed during the year that I spent at the Math-
ematics Department of Rutgers University: I wish to express my gratitude
for the hospitality and I am grateful to the Nonlinear Analysis Center for
its support.

2 Proof of Theorem (1.2)

Here we will consider a smooth real compact orientable hypersurface without
boundary M , embedded in a general four-dimensional Kähler manifold V
equipped with a compatible triple (ω, J, g) in the sense of (3). We denote
by ν the unit inner normal to M . The unit characteristic vector field X0 is
defined by X0 := Jν. Let A be the Weingarten operator, namely

A : TM → TM, AX := −∇Xν ,

where ∇ denotes the Levi-Civita connection of V ; we will denote by

h(·, ·) := g(A·, ·)

the Second Fundamental Form of M . We also recall that both ∇ and g are
compatible with the complex structure J , i.e.:

J∇ = ∇J, g(·, ·) = g(J ·, J ·) (5)

The complex maximal distribution or Levi distribution HM is the two-
dimensional subspace in TM , invariant under the action of J :

HM = TM ∩ J TM (6)
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i.e., a vector field X ∈ TM belongs to HM if and only if also JX ∈ HM .
Then TM splits in the g-orthogonal direct sum:

TM = HM ⊕ RX0. (7)

The Levi form ℓ is the hermitian operator on HM defined in the following
way: for every X,Y ∈ HM , if Z = 1√

2
(X − iJX) and W = 1√

2
(Y − iJY ),

then
ℓ(Z,W ) := g(∇ZW, ν) (8)

We can compare the Levi form with the Second Fundamental Form by using
the following identity (see [10], Chap.10, Theorem 2):

∀X ∈ HM, 2ℓ(Z,Z) = h(X,X) + h(JX, JX) (9)

Definition 2.1. We will say that M is strictly Levi-convex if ℓ is strictly
positive definite as quadratic form.

We explain now some complex notation we use. Let us then define

T1,0M := T 1,0V ∩ TCM, T0,1M := T1,0M

where T 1,0V is the holomorphic space of V , that is the two dimensional com-
plex space generated by the eigenvalue +i of J ; and TCM is the complexified
tangent space of M . Moreover

T1,0M ⊕ T0,1M = HCM, TCM = CX0 ⊕HCM

From now on we will consider a unit vector field X1 ∈ HM , and X2 := JX1,
such that {X0, X1, X2} is an orthonormal frame for TM . In the same way,
if Z = 1√

2
(X1 − iX2) then Z ∈ T1,0M and {X0, Z, Z} is an orthonormal

frame for TCM . Let us define the following differential form:

θ : TM → R, θ(·) := g(X0, ·)

It is clear that ker(θ) = HM . If M is strictly Levi-convex then θ is a contact
form with contact structureHM . In fact, by using (5), the following relation
holds:

dθ(X1, X2) = −θ([X1, X2]) = −g(X0, [X1, X2]) = −g(X0,∇X1X2−∇X2X1) =

= −g(ν,∇X1X1 +∇X2X2) = −2g(ν,∇ZZ) = −2ℓ(Z,Z)

Therefore if M is strictly Levi-convex then

θ ∧ dθ(X0, X1, X2) = −2ℓ(Z,Z) < 0
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Remark 2.1. We note that we are considering a “normalized” contact form
θ, that is we are taking into account the characteristic direction X0 related
to the unit normal ν; one could use any other characteristic direction giving
rise to a new contact form of the type uθ, with u a never vanishing function
defined on M : in this situation the kernel will be of course the same, but the
main result could be not true in general, since the dynamics of the Legendrian
vector field v (as well as the Reeb vector field) is totally nonlinear.

We will need some formulas for some commutators and for the covariant
derivatives along the vector fields of the orthonormal basisE := {X0, X1, X2}.
We denote by

Γl
jk := g(∇XjXk, Xl), j, k, l = 0, 1, 2

the coefficients of the Levi-Civita connection with respect to the basis E;
also we denote by

hjk := h(Xj , Xk) = g(∇XjXk, ν), j, k = 0, 1, 2

the coefficients of the Second Fundamental Form with respect to the basis
E. We have then

Lemma 2.1. Let E := {X0, X1, X2} be an orthonormal basis for TM with
X2 := JX1, and let Z = 1√

2
(X1 − iX2). It holds:

∇X0X0 = h00ν + h02X1 − h01X2

∇X1X1 = h11ν − h12X0 + Γ2
11X2

∇X2X2 = h22ν + h12X0 + Γ2
21X1

∇X1X2 = h12ν + h11X0 + Γ1
12X1

∇X1X0 = h01ν + h12X1 − h11X2

∇X2X1 = h12ν − h22X0 + Γ2
21X2

∇X2X0 = h02ν + h22X1 − h12X2

∇X0X1 = h01ν − h02X0 + Γ2
01X2

∇X0X2 = h02ν + h01X0 + Γ1
02X1

(10)
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Moreover:

[X0, X1] = −h02X0 − h12X1 + (h11 + Γ2
01)X2

[X0, X2] = h01X0 − (h22 + Γ2
01)X1 + h12X2

[X1, X2] = 2ℓ(Z,Z)X0 + Γ1
12X1 − Γ2

21X2

(11)

Proof. It follows by direct computation, by using (5) and the symmetries of
the coefficients of the Levi-Civita connection.

Now let us fix a generic unit vector field X1 ∈ HM and let us define the
following dual differential form:

β(·) := dθ(X1, ·)

In this notation the Reeb vector field of θ is given by

ξ =
ζ

2ℓ(Z,Z)
, ζ := 2ℓ(Z,Z)X0 − h01X1 − h02X2

where as usual X2 := JX1 and Z = 1√
2
(X1 − iX2); we recall that ℓ(Z,Z)

never vanishes since M is strictly Levi-convex. Moreover:

β(X2) = −2ℓ(Z,Z), ker(β) = span{ξ,X1}

Lemma 2.2. It holds:

β ∧ dβ(X0, X1, X2) = (12)

= 2ℓ(Z,Z)
{
h02X1

(
log ℓ(Z,Z)

)
−X1

(
h02

)
+ h02Γ

2
21 − 2(h11 + Γ2

01)ℓ(Z,Z)
}

Proof. We will use (5), (10) and (11). First we have

β(X0) = dθ(X1, X0) = −θ
(
[X1, X0]

)
= −h02

Then we get:

β ∧ dβ(X0, X1, X2) = β(X0)dβ(X1, X2)− β(X2)dβ(X1, X0) =

= −h02

{
X1

(
β(X2)

)
−β

(
[X1, X2]

)}
+2ℓ(Z,Z)

{
X1

(
β(X0)

)
−β

(
[X1, X0]

)}
=

= −h02

{
− 2X1

(
ℓ(Z,Z)

)
− β

(
2ℓ(Z,Z)X0 + Γ1

12X1 − Γ2
21X2

)}
+
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+2ℓ(Z,Z)
{
−X1

(
h02

)
− β

(
h02X0 + h12X1 − (h11 + Γ2

01)X2

)}
=

= −h02

{
− 2X1

(
ℓ(Z,Z)

)
+ 2h02ℓ(Z,Z)− 2Γ2

21ℓ(Z,Z)
}
+

+2ℓ(Z,Z)
{
−X1

(
h02

)
+ (h02)

2 − 2(h11 + Γ2
01)ℓ(Z,Z)

}
=

= 2h02X1

(
ℓ(Z,Z)

)
−2ℓ(Z,Z)X1

(
h02

)
+2ℓ(Z,Z)h02Γ

2
21−4(h11+Γ2

01)
(
ℓ(Z,Z)

)2
Therefore we obtain (12).

Proof. of Theorem 1.2
By hypothesis there exists a Legendrian unit Killing vector field v. By
definition (1.2) and by using the conditions on the Levi-Civita connection,
we see that(

Lvg
)
(X,Y ) = v

(
g(X,Y )

)
− g(LvX,Y )− g(X,LvY ) =

= g(∇Xv, Y ) + g(X,∇Y v) = 0 (13)

for every pair of vector fields X,Y ∈ TM . Now let us rename X1 := v, and
X2 := JX1, Z = 1√

2
(X1−iX2). By using the formulas (13) and (10), we can

find conditions on some of the coefficients of the Second Fundamental Form
and of the connection, with respect to the orthonormal basis {X0, X1, X2}.
In particular we have:

0 = g(∇X0X1, X2) + g(X0,∇X2X1) = Γ2
01 − h22 (14)

0 = g(∇X0X1, X0) + g(X0,∇X0X1) = −2h02 (15)

Moreover, by property (9) we have

2ℓ(Z,Z) = h11 + h22 (16)

By putting (14), (15) and (16) in the equation (12) we get

β ∧ dβ(X0, X1, X2) = −8
(
ℓ(Z,Z)

)3
(17)

Since M is strictly Levi-convex, ℓ(Z,Z) never vanishes, therefore β is a
contact form on M . Finally

β ∧ dβ(X0, X1, X2)

θ ∧ dθ(X0, X1, X2)
=

−8
(
ℓ(Z,Z)

)3
−2ℓ(Z,Z)

= 4
(
ℓ(Z,Z)

)2
> 0

Therefore β is a contact form on M with the same orientation than θ. This
means that the Legendre duality can be completed and it ends the proof.
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Example 2.1. (The standard sphere S3 in C2)
Let us consider C2 with coordinates zk = xk + iyk, k = 1, 2 and

S3 = {(z1, z2) ∈ C2 s.t. |z1|2 + |z2|2 = 1}

Then (S3, θ) is a strictly Levi-convex hypersurface, where

θ = y1dx1 − x1dy1 + y2dx2 − x2dy2

Now, we define the (unit) tangent vector field

v = x2
∂

∂x1
− y2

∂

∂y1
− x1

∂

∂x2
+ y1

∂

∂y2

so that v ∈ ker(θ). By a direct computation, one finds that v generates
isometries and therefore it is a Legendrian Killing vector field. Finally, if
β(·) = dθ(v, ·), then

β ∧ dβ

θ ∧ dθ
= 4

Hence condition (D) holds.

Example 2.2. (A cylinder S1 × R2 in C2)
Let us consider C2 with coordinates zk = xk + iyk, k = 1, 2 and

M = {(z1, z2) ∈ C2 s.t. x21 + x22 = 1}

Then (M, θ) is a strictly Levi-convex hypersurface, where

θ = −x1dy1 − x2dy2

Now, we define the (unit) tangent vector field

v = x2
∂

∂x1
− x1

∂

∂x2

so that v ∈ ker(θ). By a direct computation, one finds that v generates
isometries and therefore it is a Legendrian Killing vector field. Finally, if
β(·) = dθ(v, ·), then

θ ∧ dθ = β ∧ dβ

Hence condition (D) holds.

Remark 2.2. Both the previous examples are hypersurfaces in C2 of Hopf
type, that is the characteristic vector field X0 is an eigenvector for the Wein-
garten operator (equivalently X0 is a geodesic vector field, see for instance
[20]). In order to construct other examples, one might also try to consider
Hopf hypersurfaces in more general Kähler manifolds, see [8], [11], [15],
[21], [22] for the related literature.
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