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Abstract In this paper we prove existence and uniqueness of Lipschitz continuous

viscosity solutions for Dirichlet problems involving a class a fully non-linear operators

on Lie groups. In particular we consider the elementary symmetric functions of the

eigenvalues of the Hessian built with left-invariant vector fields.

1 Introduction

Let G = (Rn, ∗) be a Lie group with Rn as support and ∗ as group law. Let us
denote by l the set of the left-invariant vector fields. If El = {X1, . . . , Xn} is any
basis of l then we know that a Riemannian metric g on G is left-invariant if and
only if the coefficients gij := g(Xi, Xj) are constant functions: in particular each
n-dimensional Lie group possesses a n(n + 1)/2-dimensional family of distinct
left-invariant metrics (see for instance [15] and the references therein). Let us
fix any left-invariant metric g and let u be a smooth function, we will denote
by Dgu the gradient of u with respect to the metric g, that is: g(Dgu,X) =
Xu = du(X), for every vector field X. If ∇ is the Levi-Civita connection for
g (we recall that the connection coefficients in term of any left-invariant basis
are constant functions), then the metric Hessian of u is the tensor field of type
(0, 2) defined by:

Hgu(X,Y ) := XY u− (∇XY )u

for every pair of vector fields (X,Y ); since ∇ is the Levi-Civita connection for g
(that is ∇XY −∇YX = [X,Y ]), we note that Hgu is always symmetric. We will
denote by D2

gu := g−1Hgu the associated endomorphism. We explicitly note
that the previous definition is intrinsic, namely the eigenvalues of D2

gu do not

change in a change of basis. Let us consider a coordinate frame { ∂
∂x1

, . . . , ∂
∂xn
},
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referred to local coordinates (in our setting they are actually global), we have:

Hgu
( ∂

∂xi
,
∂

∂xj

)
=

∂2u

∂xixj
− Γsij

∂u

∂xs

where Γsij are the Christoffel symbols for the metric g (they are not constant in

general). Hence if Du,D2u denote the usual Euclidian gradient and Hessian,
then D2

gu reads in local coordinates

D2
gu := G−1(x)[D2u+B(x,Du)] (1)

where we denoted by G−1 the matrix of coefficients of g−1 expressed in the
coordinate frame (they are not constant functions in general) and the coefficients
of the matrix B are given by bij = Γsij

∂u
∂xs

.
Here we will consider also the case of strictly restrictions to some subspace of
l . Let then m ≤ n and let Elm = {X1, . . . , Xm}, we define the subspace of the
left-invariant vector fields

HG := span{X1, . . . , Xm}

Now we consider a left-invariant metric gm on HG, we can “complete” it to the
full tangent space by defining the blocks metric:

g :=

(
gm 0
0 Idn−m

)
where, for every integer n, Idn denotes the identity matrix of order n. We define

Hg,mu(X,Y ) := XY u− (∇XY )u, ∀ X,Y ∈ HG

and D2
g,mu := g−1

m Hg,mu. Let Ω ⊆ Rn be a bounded open set and let f :
Ω×R×Rn → R be a positive function, here we are interested on the Dirichlet
problem associated with equations of the following form(

σk(D2
g,mu)

) 1
k = f(x, u,Dgu), k = 1, . . . ,m (2)

where, for every symmetric matrix M of order m, σk(M) denotes the k-th ele-
mentary symmetric function in the eigenvalues of M .
Our motivation comes from the geometric theory of several complex variables,
where fully nonlinear second order pde’s appear, whose linearizations are nonva-
riational operators of Hömander type. (See [16] and references therein). These
kinds of operators, also arising in many other theoretical and applied settings,
have the form of (2)
A direct computation shows that equation (2) reads then in local coordinates:(

σk
(
Am(x)D2uATm(x) +Qm(x,Du)

)) 1
k

= f̃(x, u,Du) (3)

for a suitable positive function f̃ and where Am is a m × n matrix and Qm is
a square matrix of order m, both with smooth coefficients: in particular Qm is
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linear with respect to Du. When m = n we will simply omit the index n: for
instance we will write A in place of An. We will consider then the following
Dirichlet problem:{

F (x, u,Du,D2u) := −
(
σk(D2

g,mu)
) 1

k + f(x, u,Dgu) = 0, in Ω,
u = φ, on ∂Ω,

(4)

with φ : ∂Ω→ R.
We are looking for Lipschitz viscosity solutions of (4). We refer to [11], [8] for
a full detailed exposition on the theory of viscosity solutions: we will give the
basic definition of sub- and super-solution in the next section.

In analogy with [6], we define the open cone

Γmk = {λ = (λ1, . . . , λm) ∈ Rm : σj(diag(λ)) > 0, for every j = 1, . . . , k},

where diag(λ) is the m×m diagonal matrix, and we denote by Γmk and ∂Γmk the
closure and the boundary of Γmk respectively. In order to state our main result
we need the following

Definition 1.1. Let x0 ∈ Rn and let ϕ be a C2 function in a neighborhood
of x0. We will say that ϕ is strictly F -admissible (respectively F -admissible) at
x0, if the vector λ = (λ1, . . . λm) of the eigenvalues of D2

g,mϕ(x0) belongs to the

open cone Γmk (respectively Γmk ) .1 We will say that ϕ is strictly F -admissible
(respectively F -admissible) in Ω if ϕ is strictly F -admissible (respectively F -
admissible) at x0 for every x0 ∈ Ω.
Moreover if ρ : Rn → R is a smooth defining function for Ω, that is

Ω = {x ∈ Rn : ρ(x) < 0}, ∂Ω = {x ∈ Rn : ρ(x) = 0}

then we will say that the domain Ω is strictly F -admissible if ρ is strictly F -
admissible.

We need to give also some structure conditions on the operator F , in particular
on the growth of the function f . We will require that f is strictly increasing
with respect to u, in particular let us set

µ := inf
∂f

∂u
. (5)

We define the following function

f∞ : Ω× R× Rn → R, f∞(x, r,P) := lim
λ→∞

f(x, λr, λP)

λ

We can state our main result:

1Remark that the cone Γm
k is invariant with respect to permutation of λj .
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Theorem 1.1. Let Ω ⊆ Rn be a bounded and smooth open set, with defining
function ρ strictly F -admissible, let φ ∈ C1,1 and let f ∈ C1 be a positive
function with µ > 0. Moreover, let us suppose that f∞ exists and it holds

f∞(x, ρ,Dgρ) <
(
σk(D2

g,mρ)
) 1

k , for every x ∈ ∂Ω (6)

Then there exists a Lipschitz continuous viscosity solution u of the problem (4).

Remark 1.1. If the function f does not depend on its first argument, then in
Corollary 3.1 we relax the assumptions of Theorem 1.1 by requiring ∂f

∂u ≥ 0 and
f ≥ 0.

We will prove our result by a regularization procedure and a gradient estimate
in Section 3. Due to the fact that the equation is fully nonlinear, the regular-
ization procedure will be a very delicate issue, in order to preserve some nice
structural properties of F : roughly speaking, it won’t be enough to consider
Fε(x, u,Du,D

2u) = F (x, u,Du,D2u) + ε∆u as for quasilinear pde’s, because
the solution of Fε = 0 might be non admissible for F. Our strategy is new and
we can briefly describe it as follows: first of all we will look at the k-th elemen-
tary symmetric function of the eigenvalues of a m×m Hermitian matrix H as
the limit as ε → 0 of σk of a n × n Hermitian matrix Hε. However, σk(Hε)
is only elliptic when the eigenvalues of Hε are in the cone Γnk . Then we will
follow an old idea of Trudinger [19] and we will look at (σk)1/k(Hε) as the limit
as δ → 0 of (σk)1/k(Hε,δ), which is uniformly elliptic when the eigenvalues of
Hε,δ = Hε + δ traceHε are in the cone Γnk (see Lemma 3.2). Moreover, in
order to prove interior gradient estimates, we will differentiate the regularized
equation with respect to right invariant vector fields of the group: our choice
is motivated by the fact that on a Lie group any right invariant vector field
commutes with any left invariant vector field (see Section 2, Lemma 2.1) and
this key property greatly simplifies calculations when differentiating.

In Section 4 we first prove a comparison principle for viscosity solutions
by simple testing that our operator F satisfies the structure conditions of [8,
Theorem 3.3] when the prescribed function f is strictly monotone increasing
with respect u. Anyway, since one can be interested even at the case of constant
function f , we would like to have a comparison principle for F also when f is not
strictly increasing with respect to u. It is a standard fact by now that in order
to adapt the proof for the strictly monotone case in this situation, one needs to
find (for instance) a strictly sub-solution for F . Thus, we will give a sufficient
condition on the sectional curvature of the group in order to ensure the existence
of a strictly sub-solution for F and in Theorem 4.2 we prove the comparison
principle for f monotone increasing with respect u. We explicitly note that we
are working in full generality: if one considers Lie groups with some additional
structure, then one could remove the hypothesis on the sectional curvature and
one can have the comparison principle for every domain in Rn. For instance
in the case of Hessian defined on the first layer (let us say of dimension m) of
Carnot groups, then one can use as strictly sub-solution a quadratic function
depending only on the “first m variables” (see [2], [3], [4]). As a consequence
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of the comparison principle, via the Perron method and the construction in
Lemma 3.5 of a particular sub-solution and a particular super-solution, we also
get existence and uniqueness of a viscosity solution of the Dirichlet problem (4)
for every continuous boundary data φ.
We conclude the Introduction by making some remarks on our operator. First
we note that there is another recurrent definition of Hessian on Lie groups, let
us call it the symmetrized Hessian Hsu, that is, for every smooth function u
and for every pair of left-invariant vector fields X,Y :

Hsu(X,Y ) =
XY u+ Y Xu

2
(7)

In particular there is a very large literature on questions involving this sym-
metrized Hessian on Carnot groups (see for instance [9], [12], [20], [22], [7], [1]
and the references therein). An easy computation shows that our metric Hessian
Hgu coincides with Hsu if and only if it holds:

∇XY =
1

2
[X,Y ], X, Y ∈ l (8)

We note that if the metric g is bi-invariant then (8) holds, and it is a known fact
that if the Lie group is compact then it admits a bi-invariant metric. This is
not the case since our base manifold is Rn: anyway if we allows more structure
on our Lie groups, for instance if we consider the case of Carnot groups, then
the two Hessian definitions coincide, as we will show in Example 2.1. Finally,
in Example 2.2 we will give an example of a Lie group that does not satisfy (8).

2 Preliminaries and examples

Here we recall some basic facts about Lie Groups and we will prove a key lemma.
Let G = (Rn, ∗) be a Lie group with Rn as support and ∗ as group law. For
fixed p ∈ G, the left translation with respect to p, is the map:

Lp : G→ G, Lp(ξ) = p ∗ ξ

The right translation with respect to p, is the map

Rp : G→ G, Rp(ξ) = ξ ∗ p

By using one the several equivalent definition, we will say that a vector field X
is left-invariant if

XLp(ξ) = dLp(ξ)Xξ, ∀ ξ ∈ G (9)

Analogously, we will say that a vector field Y is right-invariant if

YRp(ξ) = dRp(ξ)Yξ, ∀ ξ ∈ G (10)

We will denote by l the set of the left-invariant vector fields and by r the set
of the right-invariant vector fields. We have that any left invariant vector field
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commutes with any right invariant vector field. We have not been able to find
any references with some explicit proof of this nice property: hence we prove it
in the following Lemma.

Lemma 2.1. Let us consider any couple of vector fields X,Y with X ∈ l and
Y ∈ r. Then

[X,Y ] = 0

Proof. If ϕXt and ϕYt denote respectively the flow generated by X ∈ l and the
one generated by Y ∈ r , then by using equations (9) and (10) one can show
that these flows read as

ϕXt (p) = Lp
(
ϕXt (0)

)
, ϕYt (p) = Rp

(
ϕYt (0)

)
In fact, by definition ϕXt solves the following Cauchy problem:

d

dt
ϕXt (p) = XϕX

t (p)

ϕX0 (p) = p

Now, let us define ψt(p) := Lp
(
ϕXt (0)

)
. We have

d

dt
ψt(p) = dLp

(
ϕXt (0)

) d
dt
ϕXt (0) = dLp

(
ϕXt (0)

)
XϕX

t (0) = Xψt(p)

ψ0(p) = Lp
(
ϕX0 (0)

)
= Lp

(
0
)

= p

Therefore ϕXt and ψt solve the same Cauchy problem and since X has smooth
coefficients, then they have to coincide. The same holds for ϕYt .
Since the group law ∗ is associative, at every point p we have

(ϕYt ◦ ϕXt )(p) = ϕYt (ϕXt (p)) = RϕX
t (p)ϕ

Y
t (0) = ϕYt (0) ∗ ϕXt (p)

= ϕYt (0) ∗
(
p ∗ ϕXt (0)

)
=
(
ϕYt (0) ∗ p

)
∗ ϕXt (0)

= ϕYt (p) ∗ ϕXt (0) = LϕY
t (p)ϕ

X
t (0) = ϕXt (ϕYt (p))

= (ϕXt ◦ ϕYt )(p)

and we get:
ϕYt ◦ ϕXt = ϕXt ◦ ϕYt .

Hence
ϕY−t ◦ ϕX−t ◦ ϕYt ◦ ϕXt = ϕY−t ◦ ϕX−t ◦ ϕXt ◦ ϕYt = Id.

Therefore

[X,Y ] =
1

2

( d2

dt2
(
ϕY−t ◦ ϕX−t ◦ ϕYt ◦ ϕXt

))∣∣∣
t=0
≡ 0

6



Next we consider a couple of significative examples in which we show struc-
tural properties related to the elegant equality (8).

Example 2.1. Let G be a Carnot group on Rn (see for instance [5]). Let us
consider the Jacobian basis El for l and let g be the metric that makes orthonor-
mal the vector fields of this basis. If ∇ denotes the Levi-Civita connection for g,
by the very definition of the connection coefficients we have, for i, j, k = 1, . . . , n:

g(∇Xi
Xj , Xk) =

1

2

(
g([Xi, Xj ], Xk)− g([Xj , Xk], Xi) + g([Xk, Xi], Xj)

)
(11)

Now let us suppose that the first layer of the stratification V m1 has dimension
m < n and it is spanned by the first m vector fields of the basis, namely Elm =
{X1, . . . , Xm}, and let us consider the Hessian defined on this layer, that is
we consider Hg,mu(Xi, Xj), with i, j = 1, . . . ,m: we know that [Xi, Xk] never
belongs to V m1 , for any k = 1, . . . , n, hence by the formula (11) we get

g(∇XiXj , Xk) =
1

2
g([Xi, Xj ], Xk), i, j = 1, . . . ,m, k = 1, . . . , n

therefore (8) holds.

The following is an example in which (8) is not fulfilled.

Example 2.2. We consider the Lie group in R2 given by the following group
law ∗ (see also [5], pg.21): for any (x, y), (t, s) ∈ R2

(x, y) ∗ (t, s) = (x+ t, y + sex)

A basis for l is given by

X =
∂

∂x
+ y

∂

∂y
, Y =

∂

∂y

We consider the metric g that makes orthonormal the vector fields X,Y , and we
denote by ∇ the Levi-Civita connection for g. Therefore a direct computation
shows that

0 = 2∇XY 6= [X,Y ] = −Y

hence (8) is not satisfied.

3 Regularization and gradient estimates

We first recall the definition of sub- and super-solution in the viscosity sense.

Definition 3.1. Let us consider the equation

F (x, u,Du,D2u) = 0, in Ω, (12)
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We say that a function u ∈ USC(Ω) is a viscosity sub-solution for (12) if for
every ϕ ∈ C2(Ω), it holds the following: if x0 ∈ Ω is a local maximum for the
function u− ϕ, then ϕ is F -admissible at x0 and

F
(
x0, u(x0), Dϕ(x0), D2ϕ(x0)

)
≤ 0 (13)

We say that a function u ∈ LSC(Ω) is a viscosity super-solution for (12) if for
every ϕ ∈ C2(Ω), it holds the following: if x0 ∈ Ω is a local minimum for the
function u− ϕ, then either ϕ is F -admissible at x0 and

F
(
x0, u(x0), Dϕ(x0), D2ϕ(x0)

)
≥ 0 (14)

or ϕ is not F -admissible at x0.
A continuous function u is a viscosity solution for (12) if it is either a viscosity
sub-solution and a viscosity super-solution for (12).
We say that a function u ∈ USC(Ω) is a viscosity sub-solution for (4) if u is a
viscosity sub-solution for (12) and in addition u ≤ φ on ∂Ω.
We say that a function u ∈ LSC(Ω) is a viscosity super-solution for (4) if u is
a viscosity super-solution for (12) and in addition u ≥ φ on ∂Ω.
A viscosity solution for (4) is either a viscosity sub-solution and a viscosity
super-solution for (4).

Now we start our regularization procedure. For ε > 0, let us define the following
blocks matrix

Iεm :=

(
Idm 0
0 εIdn−m

)
We will consider the approximated endomorphism given by the following n× n
matrix

D2
g,m,εu := Iεm D2

gu I
ε
m

Therefore we will deal with the approximated operators

F ε(x, u,Du,D2u) := −
(
σk(D2

g,m,εu)
) 1

k + f(x, u,Dgu)

We will prove that there exists a sequence of Lipschitz continuous viscosity
solutions of the problem with F ε = 0: then by taking the uniform limit as ε
approaches zero, we will find a Lipschitz continuous viscosity solutions u of the
original problem with F = 0. In fact we have

Proposition 3.1. Let Ω ⊆ Rn be a bounded and smooth open set, strictly F -
admissible. Let us suppose that there exists a sequence of Lipschitz continuous
viscosity solutions {uε} of the problem{

F ε(x, u,Du,D2u) = 0, in Ω,
u = φ, on ∂Ω,

(15)

with Lipschitz constant independent of ε: then if u denotes the uniform limit of
uε, as ε approaches zero, then u is a Lipschitz continuous viscosity solution of
the problem (4).
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Remark 3.1. Since the defining function of the domain Ω is smooth, then one
can choose ε small enough such that Ω is actually strictly F ε-admissible.

We will give the proof for the following slightly more general operator. Let
k ≤ m ≤ n and define

F (x, r, p,M) = −
(
σk
(
Hm(x, r, p,M)

)) 1
k

+ f(x, r, p,M)

where f is a continuous and positive function, and where Hm is the first minor
m×m (that isHm = {hij}i,j=1,...,m) of a n×n symmetric matrixH, with smooth
coefficients eventually depending on x, r, p,M . Then we define the perturbed
operator

F ε(x, r, p,M) = −
(
σk
(
Hε
m(x, r, p,M)

)) 1
k

+ f(x, r, p,M)

with Hε
m := Iεm H Iεm. Let x0 ∈ Rn and let ϕ be a C2 function in a neigh-

borhood of x0, we will say that ϕ is F ε-admissible at x0 if the eigenvalues
of Hε

m(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0))
)

belong to the cone Γnk . The set of F ε-
admissible functions continuously deform into the set of F -admissible functions,
but we note that for ε1 6= ε2, there are no inclusions in general between the sets
of F ε1-admissible functions and of F ε2 -admissible functions.

We want to prove the following

Lemma 3.1. Let {uε} be a sequence of viscosity solutions for the problem F ε =
0, then if we call u the uniform limit of uε, as ε goes to zero, then u is a viscosity
solution of the problem F = 0.

Proof. We need to prove that u is either a viscosity sub-solution and super-
solution. We use definition (3.1). First we prove that u is a viscosity sub-
solution. Let then x0 ∈ Rn and let ϕ be a C2 function in a neighborhood of x0

such that u−ϕ has a local maximum at x0. We can choose a sequence xε → x0,
as ε approaches zero, such that uε − ϕ has a local maximum at xε. Since uε is
a viscosity sub-solution for F ε = 0, then it holds{

ϕ isF ε−admissible atxε
F ε
(
xε, uε(xε), Dϕ(xε), D

2ϕ(xε)
)
≤ 0

(16)

Passing to the limit in (16), as ε goes to zero, we get{
ϕ isF−admissible atx0

F
(
x0, u(x0), Dϕ(x0), D2ϕ(x0)

)
≤ 0

(17)

Therefore u is a viscosity sub-solution for F = 0. Now, let x0 ∈ Rn and let ϕ
be a C2 function in a neighborhood of x0 such that u−ϕ has a local minimum
at x0. As before we can choose a sequence xε → x0, as ε approaches zero, such
that uε −ϕ has a local minimum at xε. In this situation, since uε is a viscosity
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super-solution for F ε = 0, we have to distinguish two cases. In the first one,
namely if ϕ is F ε-admissible in xε, then we have{

ϕ isF ε−admissible atxε
F ε
(
xε, uε(xε), Dϕ(xε), D

2ϕ(xε)
)
≥ 0

(18)

Again passing to the limit in (18), as ε goes to zero, we get{
ϕ isF−admissible atx0

F
(
x0, u(x0), Dϕ(x0), D2ϕ(x0)

)
≥ 0

(19)

Therefore u is a viscosity super-solution for F = 0. In the second case we have
ϕ is not F ε-admissible in xε. Three situations can occur passing to the limit:

(i) ϕ is strictly F -admissible in x0,

(ii) the m vector of the eigenvalues of Hm(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)) does
not belong to Γmk

(iii) the m vector of the eigenvalues of Hm(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)) belongs
to ∂Γmk .

In the first case, since the eigenvalues of Hm(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)) belong
to the open cone Γmk and ϕ is C2, we can choose ε > 0 small enough such that
the eigenvalues of Hε

m(xε, ϕ(xε), Dϕ(xε), D
2ϕ(xε)) belong to the open cone Γnk

and we have again (18). In the second case, since the m vector of the eigenvalues
of Hm(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)) does not belong to Γmk , then u is a viscosity
super-solution for F = 0 at x0 by definition. In the third case, since the m
vector of the eigenvalues of Hm(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0)) belongs to ∂Γmk ,
there exists at least one index j in {1, . . . , k} such that

σj
(
Hm(x0, ϕ(x0), Dϕ(x0), D2ϕ(x0))

)
= 0

Now, since j ≤ k

0 ≤
(σk(Hm

)(
n
k

) ) 1
k ≤

(σj(Hm

)(
n
j

) ) 1
j

we obtain{
ϕ isF−admissible atx0

F
(
x0, u(x0), Dϕ(x0), D2ϕ(x0)

)
= 0 + f

(
x0, u(x0), Dϕ(x0), D2ϕ(x0)

)
≥ 0

(20)
Therefore u is a viscosity super-solution for F = 0.

Proof of Proposition 3.1. First of all since the Lipschitz constant for the se-
quence {uε} is independent of ε, then the uniform limit u is still a Lipschitz
continuous function. Then, by the previous Lemma (3.1) we have that u is a
viscosity solution of F = 0. Finally we note that since uε is either a viscos-
ity sub-solution and super-solution for the Dirichlet problem with F ε = 0, the
inequalities on the boundary conditions simply pass to the limit.

10



In order to find the sequence {uε} we will need a further (uniformly elliptic)
regularization. Let us fix ε > 0, and let us denote by ∆g,m,εu the perturbed
g-Laplacian of the group G, namely:

∆g,m,εu := trace(D2
g,m,εu)

For δ > 0, we define

D2
g,m,ε,δu := D2

g,m,εu+ δ(∆g,m,εu)Idn

where Idn denotes the identity operator of order n. Hence we define the operator

F ε,δ(x, u,Du,D2u) := −
(
σk(D2

g,m,ε,δu)
) 1

k + f(x, u,Dgu)

It turns out that −F ε,δ is uniformly elliptic in the set of F ε,δ-admissible func-
tions with ellipticity constant depending on ε and δ, in particular we have:

Lemma 3.2. There exist constants 0 < λε,δ < Λε,δ, depending on ε and δ, such
that

λε,δ trace(N) ≤ −F ε,δ(x, r, p,M +N) + F ε,δ(x, r, p,M) ≤ Λε,δ trace(N)

for every symmetric and positive definite n × n matrix N , and for every x ∈
Ω, r ∈ R, p ∈ Rn and for every symmetric n× n matrix M such that the eigen-
values of Hε,δ

m (x, p,M) := Hε
m(x, p,M)+δ traceHε

m(x, p,M) are in the cone Γnk .
Here we have denoted by

Hε
m(x, p,M) := Aε(x)MAεT (x) +Qε(x, p),

Aε(x) := IεAn(x), Qε(x, p) := IεQn(x, p)Iε

(see (3)).

Proof. It’s a straightforward computation, by taking into account that the func-

tions
(
σk
) 1

k are homogeneous of degree one, monotone increasing and concave,
and the fact that the matrix Aε(x) is strictly positive definite and smooth on
the compact domain Ω. Precisely, let 0 < λε < Λε be positive constants such
that

λεIdn ≤ Aε(x)AεT (x) ≤ ΛεIdn

as quadratic forms and for all x ∈ Ω̄. By the concavity and the monotonicity of
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(
σk
) 1

k we have

− F ε,δ(x, r, p,M +N) + F ε,δ(x, r, p,M)

=
(
σk
(
Hε,δ
m (x, p,M +N)

) ) 1
k −

(
σk
(
Hε,δ
m (x, p,M)

) ) 1
k

=
(
σk (Hε

m(x, p,M +N) + δ trace(Hε
m(x, p,M +N))Idn)

) 1
k

−
(
σk (Hε

m(x, p,M) + δ trace(Hε
m(x, p,M))Idn)

) 1
k

≥
(
σk
(
AεNAεT + δ trace(AεNAεT )Idn

) ) 1
k

≥
(
σk
(
δ trace(AεNAεT )Idn

) ) 1
k

≥ δλε trace(N)
(
σk (Idn)

) 1
k

= λε,δ trace(N)

Moreover, by the monotonicity, the homogeneity and the concavity of
(
σk
) 1

k

and by Lagrange theorem there is θ ∈]0, 1[ such that

− F ε,δ(x, r, p,M +N) + F ε,δ(x, r, p,M)

=
(
σk
(
Hε,δ
m (x, p,M +N)

) ) 1
k −

(
σk
(
Hε,δ
m (x, p,M)

) ) 1
k

=
(
σk (Hε

m(x, p,M +N) + δ trace(Hε
m(x, p,M +N))Idn)

) 1
k

−
(
σk (Hε

m(x, p,M) + δ trace(Hε
m(x, p,M))Idn)

) 1
k

≤
(
σk
(
Hε
m(x, p,M) + δtrace (Hε

m(x, p,M)) Idn + (1 + δ)trace
(
AεNAεT

)
Idn
) ) 1

k

−
(
σk (Hε

m(x, p,M) + δ trace(Hε
m(x, p,M))Idn)

) 1
k

=
(
∂rjj

(
σk
) 1

k
(
Hε,δ
m (x, p,M) + (1 + δ)θ trace

(
AεNAεT

)
Idn
) )

· (1 + δ) trace
(
AεNAεT

)
≤
(
∂rjj

(
σk
) 1

k
(
(1 + δ)θ trace

(
AεNAεT

)
Idn
) )
· (1 + δ) trace

(
AεNAεT

)
=
(
∂rjj

(
σk
) 1

k (Idn)
)
· (1 + δ) trace

(
AεNAεT

)
≤ (1 + δ)Λε trace (N) = Λε,δ trace (N)

where ∂rjj

((
σk(r)

) 1
k

)
denotes the sum in j of partial derivatives of

(
σk
) 1

k with

respect to rjj and we have used its positiveness and its decreasing monotonicity
in the set of k-admissible matrices 2, and its homogeneity of degree zero.

2We recall that A is k-admissible if σj(A) ≥ 0 for every j = 1, . . . , k
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Bounds for the second derivatives and for their Hölder seminorms now follow
from the uniformly elliptic theory in [18], [13], since F ε,δ is uniformly elliptic
in the sense of [18]. Estimates for higher derivatives follow from the linear
uniformly elliptic theory [10, Lemma 17.16]. These estimates, together with the
fact that F ε,δ = f > 0 when the eigenvalues of Hε,δ ∈ ∂Γnk , allow us to apply
the method of continuity [10, Theorem 17.8] Therefore for every φδ ∈ C2,α

there exists a classical solution uε,δ ∈ C2,α of the Dirichlet problem related to
F ε,δ = 0 (from further regularity results, uε,δ is actually C∞); moreover uε,δ is
strictly F -admissible.
We will prove a gradient bound for uε,δ, uniform in ε, δ. Thus, with fixed ε > 0,
by taking the uniform limit as δ goes to zero we will find a Lipschitz continuous
viscosity solution uε of the Dirichlet problem related to F ε = 0; in this last limit
process we can use the stability property of the viscosity solutions with respect
to the uniform convergence, since the sets of F ε,δ-admissible functions satisfy a
crucial property of inclusion as δ decreases, for fixed ε (see for instance [21]).
The idea is to consider the strictly elliptic regularization F ε,δ and provide uni-
form gradient estimates on the smooth solution via a Bernstein method, by
using derivatives along right-invariant vector fields. First we note the following
fact: for any two Riemannian metric g, g̃, we have by the very definition of the
gradient, that for every smooth function u, it holds g(Dgu, ·) = g̃(Dg̃u, ·). Now,
if we denote by |Dgu|2g = g(Dgu,Dgu) (and the same for |Dg̃u|g̃), therefore since

Ω is a compact subset of Rn, we have that there exist two positive constants
C1 ≤ C2 such that on Ω it holds:

C1|Dgu|g ≤ |Dg̃u|g̃ ≤ C2|Dgu|g

Therefore fixed any metric g̃, having an estimate on |Dg̃u|g̃ will imply an esti-
mate on any other metric gradient, in particular on the Euclidean oneDu. Let us
denote by r the set of the right-invariant vector fields and by Er = {Y1, . . . , Yn}
any basis of r. We will denote by g̃ the right-invariant metric that makes or-
thonormal the vector fields of the basis Er. Hence, in the basis Er we have

Dg̃u =

n∑
k=1

(Yku)Yk, |Dg̃u|2g̃ =

n∑
k=1

(Yku)2

Next we have:

Proposition 3.2. Let Ω ⊆ Rn be a bounded and smooth open set, strictly F ε-
admissible, let φ ∈ C1,1(Ω) and f ∈ C1 with µ > 0. Moreover suppose that
(6) holds. Then there exists a Lipschitz continuous viscosity solution uε of the
problem (15).

We will prove the Proposition (3.2) with the help of several lemmas. For δ > 0,
let us consider the operator F ε,δ. First of all we explicitly note that if a function
is strictly F ε-admissible with respect to D2

g,m,ε, then it is also strictly F ε,δ-

admissible. Since −F ε,δ is strictly elliptic there exists a smooth solution uε,δ of
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the problem {
F ε,δ(x, u,Du,D2u) = 0, in Ω,
u = φδ, on ∂Ω,

(21)

where φδ is the convolution of φ with the usual Euclidean mollifier. Let us
denote by fYk

the derivative of f with respect to its first argument along the
vector field Yk, and define M := sup

(
1
2

∑n
k=1 |fYk

|2
)
. We have

Lemma 3.3. We assume the same hypotheses as in Proposition (3.2). Let
w = 1

2 |Dg̃u
ε,δ|2g̃ Then it holds:

sup
Ω
w ≤ max

{
sup
∂Ω

w,M/µ2

}
(22)

Proof. If w ≤ M/µ2 there is nothing to prove; thus let us assume the con-
verse. We apply the Bernstein technique, that is: we differentiate the equation
F ε,δ(x, u,Duε,δ, D2uε,δ) = 0 along Yk, then we multiply by Yk(uε,δ) and we take
the sum over k from 1 to n. Since the coefficients of the left-invariant metric g
are constant functions, the only terms of second order we need to differentiate
are of the form:

XiXju
ε,δ − (∇Xi

Xj)u
ε,δ, Xi, Xj ∈ l

Since ∇ is the Levi-Civita connection for g, we have that also the vector field
∇Xi

Xj is left-invariant. Then, by Lemma (2.1) we have:

Yk(XiXju
ε,δ − (∇Xi

Xj)u
ε,δ) = XiXjYku

ε,δ − (∇Xi
Xj)Yku

ε,δ

Thus, by taking into account that uε,δ is strictly F ε,δ-admissible, we have

aij :=
{ ∂

∂hsj

((
σk(D2

g,m,ε,δu
ε,δ)
) 1

k

)}
> 0 (23)

where hij are the entries of D2
g,m,ε,δu

ε,δ. Now we define the linear operator

Lv := −
n∑

i,j=1

aij
{
D2
g,m,ε,δv

}
ij

+

n∑
i=1

∂f

∂Pi
{
Dgv

}
i

A straightforward computation shows that

Lw ≤ −2∂ufw −
n∑
k=1

Yku
ε,δfYk

≤ M

µ
− wµ ≤ 0, (24)

therefore by a standard application of the classical maximum principle we obtain
(22).

Next, if ν denotes the inward normal direction to ∂Ω with respect to g̃, we need
to find an estimate for the normal component of Dg̃u

ε,δ, that is ν(uε,δ). We
have
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Lemma 3.4. Again we assume the same hypotheses as in Proposition (3.2).
Therefore it holds:

sup
∂Ω

∣∣∣ν(uε,δ)
∣∣∣ ≤ C (25)

with C depending on ‖Dφ‖∞, ‖D2φ‖∞, ‖uε,δ‖∞.

Proof. Let ρ ∈ C2,α be a defining function for Ω, strictly F -admissible. Then ρ
is F ε,δ-admissible for ε and δ small. Let us consider for a small γ > 0

Ωγ = {x ∈ Rn : −γ < ρ(x) < 0}

and let us define the following functions, for some λ > 0

u = φδ − λρ, u = φδ + λρ

where we have also denoted by φδ a smooth extension on the whole domain Ω.
We have u = u = φδ = uε,δ on ∂Ω and u ≤ uε,δ ≤ u on {ρ = −δ} for

λ >
1

γ
max{(max

Ω
φ+ max

Ω
|uε,δ|), (min

Ω
φ−max

Ω
|uε,δ|)}

Then u ≤ uε,δ ≤ u on ∂Ωδ. Now, since D2
g,m,ε,δu = D2

g,m,ε,δφ
′′′′
δ + λD2

g,m,ε,δρ,

by a direct computation we have σk(D2
g,m,ε,δu) = λkσk(D2

g,m,ε,δρ) + o(λk), as
λ→ +∞. Therefore, for λ > 0 large enough and by using condition (6), u is a
sub-solution of  F ε,δ(x, u,Du,D2u) = 0, in Ωγ ,

u = uε,δ, on ∂Ωγ ,
(26)

Now, let ul be the solution of the semilinear strictly elliptic problem
− 1

n

[(n
m

)] 1
k

trace(D2
g,m,ε,δu) + f(x, u,Dgu) = 0, in Ωγ ,

u = uε,δ, on ∂Ωγ

(27)

Then, from the inequality(
σk(D2

g,m,ε,δu)
) 1

k ≤ 1

n

[(n
m

)] 1
k

trace(D2
g,m,ε,δu)

we have that ul is a super-solution of F ε,δ(x, u,Du,D2u) = 0, in Ωγ ,

u = uε,δ, on ∂Ωγ ,
(28)

Finally, since trace(D2
g,m,ε,δu) = −λtrace(D2

g,m,ε,δρ) + o(λ), as λ → +∞, we
also have that u is a super-solution of

− 1

n

[(n
m

)] 1
k

trace(D2
g,m,ε,δu) + f(x, u,Dgu) = 0, in Ωγ ,

u = uε,δ, on ∂Ωγ

(29)
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for λ > 0 large enough. By the classical comparison principle, we get:

u ≤ uε,δ ≤ ul ≤ u, inΩδ

therefore
ν(u) ≤ ν(uε,δ) ≤ ν(u)

on ∂Ω. This ends the proof.

Last, we estimate uε,δ.

Lemma 3.5. Under the hypotheses of Proposition (3.2), it holds:

sup
Ω
|uε,δ| ≤ C (30)

where C is a positive constant not depending on ε, δ.

Proof. We need to find a bounded sub- and super-solution to (21). By direct
computation, we have that

i) the function
u = inf

∂Ω
φ+ cρ

is a sub-solution to (21), with

c ≥ (supΩ f)k

cρ
, (inf σk(D2

g,m,ε,δρ) =: cρ > 0)

ii) the function
u = sup

∂Ω
φ

is a super-solution to (21)

Since u and u are bounded on Ω, we get (30).

Proof of Proposition 3.2 . By putting together Lemma 3.3, 3.4, 3.5, we have the
thesis.

We are now ready to give the proof of our main theorem.

Proof of Theorem 1.1 . By Proposition 3.2 there exists a Lipschitz viscosity so-
lution uε of the problem (15). By Proposition 3.1 uε uniformly converges to a
Lipschitz viscosity solution u of the problem (4)

The following Corollary captures the case f constant.

Corollary 3.1. If f is independent of x and f ≥ 0, ∂uf ≥ 0 then Theorem 1.1
still holds.
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Proof. First of all assume f > 0, ∂uf ≥ 0 and remark that M = 0 in (24). Then
assume f ≥ 0, ∂uf ≥ 0. For 0 < s < 1, let fs = f + s and us be the viscosity
solution given by Theorem 1.1 of the problem{

−
(
σk(D2

g,mu)
) 1

k + fs(x, u,Dgu) = 0, in Ω,
u = φ, on ∂Ω.

(31)

By Lemma 3.3, 3.4, 3.5 us uniformly converges to a Lipschitz viscosity solution
u of the problem (4).

4 Comparison Principles

Now we give a sufficient condition to ensure the uniqueness of the viscosity
solution of the Dirichlet problem (4). By following the analysis on comparison
principle in [8] and [11], we see that if the prescribed function f is continuous,
positive and strictly increasing with respect to u, then F is proper in the set
of F -admissible functions, according the definition in [8]. However, in order to
prove the comparison principle for F in the set of F -admissible functions we
also need the following non trivial lemma. Let us denote by

Hm(x, p,X) := Am(x)XATm(x) +Qm(x, p)

with Am and Qm as in (3).

Lemma 4.1. There is a function ω : [0,∞[→ [0,∞[ that satisfies ω(0+) = 0
such that

F (y, r, α(x− y), Y )− F (x, r, α(x− y), X) ≤ ω(α|x− y|2 + |x− y|) (32)

whenever x, y ∈ Ω, r ∈ R, X, Y are Hermitian matrices such that

− 3α

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
(33)

and the eigenvalues of Hm(x, α(x− y), X), Hm(y, α(x− y), Y ) are in Γmk .

Proof. Since Qm(x, p) is smooth and linear with respect to p, there is L > 0
such that

− Lα|x− y|2Im ≤ Qm(x, α(x− y))−Qm(y, α(x− y)) ≤ Lα|x− y|2Im (34)

and since Am is smooth, by (33) with a standard argument there is L̃ > 0 such
that

Am(x)XATm(x)−Am(y)Y ATm(y) ≤ L̃α|x− y|2Im, (35)

(see [8, equation (3.17)]) . By putting together (34) and (35) we get

Hm(x, α(x− y), X) ≤ Hm(y, α(x− y), Y ) + (L+ L̃)α|x− y|2Im. (36)

17



Now, recall that in the set of Hermitian k-admissible matrices the function
G(A) = −(σk(A))1/k is monotone decreasing, convex and homogeneous of de-
gree one, i.e. G(λA) = λG(A) for all λ ∈ R+. Define g(t) = G (A+ tλIm) . We
have that g is continuous in [0, 1] and differentiable in ]0, 1[. Thus, by Lagrange
Theorem, there is θ ∈]0, 1[ such that g(1) = g(0) + g′(θ) and by the convexity
and the homogeneity of G we have

G (A+ λIm) =G (A) +
∂G

∂aij
(A+ θλIm)λδij

≥G (A) + λ
∂G

∂ajj
(θλIm)

=G (A) + λ
∂G

∂ajj
(Im) = G(A)− λCm,k

(37)

where Cm,k is a positive constant only depending on m and k.
By applying (37) to the right hand side of (36) and by the monotonicity of

G we get

G(Hm(x, α(x− y), X)) ≥ G(Hm(y, α(x− y), Y ))−Cm,k(L+ L̃)α|x− y|2. (38)

Finally, by (38) and the continuity of f we have (32)

We can conclude that the following comparison principle holds

Proposition 4.1 (First comparison principle). If the prescribed function f is
continuous, positive and strictly increasing with respect to u, then if u and u are
respectively viscosity sub- and super-solution of F = 0 in Ω, such that u(y) ≤
u(y) for all y ∈ ∂Ω, then u(x) ≤ u(x) for every x ∈ Ω.

Proof. F is proper in the set of F -admissible functions, and by Lemma 4.1 F
satisfies [8, (3.14)] and therefore the hypotheses of [8, Theorem 3.3] are full
satisfied.

A comparison principle in the class of uniformly horizontal convex sub- and
super-solution of the Monge Ampére equation in Carnot groups has been proved
in [4]. We remark that Theorem 4.1 refines such result because we do not require
a uniform F admissibility condition. Since we are interested even at the case
of constant function f , we would like to have a comparison principle for F also
when f is not strictly increasing with respect to u. It is a standard fact by now
that in order to adapt the proof for the strictly monotone case in this situation,
one needs to find (for instance) a strictly sub-solution for F . Let us denote
by K the sectional curvature related to g: the following Lemma is standard in
Riemannian geometry and we refer to [17] for the proof.

Lemma 4.2. Let us suppose that there exists a constant M ≥ 0 such that K ≤
M . Then there exists a constant rM > 0 (the injectivity radius) only depending
on M such that for every x0 ∈ G, the squared distance function ϕ := d2

g(x0, ·) is
well defined and smooth on the geodesic ball B(x0, rM ). Moreover ϕ is strictly
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convex on B(x0, rM ), namely there exists a constant cM only depending on M ,
such that

Hgϕ ≥ cMg, on B(x0, rM )

In particular if M = 0 then rM =∞.

Therefore we have

Proposition 4.2 (Second comparison principle). Let us suppose that there ex-
ists a constant M ≥ 0 such that K ≤ M and let Ω be a bounded open set con-
tained in the geodesic ball B(x0, rM ), for some x0 ∈ G. Let f be a continuous
function, positive and non-decreasing with respect to u. Then the comparison
principle for F holds.

Proof. We only need the prove it when f is not strictly decreasing with respect
to u. By the previous Lemma (4.2) we see that D2

gϕ ≥ cMIdn on Ω. One can
build then a strictly sub-solution and the proof follows in a standard way.

We explicitly note that we are working in full generality: if one considers Lie
groups with some additional structure, then one could remove the hypothesis
on the sectional curvature and one can have the comparison principle for every
domain in Rn. For instance in the case of Hessian defined on the first layer
(let us say of dimension m) of Carnot groups, then one can use as strictly sub-
solution a quadratic function depending only on the “first m variables” (see [2],
[3], [4]). However the next example shows that also in general Lie group one
can have the comparison principle for every domain in Rn.

Example 4.1. We consider again the Example (2.2) and we explicitly note that
it is not a Carnot group. Since we have only two (orthonormal) vector fields,
X,Y , we need to compute the sectional curvature only on this pair. We obtain
by a straightforward computation K(X,Y ) = −1. Since the sectional curvature
is a negative constant, therefore for every x0 ∈ R2, the squared distance function
d2
g(x0, ·) is well defined, smooth and strictly convex on the whole R2

Finally we remark that by our comparison principles via the Perron method
and the existence of u, u in Lemma 3.5 we also get the following existence result
for the Dirichlet Problem with continuous boundary data.

Proposition 4.3. Let Ω ⊆ Rn be a bounded and C2 open set, with defining
function ρ strictly F -admissible. Moreover, assume that comparison holds Then,
for every φ ∈ C(∂Ω) and f ∈ C(Ω×R) a positive function, there exists a unique
continuous viscosity solution u of the problem (4).
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