Characterization of the Palais-Smale sequences for the
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Abstract In this paper we study the Palais-Smale sequences of the conformal Dirac-Einstein problem.

After we characterize the bubbling phenomena, we prove an Aubin type result leading to the existence

of a positive solution. Then we show the existence of infinitely many solutions to the problem provided

that the underlying manifold exhibits certain symmetries.
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We start by recalling the super-symmetric model consisting of coupling gravity with fermionic
interaction. We fix a three dimensional closed (compact, without boundary) manifold M,
then we define the energy functional € of this model by

E(g, ) = /M Rydv, + /M<Dg¢, ) — (b, vy,
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where g is a Riemannian metric on M, 1) is a spinor in the spin bundle XM on M, R, is the
scalar curvature, D, is the Dirac operator and (:,-) is the compatible Hermitian metric on
> M; we will give the precise definitions in the next section. The functional € generalizes the
classical Hilbert-Einstein functional and it is invariant under the group of diffeomorphisms
of M as well; we address the reader to [7, 15, 22], where it was introduced and studied.

As in the classical case of the Hilbert-Einstein functional, since the group of diffeomorphisms
is usually big, in first instance we restrict the functional to a fixed conformal class, namely
given a Riemannian metric g, we set

l9] = {u'g; ue C**(M)}.

In this way, the energy functional reads as

Buw) =5 ([ kg (Do)~ PloPas, ) (1)

where L, is the conformal Laplacian of the metric g.
This energy functional can also be seen as the three dimensional version of the super-Liouville
equation investigated in [20, 21|, which is fundamental in the study of string fermions, see
[17].
By the first variation of the functional E, we see that its critical points satisfy the coupled
system

Lyu = |¢|?u

on M. (1.2)

D gd) = !U|2¢
Since the functional is conformally invariant, one expects compactness to be violated for this
problem; moreover, due to the presence of the Dirac operator, it is strongly indefinite. For
the later part, the authors studied an effective method, based on a homological approach
[26, 28, 29], for general functionals with this feature of being strongly indefinite; here we will
focus on the first issue, that is the lack of compactness.

We recall that a C! function F satisfies the Palais-Smale condition (PS) if: for any sequence
x) such that F(zy) — ¢ and VF(z) — 0 (such a sequence is then called a (PS) sequence),
there exists a converging subsequence.

The (PS) condition is fundamental in the study of problems with variational structure as
min-max theorems or Morse type methods, which rely heavily on this condition since it guar-
anties the convergence of the deformation flow. In several geometric problems though, such
condition is violated, mainly because of the conformal invariance. We recall the widely inves-
tigated cases of prescribing curvatures as the Yamabe problem or the Q-curvature problem
(see for instance [23, 3, 9, 5, 6] and the references therein). In the previously stated prob-
lems, the lack of compactness is well understood and there is a specific characterization for
the (PS) sequences. The pioneering works in the study of the behaviour of the (PS) sequences
are [35] (see also [34], [38]) and [24, 25, 10, 4]; for an exhaustive explanation of these kind of
phenomena we refer the reader also to the books [36, 12].

The first result in this paper concerns the study and the characterization of the (PS) sequences
of the functional F, in particular we will show the following:



Theorem 1.1. Let us assume that M has a positive Yamabe constant Yy (M) and let (up, )
be a Palais-Smale sequence for E at level c. Then there exist us, € C2*(M), oo € C1P (M)
such that (Uso,Poo) is a solution of (1.2), m sequences of points x1 - 2™ € M such that
limg, o0 asffL =aF € M, for k = 1,...,m and m sequences of real numbers RL ... Rm

converging to zero, such that:

i) Up = Uoo + Zvﬁ +o(1) in HY (M),
k=1

i) Y = oo+ > 6k +o(1) in H(SM),
k=1

i) E(tn, ) = BE(tso, o) + Y Egs (UL, Uk ) + o(1),
k=1

where

oy = (RE) 2B 1 (UL),

O = (Bp) ™' Brom i (W5),
with op g = (pnk) ™" and pui(-) = e:vpm;;l(RfL-) is the exponential map defined in a suitable
neighborhood of R3. Also, here By, is a smooth compactly supported function, such that B, = 1

on Bi(z*) and supp(By) C Bo(x*) and (UL, Uk)) are solutions to our equations (1.2) on R?
with its Fuclidian metric ggs.

Remark 1.2. The assumption on M of having a positive Yamabe constant implies in par-
ticular that there are no harmonic spinors, namely the Dirac operator Dy has no kernel: this
will be used in the proof. In fact, by conformal invariance of the Dirac operator, the vanishing
of the kernel is preserved by conformal change. So if the Yamabe constant is positive, then
the conformal class of the metric contains a metric with positive scalar curvature, hence using
the Schrédinger-Lichnerowicz formula for this last metric and denoting by Ax, the connection
Laplacian, we have that

Dg = —Ay + %7
which implies the vanishing of the kernel of D,.

Here HY(M) and H %(EM ) are suitable Sobolev spaces on which the functional E is well
defined (see next section).

Now, for non-trivial (u,v) € H'(M) x H %(EM ), we define the functionals

) ) ( /M uLgudvg) ( /M<Dgzp,¢>dvg> / (Dg¥, ¥)duy

/M 24 o, /M 2[4 dv,

Also, we let P~ be the projector on Ha~ (the negative space of H%(EM) according to the

splitting given by the eigenspinors of the Dirac operator), so that for a given v € H %(ZM )

Pr@) =0 [ (bpldy, VoeHH,
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As for the Yamabe problem, we define a conformal constant

o B(u, ) for (u,) € HY(M)\ {0} x HE(SM)\ {0} s.t. () > 0,
Yo(M) = mf{ P~ (Dyto — I($)u4) = 0 }

Indeed, we first recognize that the constant Yg(M ) only depends on the conformal class of
the metric g, then we have an Aubin type result by comparing Y, (M) with the invariants on
the sphere S3 with its standard metric go. In particular we will show the following

Theorem 1.3. It holds:

Yy (M)Xg (M) < Yy(M) < Yo (S%)A, (%) = Yo (5°).

Moreover, if . 3
Yo (M) < Yo (5%,

then problem (1.2) has a non-trivial ground state solution.

Here we have denoted by

W=

/\;(M) = inf A\ (g)Volg(M)
g€lg]

the invariant as defined in [18] and A;(g) being the smallest positive eigenvalue of Dy on M.
We recall that \f (M) can be characterized as follows (see [1, 2]):

()
A (M) = inf M

T yeimpoo Dy\{0} 1
o==Ds /Mw,Dg )dv,

y |Dgp|2duy
= inf

se a0 | [ (. D)o

I

where imge Dy is the image of the operator Dy : C*°(XM) — C*(XM).

Finally, in the last section we will consider a three-dimensional closed manifold M with an
isometric group action G acting on M, such that the orbits of G have infinite cardinality and
we will show that equations (1.2) admit two infinite families of solutions on such a manifold.

2 Conformally invariant operators, spaces of variations and
splitting
In this section we will briefly recall some notations and properties of conformally invariant

operators involved and we will give the definition of the Sobolev spaces that we are going to
use.



Let (M, g) be a closed (compact, without boundary) three dimensional Riemannian manifold,
we define the conformal Laplacian acting on functions by

1
Lyu = —Agu+ §R9u’

where A, is the standard Laplace-Beltrami operator and Ry is the scalar curvature. The
conformal invariance of L, reads as follows: if § = g, = ug is a metric in the conformal class
of g, then we have

Lif =u " Ly(uf).
We will denote by H'(M) the usual Sobolev space on M, and we recall that by the Sobolev
embedding theorems there is a continuous embedding

HY(M) — LP(M), 1<p<6,

which is compact if 1 < p < 6.

Now let ¥ M the canonical spinor bundle associated to M see [16], whose sections are simply
called spinors on M. This bundle is endowed with a natural Clifford multiplication Cliff, a
hermitian metric and a natural metric connection V*. The Dirac operator D, acts on spinors

Dy :C®(EM) — C™(EM)
defined as the composition Cliff o V* in the following way
VE: C®(EM) — C®(T*M @ ¥M),

Cliff : C*°(TM @ ¥M) — C*(XM),
where T*M ~ T'M have been identified by means of the metric. We also have a conformal
invariance that in our situation, § = u*g, reads as follows

Dyh = u=*Dy(u?).

The functional space that we are going to define is the Sobolev space H 3 (XM). First we recall
that the Dirac operator D, on a compact manifold is essentially self-adjoint in L?(XM), has
compact resolvent and there exists a complete L2-orthonormal basis of eigenspinors {t; }icz
of the operator

Dy = Niti,
and the eigenvalues {\;};cz are unbounded, that is |\;| — oo, as |i] — oco. Now if ¢ €
L?(XM), it has a representation in this basis, namely:

b= ai.
1€EZL
Let us define the unbounded operator |Dy|* : L*($M) — L*(XM) by
[Dy|*(¥) = Zaz‘|)\i|s¢z‘-

1€Z



We denote by H*(XM) the domain of |Dy|*, namely ¢ € H*(XM) if and only if

Z a?!)\i]% < +o0.
iE€EZ

H*(XM) coincides with the usual Sobolev space W*2(XM) and for s < 0, H*(XM) is defined
as the dual of H=*(XM). For s > 0, we can define the inner product

(u, v)s = (|Dg|*u, | Dg[*v) 2,
which induces an equivalent norm in H*(XM); we will take

(w,u) = (u,us = [ul?

as our standard norm for the space H %(EM ). Even in this case, the Sobolev embedding
theorems say that there is a continuous embedding

H(SM) — LP(SM), 1<p<3,

which is compact if 1 < p < 3. Finally, we will decompose H 3 (XM) in a natural way. Let us
consider the L2-orthonormal basis of eigenspinors {1; };cz: we denote by 1, the eigenspinors
with negative eigenvalue, wf the eigenspinors with positive eigenvalue and w? the eigenspinors
with zero eigenvalue; we also recall that the kernel of D, is finite dimensional. Now we set:

1 _ =5 1 1 T~
H>" :=span{y; biez, H2":=span{y]}icz, H>" :=span{y] }iez,

where the closure 1is. taken with respect to the H %-topology. Therefore we have the orthogonal
decomposition H2(XM) as:

Hz(SM)=H> @ H2'@ Hat,

Also, we let P and P~ be the projectors on H>" and Ha™ respectively. X
Finally, sometimes we will denote by H the product space H = H'(M) x H2(XM).

3 Regularity

Here we will prove the regularity of weak solutions of the system of equations (1.2). Due to
the critical nonlinearity, the bootstrap argument does not work, and we explicitly note the
two equations in (1.2) are strongly coupled, therefore we cannot apply the existing results
for the conformal Yamabe equation and the conformal Dirac one separately; anyway we will
proceed as in [19] and we will be able to prove the following

Theorem 3.1. Let (u,) € H' (M) x H%(EM) be a weak solution of the system of equations
(1.2), then (u,1)) € C**(M) x CYP(ZM), for some 0 < o, < 1.

Proof. First of all, by the Sobolev embedding there is a continuous injection

HY(M) < LP(M), 1<p<6,



H2(SM) — LP(SM), 1<p<3.
Now let p,n € C*(M), with n =1 on supp(p) and let us denote B = supp(n). We compute
1
8
= —pAgu—ulgp —29(Vp, Vu) +
= pLg(u) —ulgp —29(Vp, Vu)
=Y pu — ulgp — 29(Vp, Vu),

Ly(pu) = =Ag(pu) + 2 Rgpu
1

3 Rypu

and
Dy(pb) = pDgth + Vp - b = nu’pp + Vp - 1,

where we have denoted by - the Clifford multiplication for brevity. Now, since
u€ HY (M), € L3(ZM),
we have that also
ulgp+29(Vp,Vu) € L* (M),  Vp-¢ € L}(SM).
We define the two maps:
P W(M) — LY(M),  Pi(v) = nl¢l*v,
Py : WYP(EM) — LP(SM),  Py(¢) = nu’s.

By Hoélder’s inequality, the previous maps are well defined if 1 < ¢ < % and 1 < p < 3,

moreover there are constants depending on ¢ and p, such that the operator norms are bounded
as follows:

[Prllop < CqH@Z’H%S(EB)v 1 P2l[op < CpHuH%ff(B)'

In this way the operators

3
Ly =l : WH(M) — LYM), 1<q< oL

D, —nu? : WHP(SM) — LP(SM), 1<p<3,
g

are invertible if [|9[| 355y and |lul|z6(p) are small, which is possible by taking B even smaller.
Therefore there are unique solutions v € W24(M) and ¢ € WHP(EM) to the equations

Lyv —nl*o = —ul,p — 29(Vp, Vu),
Dy —nup = Vp -,
if1<q<%and1<p<3.
Now we will consider the two dual maps, defined as follows:
P LS(M) — W YS(M),  Py(0) = nfyl*s,

Py L3(EM) — W E(EM),  Py(¢) = nu2e.



Again, by Holder’s inequality and Sobolev embedding, the previous maps are well defined
and there exist constants, such that the operator norms are bounded as follows:

1Pillop < Coll¥llEssp),  I1P2llop < Collulls -
Even in this case, the operators
Ly = nly|* : L(M) — W=H(M),
D, —nqu*: L3(XM) — W 3(2M)
g : )
are invertible if ||¢)||;3xpy and |lul|zs(p) are small; therefore there are unique solutions o €
LS(M) and ¢ € L3(XM) to the equations
Lgo — |0 = —ulgp — 29(Vp, Vu),
Dy —nu’e = Vp- .
Moreover, since

W21(M) < L°(M),

(18 N e

<

N W

<

LS

)

WLP(ESM) — LP(ZM), <p<3,

| W

then by the uniqueness v = v = pu and qg = ¢ = pyp, under the above conditions on ¢ and
p. Now, since p and 7n are smooth functions with arbitrary small supports, we have that

u € W24(M) and ¢ € WHP(X M), provided % <g< % and % < p < 3. Therefore, by

the Sobolev embedding, we get that v € LY(M) and ¢ € LP(XM), for any 1 < ¢q,p < oc;
and then by plugging them in the initial equations, we have that u € W29(M) and 1 €
WhLP(XM), for any 1 < q,p < oo, by the elliptic regularity estimates. Once more, by the
Sobolev embedding for the Holder spaces, we have that there exist 0 < «, 8 < 1 such that
u € C%(M) and ¢ € COB(EM); finally by the elliptic regularity again, we get u € C%(M)
and ¢ € CLA(SM). O
4 Classification of the (PS) sequences

Here we will prove Theorem (1.1). We will need many preliminary propositions and lemmata.

Proposition 4.1. If ker D, = {0}, then every (PS) sequence for E is bounded.
Proof. Let (un, ¥y )neny € HY(M) x H%(EM) be a (PS) sequence for E, that is
B(un,n) = ¢, dB(un,tn) — 0, in H (M) x H™2(SM).
Therefore, there exists a sequence (e,,,8,) € H- (M) x H_%(EM) such that
Lyu, = [Vt + €n, (4.1)

Dgwn = ‘un‘2¢n + 5717 (42)



with 1
€n — 0, in HY(M) and 6, — 0, in H 2(M).

We let z, = (un,¥n) € H, then

20(z0) = (B () ) = [ ol

Hence
/M i i 2y = 2¢ + (| 2all). (4.3)

Multiplying (4.1) by w,, and integrating we have

Jum |2 = /M 2 [P + o un]).

hence
[unl* = 2¢ + o([|2nl))- (4.4)

Now multiplying (4.2) by ¥;F = P (1), we find

lnt1I* < C/ [n*[n 45t [dvg + o[l 1)
M

<c ( / |un|2wn|2dvg)2 ( / |un\2rw:|2dvg)2 ol )

< C(2c+ olllzll)) # lunll o |0 | 12 + o((linl])
< C(2c+ ol|lzall)) [9n]l + o([|nl])-

Similarly, we have for ¢, = P~ (¢,,) that

I 112 < C(2¢ + o(llzn ) [4nll + o[lnl)-

Hence,
[4nll < C(2¢+ o([|2nl])) + o(1),
so that
[znll < €+ o(llznl)
and ||z,| is bounded. O

From the previous proposition, we have that up to a subsequence, z, — 2oo = (Uoo, ¥oo) IN
H, also up, — uee in LP for p < 6 and ¢, — ¢ in L9 for ¢ < 3. We claim that z is a week
solution to (1.2). Indeed, let zg = (ug, %) € H, since (z,) is a (PS) sequence for F, we have

/ uoLgundug :/ |¢n|2unuodvg+o(1),
M M
but [¢,]? € L3 and u, € LS, thus Un|n|? converges weakly to Uus |so|? in L3, hence
/ ’wn|2unuodvg — / ’woo|2uoouodvg'
M M

9



Also, by the weak convergence we have that

/uDLgundvg%/ U LgUoodvy.
M M

Lguoo = W}oo|2uo<>7

Therefore,

and similarly it holds
ng’oo = |UOO|2¢00-

We let now v, = u,, — U and ¢, = V¥, — Yoo, then we have the following

Lemma 4.2. Let hy, = (vy, ¢n), then

E(hn) = E(2n) — E(200) + 0(1)

and )
dE(hy) — 0, in H (M) x H 2 (SM).
Proof.
2E(2n) = / (Un + Uoo)Lg(Un + Uoo)dvg + / <Dg(¢n + d}oo)» On + woo>dvg
M M
- / [0 + thoo % 6 + thoo v
M
= 2E(hn) + 2E(200) + (dE(200), hn) — / o [Yoc|? + 2{vnl*(én, Yoo)
M

+ ]vOOIQ\gbn\Q + 2|¢n\2vnuoo + 2]¢m\2umvn — 4UpUoo (Yoo, Pn)dvg.

Now, we first notice that since dE(zo) = 0, we focus on the remaining terms. By the

regularity result in Theorem (3.1), we have that u., € C**(M) and 1o, € CP(XM). Since
vp — 0 strongly in L?(M) and ¢,, — 0 in L?(XM) we have that

_/ ‘U’rz‘QWJOO‘Q + 2|Un‘2<¢n7woo> + ‘000‘2‘(2571’2 + 2‘¢oo’2uoovn - 4vnuoo<woo7 ¢n>d7}g — O
M

The last term is fM2]¢n|2vnuoodvg, but we have that ¢, — 0 in Lg(EM) and v, — 0 in
L5(M) therefore we conclude that

E(z,) = E(hyn) + E(z00) + 0(1),

and this finishes the energy estimate. Now for the gradient part dE, we denote by d,F and
dyE the scalar and the spinorial components respectively. We have:

duE(hn) = duE(um ¢n) + duE(UOOa zboo) + ’wn‘Quoo - ’woo‘zun + 2<wna zﬂoo>'Un-

But again, dyE(teo, Vo) = 0 and since 1, — 1o in L%(EM) and u, — U In Lg(M) we
have that
|Q;Z)n|2uoo - |Q;Z)oo|2un —0

10



in Lg(M) hence in H~'(M). We also have that v, — 0 in L%(M) and ¥, — s in
L%(ZM), thus (¥n, Yoeo)vn — 0 in Lg(M), thus in H—Y(M). Therefore,

dyE(hy) = o(1), in H™Y(M).
We move now to the spinorial part, that is
dz/JE(hn) = dl/)E(un71/}n) - dwE(um7¢w) + ‘un‘Zwoo - ‘Uoo‘an + 2UpUoo G-

Again dy E(too, Voo) = 0 and u, — s in L%(M) and ¢, = Y in Lg(ZM). Moreover we
have that ¢, — 0 in L3 (SM) and u, — ueo in L't (M). It follows that

dyE(hy) = o(1), in H2(SM).
O

So from now on, we will assume that our (PS) sequence z, = (un,¥r), converges weakly to
zero in H' (M) x H%(EM) and strongly in LP(M) x L1(XM), for p < 6 and ¢ < 3.

We assume that z, does not converge to zero in H'(M) x H 2 (XM) since otherwise the (PS)
condition would be satisfied. Now, let us denote by B,(x) the geodesic ball with center in
x € M and radius r, we define the following sets, for a given ¢y > 0:

n—oo

Y1 =<x € M;liminf liminf/ |un|6dvg >e€
r—0 Br(z)

r—0 n—oo

Yo = {:U € M; liminfliminf/ [t |3 dvg > eo} ,
B (x)

n—

Y3 =12 € M; liminfliminf/ |t |? [t |*dvg > €0 ¢ -
r—0 00 By (z)

We have:

Lemma 4.3. There exists ¢g > 0 depending on ]\41, such that if xo & 31 NXaN X3, then there
exists r > 0 such that z, — 0 in HY(B,(x0)) x H2(XB,(z0)).

Proof. We will prove this result by contradiction, by assuming that for every €> 0, there
exists xg € ¥1 N Yo N X3, such that for every r > 0, z, 4 0 in H'(B,(x0)) x H2 (XB,(z0)).

Case I: o & X1.

Given € > 0, there exists » > 0 such that fB4T(wo) lun|®dvy < €. We first estimate the 1)
component. That is, we consider a smooth cut off function n supported on By,(z¢) and
equals to 1 on Bag,(x¢), then by (4.2) we have:

Dg(nwn) = 77Dg7/)n + V’O “Pn
= 77|Un|2¢n + V- ¥y + nop,

11



where ”(S"HH—% — 0. Hence

1 < Cl”n‘un’zwn +Vn by, + n(anH—%

< Cs (Inlunnll g + Wall g + 1onll -y ) -

Il

Since HwnHL% — 0, it remains to estimate

1
Inlun 2l g < Nunl3s s oy Imenllzs < Caed Inwll 3
Hence, taking Cse < %, we deduce that n, — 0 in H %, yielding

HnwnHLd — 0.

Now we estimate the u component. We consider a smooth cut off function p supported on
Bs,(z0) and equals to 1 on B, (x¢), then by (4.1) we have

L9<pun) = pLgun — UnAgP - QQ(VP, Vuy,)
= plton|un — unAgp —2Vp - Vuy, + pe,

where ¢, — 0 in H~1(M). From elliptic estimates now we have that

”PunHHl < C"P‘wnyzun —upAp +29(Vp, vun) + PEnHHfl
< 01 (IplaPuall g + luapl, g +20a(V0. V) 51

First we estimate Hp]z/JnPunHLg:

lolnl*unll g < lInonlLsllounllze < Cullmnll? 4 llown -

From the previous estimates, for n big enough we have that CCleani{ . < i Thus we
2

2
have that
ol < llunlpll s +2019(V o, Vun) | g-1-

Now clearly
lunoll 5 < Cllunl 2,

and the term

19(Vp, Vi) |1 < sup /wa,wn)kdvg

keH||k| g1 <1

But

' /Mgwp, Vu)kdo, < Ol ]z = 0.

< \ [ (kg (95,8 oy
M

Hence pu,, converges to zero in H'(B,(zo)) and this leads to a contradiction.

12



Case II: xg & X».
Given € > 0, there exists r > 0 such that | Bay (o) ¥ |2dvg < €. Then again we compute

Lg(pun) = p(Lgun) — unAgp — 29(Vp, Vuy,)
- p|¢n|2un - U"Agp - 29(V,0, vun) + pen,

where €, — 0 in H~!. From elliptic estimates now we have that

”punHHl < CHPWnFUn - unAgP +29(Vp1, Vuy) + PEnHHfl
< Gy (ol Puall 5 + lundsgpl g +29(Vo. Vi) 1)

Again, we estimate
2
ol Punll, s < [lnll7slounllze < Cres|lpun|lan.

Taking C1Ce < %, we have that

louallin < € (lundapl, g +209(70. V) g1 + lpenllar)
and as in the previous case we have that
lunBgpll 6 +2[l9(V o, Vun)|| g1 + llpenll -1 — 0.
Hence ||pun ||z — 0. Next, we estimate the spinorial component:

HWnHH% < Cl”n‘un’an + V-, + nénHH—%

< Cs (IInlunlPwnll, 3 + l6nl g + 16ll,y ) -

But
Infualall, 5 < lpunlZallnll -

Using the fact that |pus| g1 — 0, we have that z, — 0 in H'(B,(xq)) X H%(EBT(.TJ())),
yielding a contradiction.

Case III: xg € X3.
Again, given € > 0, let > 0 so that fBzr(a:o) |tn |9 |*dvg < €. We have that

lotall,p5 < Co (Ilplunlnl, 3 +o(1))
But
1
2

lolunPonll 3 < ([ Pl oy | llounles
BQT(mO)

thus )
lo¥nll 1 < Cez|lpunll g + o(1).

13



Similarly, we have for the v component,
lpunll s < Cllplonl*unll s + o(1),

and

[SIE

lolinunll g < ([ funPlunfduy | llovalss
Ba,(x0)

Hence )
lpunll g < Celpgnll 1 + o(1).

Combining both the previous inequalities we have pz, — 0 in H'B,(zo) x H %ZBT([BQ),
leading to a contradiction. O

From the previous lemma we deduce the following properties.

Corollary 4.4. If (z,) does not satisfy the (PS) condition, then
¥ =X9 =X3#0.

Corollary 4.5. Let (2,) be a (PS) sequence at the level c. If ¢ < 9 then z, converges
strongly to zero.

Proof. The proof follows from the boundedness of the (PS) sequences. Indeed, from (4.3) we
have

/ i 2[4y = 26+ o(1).
M

Hence if 2¢ < €p, we have that for n big enough,

/ ‘un’2|¢n|2dvg < €0,
M

thus z, — 0. O

Now, for a given (PS) sequence (z,), we define the concentration function @,, for » > 0 by

Qn(r) = sup ‘un’2|wn’2dvg‘
€M J By(z)

We explicitly notice that one can define equivalently the sup on the integrals relative to ¥
and Yo. We choose € > 0 so that 3e < €g, then if 33 £ 0, we have the existence of z,, € M
and R,, — 0 such that

On(R) = / [t |t Py = €.

Without loss of generality, we can always assume that =, — xo and i(M) > 3, where (M)
is the injectivity radius of M. Also, we define the map p,(z) = exp,, (R,z) for z € R? such
that R,|z| < 3; we denote also o, = p,;!. We let BY% denote the Euclidian ball centered at
zero and with radius R. That is,

BY% = {z € R3|z| < R}.

14



We can then consider the metric g, on B% defined by a suitable rescaled of the pull-back of
g: )

gn = R; P;g-
Clearly, the two Riemannian patches (B%, g,) and (Bgg, (¥5),g) are conformally equivalent
for n large enough and g, — gg3 in COO(BOR). We consider now the identification map (see

[8])
(Pn)s ZP<B%7gn) - Epn(p)(BRRn (zn), 9),

and we set
pr(9) = (pn)y ' 0 9o pp.
Using these maps, we can define the spinors ¥,, on EB% by
lI/n = Rnp:ﬂ/}n?

and from the conformal change of the Dirac operator, we have that

Dgn v, = R%p;’;Dgwn'

So we get:
/ <Dgn\IIna an>dvgn = / <Dg¢m¢n>dvga
B?{ BRRn(mn)
[ owbdng, = [ s,
BY BRR, (zn)

Now we consider the u component, that is we define

1

Up = R?% PZUm
so that by conformal change of the conformal Laplacian, we have:

5
Ly, Uy, = R py Lty

Hence
UnLgy, Upduvg, :/ Up Lgundug,
BY Brr, (zn)
/ U g, — / v, (4.5)
BY, BRrr,, (zn)
and
[P, = [ e,
BY BRrr,, (zn)

We have the following:
Lemma 4.6. Let us set
F, =Ly, Uy — |9, Uy, H, = Dy, ¥, — U, |*,.
Then )
F, — 0 in H_'(R?), H, — 0 in H, *(3R?).

loc loc

15



Here the convergence in H, l_oi is understood in the sense that for all R > 0,
sup{(Fn,F>H717H1;F € HY(R?), supp(F) C B%, ||[F|m < 1} — 0,
and similarly for H,.

Proof. We first notice that by construction, we have that
5
Ly Un — |9, [2U,, = R2 pl (Lyun — |tn|*un).

Hence we get .

F, = Rip;,(en),
and similarly

H, = R2p}(6,).

n

Now we consider ' € H'(R?) such that supp(F) C B% and ||F||; < 1. Since R, — 0, then
for n big enough we have that:

(Fo, F)g— = / F,Fdv,,
B,
R’Il

5
— [ pieriFdy,
B

0
R;1

_1
_ /B  plen) R Py

Ryt

_1
- / enRi 0% (F)dv,.
B1 (QJn)

But we have that HR;%U;‘L(F)HW < C, hence
(Foy Fypg-1 g1 — 0.
A similar estimate holds for H,,. O
Now, let us re recall the spaces
DY(R?) = {u € LS(R?);|Vu| € L*(R?)}
and ) L
DY(R) = {v € L*(TR); [¢l3|d] € LX)},
where here 1; is the Fourier transform of 1). We have then the following:
Lemma 4.7. For ¢ > 0 small enough, there exist Uy, € DY (R?) and ¥y, € D%(ZR?’) such
that U, — Us in HL (R3) and U,, — Vo in H? (XR3). Moreover they satisfy

loc

—DygsUso = [Voo|*Uso
on R3. (4.6)
D9R3 Voo = ’UOOP\IIOO

16



1
Proof. Since the sequence Z, = (Uy, ¥,,) is bounded in H}  x H?_, for every 8 € C§°(R3),

we have that 57, is bounded in H! x H%, hence there exist U,, and ¥, such that U,, — U

1
in HlloC and U, — U strongly in L} for p < 6. Similarly ¥,, = ¥ in H?_ and strongly in
LP for p < 3. Now we notice that from (4.5), we have that

loc
/ \Un\ﬁdvgn = / ]un|6dvg.
By Brr,, (zn)

lim sup/
n—00 B%
hence Uy, € L9(R3) and similarly ¥, € L3(XR3). Also as in the proof of Proposition (4.1),
we see that (U, Vo) satisfies equation (4.6); hence

Hence
U |%dv,, < sup/ |un|®dv, < 400, (4.7)
n>1JM

/ IV Uoo|2dvy < o0
R3

and VU, € L%(ER3) C H_%(ER:%), which leads to the fact that U, € D'(R?) and ¥, €
D%(ZR?’). Now, using again Lemma (4.2), we can assume at this stage that U, = 0 and
Us, = 0 by replacing ¥,, by ¥,, — ¥, and U, by U, — Us. Now let z € R?, then by
assumption we have that for n big enough,

0P Py, < e
BY

Let 8 € C§°(R?), then by elliptic regularity, we have that

18%Unllann < C (I Ly (82U -1 + 182Vl 2) (48)
< C (L4 (BPU) -1 + WL — Lo, ) (BUn)ll -1 + 18°Unlz2)

Now, we have that ||32U,||;2 — 0, and we want to estimate the term

I(Zgys = Lgu)(B2Un) -1

First, we have that for every F € H':

{(Lgys = L) (B2Un)s Fygr—1 1 = (BUn, B(Lgs — Ly, ) F),

where (Lg,, — Lg,)* is the adjoint of Ly, — Lg, with respect to the metric ggs. Now since
Jn — gps in C*°, we have that

1(Lggs = Lo, )(B) 12,2 = 0,

and by duality
HB(Lg]Rs - Lgn)*HLQ,H*2 — 0.

Similarly, we have also that
18(Lggs — Lg,)" 2,02 —= 0,

17



therefore, by interpolation, we have that

18(Lgys = Lg)" ezt -1 = 0. (4.9)

So we have that:

({(Lggs = Lg,)(B°Un), F =1 | < CllBU i l1B(Lggs — Lg, )" Fll g
< ClB(Lggs = Lgo) N =1 I F'll 11

hence
||(L9R3 - Lgn)wZUn)HH—l — 0.

It remains to estimate the term || Ly, (32U,)| -1, but we have that
1L, (B2 U g1 < 8210l Un + Fo)ll -1 + (1),
and from Lemma 4.6, we have that 82F,, — 0 in H~', therefore, we have that
182Ul a1 < CllB%¥nl*Unll -1 + o(1).
Now, if we take supp(8) € BY, we have that

18°Unllin < CllB2Wnl*Unll g

L5 (BY) +o(1)

D=

<c ( /L, |Un|21wn|2dvgn> 162 %allzs + o(1)
i
< Ce3||B20, 15 + o(1).
A similar computation can be done to show that
182,y < Ce2[[82Un]l o + o(1),
and combining these last two estimates we have that

182Ul g + 18l = 0.

It follows from this lemma in particular, since
[ U1 Py, = Q(Ra) =
1

that also
2 2
/B?|Uoo| [Woo Pl = €.

and hence Uy, # 0 and ¥, # 0 and they satisfy equation (4.6); by the regularity results
proved in the previous section, we have that Uy, € C%%(R3) and ¥, € C15(ZR?).
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Now, we assume that x,, — =z and we consider a cut-off function 5 = 1 on Bj(z) and
supp(B) C Bz(z), we define then v, € C>%(M) and ¢,, € C*?(XM) by
_1
vn = Rp 2 B0 (Uso) (4.10)
and
bn = Ry B0, (Voo). (4.11)
We are going to prove the following

Lemma 4.8. Let U, = u, — v, and ¥, = ¥, — ¢,. Then, up to a subsequence, U, — 0 in
HY(M) and ¥, — 0 in H2(SM).

Proof. We already have that u, — 0 and 1, — 0, thus to prove the lemma we only need
to show the weak convergence for v, and ¢,: these sequences are bounded in H'(M) and
HY 2(X M) respectively, then up to subsequences, they converge to some limit. So if we show
that the distributional limit is zero, then the limit in the desired space is also zero. So let
feC®(M) and h € C>°(XM). We want to show that

/ vp fdvg — 0
M

and

/ (¢n, h)ydvg — 0.
M
We fix R > 0, then we have

1
/ vpfdvg = Ry ? Bo(Uso) fdug
Br,, r(zn) BRr,, r(zn)

= Ri [ By

R

Hence

5
/ onfdvg| < CRE||fllso / Useldv .
Br,,r(zn) B?%

Also, for n big enough we have that

/ Unfdvg = / Unfd’Ug
M\BRnR(xn) B3($7L)\BRHR($7L)

Hence, we have

5
/ onfdvg| < CRE[|flloc /
M\BRgr,,r(zn) BY

3Ry L

Us|d
B%| ool Ugpa

=

<Ol | [, 10lduy

B B
spyt VTR
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Based on these last two inequalities we have that

1
5 6
‘ [ et < €l (Rﬁ / |Uoo|dvgmg+( / |Uoo|6dng3> )
M BY, R3\ BY,

Letting n — oo and then R — oo we get the desired result. A similar inequality holds for ¢,
and h. 0

Now we estimate the differential, that is

Lemma 4.9. We have
dE(vy, ¢n) — 0 and dE (T, ,,) — 0,
in H-Y(M) x H™2(SM).

Proof. We set
fn = Lgvn - |¢n|2vn

and
hn = Dg¢n - |Un‘2¢n-

Let f € HY(M) and h € H%(ZM), we compute

/ fafdvg = RT_L% </ (—AyB)on(Uso) fdvg + 2/ g(—Vﬂ,VU,’;(UOO))fdvg)
M M M
w R [ LU fav, — R /M 83075 (Do) P (Uro) fl
_ Ry /M(Agﬁ)UZ(Uoo)fdvg LRy ? /M (V8. Y o (Une)du,

R, /MﬁongnUoo)fdng;g / B0 (|Woe|2Unc) f il
_ Rné/ (A, B)07 (Uso) fdu, + 2Ry, / (V8. Vf)or (Uso)dug

M
LRy /M 8% ((Lgy, — Ly, )V) fdvg + B® /Mw )0 ([ We|2Un) filg

=1+ 1+ I3+ 1y

We estimate first 11, so we fix v € C°°(M) such that v = 1 on supp(f). Then we have

— Ry / (8 B)7(Une) g

1

n’ / Woopr,(Vf)dvpsg
~ R} / Woopr (7.f)dvg,.
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Thus

1
11| < B3 197 (8g8) Ul 18 g5 .guy A Pn (V) 68,0

< Rollph (AgB)Usoll, ¢ a7 llzsan)

2
< Rollon(BgB)Usll 6 Rg,g)HfHHl
But,
[ 1ga)fdn,, <€ [ AL
RS Ry, expa, (B2(x)\Ry "expy, (Bi(x))
5
_12
<CR,* / . i Uso|%dug,, | (4.12)
Bngl\B%Rgl
Therefore,

1
6
o[ v | 1,
B I\B%Rgl
and since Uy, € D'(R?), we have that
(1| < o) fll -

The estimate for I is very similar to the one of I, indeed we have
5
01 < R [ 10 (T3) Vel (v,

< Rllon (V) Usolll 2 (B3 g, ”Rnpn(vf)||L2(R3,gn)
< Ry llon (VB)|Usolll 2 s g 11| 11 (ar)

But

/ 195 (VB) P Usl2dug, < c/ o o Useffdug
R R i) (Ba(a)\ R e (B (0)

1
3
< CR,? / Uso|®dvgs | (4.13)
BO —I\BO

1RT_Ll

which allows us to conclude that
[I2| < o(V)[[ fl| -

We move now to Is. We first notice that

[3:/M((Lgn—LR3)U ) Ru? pi (B f)dv,

Therefore,
5] < ClIBpL((Lg, = Les)Uoo)l 8 a1 2 ar
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but
1803((Lg, — Lus)Uso)ll 5 <

< WPn (Lo = Lra)Ueol g gy 1570 ((Ln = Lre) Vool g gy g

Now, since g, — ggs in C°°(B%), and since —AgsUso = |Uoo|?Us € Lg(R?’), we have as in
(4.13), by letting n — oo and then R — oo that

(3] < o(L)|[fll 2
It remains now to consider the term Iy:
1
Ii= [ 005 = )0 PURI R} (0 iy,

We have
114 < Cllo(8 = BN BelUscll g g1l

and

[S31[9)

» 6 12 6 g
13 = BRIl Bl B, < Clle | [ U PP

3R,V IRyt

Then using the fact that Uy, € DY(R?) and ¥, € D%(ER:;), we have that

[La] < o(D)][ f2l-

Therefore, we have that f,, — 0 in H~!(M) and a similar convergence holds for h,, — 0 in
H2(ZM). B
Next we move to (uy,,,) and again we fix f € H'(M). First we notice that

QuE (T, B,) f = /M f Lyfindu, — /M R
— Ay (tny ) f — duE(vn, ba)f + / Anfdu,,
M

where
An = |wn’27)n - ‘énPun + 2<T/Jn, ¢n>(un - vn)-

Now, since we already proved that dyFE(u,,v,) — 0 and dyE(vy, ¢r,) — 0, it is enough to
show that A, — 0 in H~!. First we have that

1
Lz, ¢ Z 6 °
[¥nls |vn|5dvg < [[¢hnll s o dvg
M\BRrg,, (zn) M\BRRg,, (zn)

12
5

< Cllvnl %, / Ul dv,
H?2 BO 71\B

=

22



But since Hw"”H 3 is bounded and dvg, < Cduvg,,, we have that

as R — oo uniformly on n; hence

2
Il enll ¢ 0, ey ™

Similarly, we have that

12 6 6
/ (6l 2 [unl$ddvg < [t 3 / (G,
M\BRg,, (zn) M\BRg,, (zn)

6
<Clunlip | [ el

B B
sr;l ‘R

(SIS

(OIS

Hence the same conclusion holds when R — oo. To finish this estimate on the exterior
domain, we consider the mixed terms:

6 6 6 6 g
/ 1601 ]S un| $ g < [l o460 3 / (6n
M\BRRg,, (zn) M\BRR,, (zn)

6 6
<}l | [

[S1[N

SIS

3
o o |\IIOO| dll)gn
sr; VR

6 6 6
|bn|5 |05 [vn |5 dvg <
M\BRR,, (zn

6
< Hwnuzs </M\B o) |¢n|3dvg> </M\B o |Un|6dvg>
RRp (Tn RRp\Tn

2 1
5 5
6
5 3 6
P I L S I R A
B B B B
3R;1\R 3R;1\R

We need now an estimate inside the ball Brpr, (x,,), that is

/ |[An| gdvg =
Brr, (zn)

B /B "¢n’2(vn — Up) + (|¢n’2 - ’¢n’2)un + 2<¢na ¢n>(un - Un)’gdvg <

SIS
S

< Ol

[N

H

/O (120?15 (B)Uso — Un| + (1¥al? — 107,(8) Yoo ) |Un| + 2/%4l |7, (8) Yoo [Un — PJZ(B)UooI)g dvg,-

Br
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Hence for n large, we have that

6

/ | An| gdvg
BRrR, (Tn)

: /B (1% *[Uso = Un| + (19n]* = [Woo ) [Un] + 2/ W] [¥oo||Un = Uscl)* dug,.,

R

1
and since ¥,, — ¥o, in H? (XR?) and U,, = U in H}

loc

/ | A5 dvg — 0,
Brr,, (zn)

which finishes the proof for d, E. The same computations also hold for dE. O

(R3), we have that

Now we estimate the energy, that is:

Lemma 4.10. We have
E(tn,1,,) = E(un, n) — Egps(Uso, ¥oo) + 0(1).

Proof. We have B
E(ﬂm ¢n) =

) (/M(Un o U”)Lg(u” - U”) + <D9(wn - ¢n))wn - ¢n> - an - ¢n|2]un — Un|2dvg> =

= E(“m¢n) + E(’UTM ¢n) - dE(’UTM ¢n)(una ¢n) + BTM

where

1
B, = 3 </M ’u”|2‘¢n\2 + \vn\an‘? _ 2|“"\2<¢m bn) — 2|¢n|2unvn + 4unvn (Un, qﬁn)dvg) .

We first notice that since (uy,,) is bounded in H'(M) x H%(ZM), from Lemma 4.2, we
have that
dE vy, ) (Un, Ypn) — 0.

We are going to estimate the five terms of B,,, one by one.
[ uaP1ou = [ PR8I0 ¥c P,
M M
= [ 1) PO e Py,
R3
= [ Oy, — [ (Ul = I (U ) Wecf

For n large, we have
[ 00l = AU ) i iy, =

— [ QU = ) ey, + [ (Ul = 165,800 W Py,
BY, R3\BY,
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Now since U,, — Uy in H} (R3), we have that

loc
/ (Une? — [U]?)| Woc [P, 0,
BY

as n — co. Now

/ (Une? — |05 (B)U[?) [ Wor [Py, | <
R3\BY,

< Ol (10 ey + 0hlsos,_vs )-

From (4.7), [|Un||zs(zo ) is bounded, hence we can take R — oo uniformly in n to get that
3R,

n

[ unPlonfany = [ Wl + o).
M R3
The next term that we want to estimate is
/ [0 2l Py = / UnoP164(B) P10, Py,
M R3
— [P 1Py, [ U] (80P = [0 dos
R3 R3
Again by splitting the integral in B% and R3\ BY%, we get that
/ (o 2[5 vy = / Une|2 W Pl + o(1).
M R3
Next,
/ ot (s ) g = / P (B) | Un 20,0, W),
M R3
- / Une|2W o P, + / (B U 2T, — [Uno 2T, W),
R3 R3

Similarly, we have

L N0 = U0, B, =

— / (U 2T, — [Une W, W), + / (0 (B) U Wy — |Uno W, W)y,

BY, R3\BY,

1
Using the convergence of U,, and U,, in H! (R?) and H? (XR?) respectively, we have that

/0 ([Un? Wy = [Uso P W, Voo )dvg, — 0,

Br

as n — oo. For the term in R\ BY%, we have

<

L PO U P W)y,
R
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2 2
< el (1ol e 10 Bgasysy + 1o, lUlsn iy )

Thus
[ 1P dubie = [ 10 P10y, + o(0)

The remaining two terms can be handled in the same way. Therefore, so far we have
E(tn, ¥y,) = E(tun, ) + E(vyn, ¢n) — 2Es (Uso, Yoo ) + o(1).
Now we estimate E(vy, ¢y, ). First, we have
[ onPouavy = [ I U P P,
M R3

— / e 2o P, + / 192(8) [N Uso | W 2y
BY, R3\BY,

Lo o P iy, < C [ U Pl P
R3\BY, R3\BY,
Hence, if we let R — oo, we have
[ 1 Pl6aPdey = [ Uy, +o(2),
M R3
Now,
[ onLgundey = [ 56U Ly, (3(8) U)oy,
M R3
= [ VO L Ui, + [ (5~ 0,078) Vel

o / Unert's(B)9(V p(B), VUno)dug,
R3

Now
/RS |pjz(ﬂ)|2UooLgnUoodUgn =
= [ O, Uiy, + [ 1928 PUne(Ly, — Lo Uncd,.
Clearly,
/ 195(8) PUso Ly Unodl, = / VU 2dg, + of1),
R3 R3
and

<

[ OVl ~ Ly i,

< / Usel[(Lgy — Ly JUsldug, + C / Unel (L, — Ly )Usolduy,.
B% BSRA\B0

R
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The first term converges to zero as n — oo from (4.9). For the second term, we use the fact
that VUs € L?(R3) hence it converges to zero if we let R — oo uniformly on n. Also

/R3 p:(ﬁ)(_Agan(B))‘Uoo‘2d’l)gn

2 _
S CHUOOHLG(BQR;l\BO%Rgl) = 0(1)7

and

ool (B)9(Vpp(B), VUs)dug, | <

< OHVUooHL2 1\30 )”UOOHLG(B:(;R;I\B%R#) = o(1).
Hence
/ U Lgvpdug :/ |VUOO|2dUgR3 +0o(1),
M R3
and similarly

[ Dsbnbivy = [ (D B, B, + o(1).
M

Combining al these estimates, we have that

E(ﬁm@n) = E(unﬂ/}n) - E]R3(U007 \Ijoo) + 0(1)‘

Now we will prove the following energy lower bound for solutions in R3.
Proposition 4.11. Let (U, ¥) € D}(R3) x D%(ER:”) be a non trivial solution of

—Ag U = |V]PU
on R3,
D, . .U = \U|2\IJ

Ir3

Then
ERS(U \I/) Z (53) =.C3.

Proof. First we recall that
| [VU dvg,

(o)

VU Py, = [ VP Py,
3 R3

N N

< ([ Wdu ) ([ 1wy, )
R3 R3

v = ([ 1P )’
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On the other hand, if we denote by (u, 1)) the pull-back of (U, ¥) by the standard stereographic

projection, we have
4
3
(st
+ Q3
Ago(87) <

/ (Dgoth, ) dug,
g3

Again, we have
/ (Do, ¥)dvg, = / |ul?[9]*dvg,
S3 g3

and

3 3
R R
S3 S3

1 3

3 4

g( / |u|6dvgo) ( / \u|2w|2dvgo>
S3 S3
)\+ (83) < </ |ul dvg0>

Now, using the Sobolev inequality

3 6 % 2
Ygo<s>(/ v d) < [ IvuPa,,,
R3 R3

1
Pro(U.%) = 5 [ [UP19 P, = 37,(8)N5(5%) =

Hence,

hence

Proof. of Theorem (1.1) B
From the previous results, we can re-iterate the process m times, for (u,,,) since they
satisfy the same assumptions as (uy, ¥y, ), and we will have

m
E(tun, n) = E(tioo, Pso) + Y Bra (UL, UE ) + (1),
where (U~ , T* ) are solutions to equations (1.2) on R3. Now using the fact that
m
> Bgs (UL, UE) > mes,

we stop the process when ¢ —me3 < . Then from Corollary 4.5, we have the existence of m

sequences x), - -- 2™ such that ¥ — ¥ € M, and m sequences of real numbers R}, --- , R

converging to zero, such that

Up = Uso + VL + -+ 0™ +0(1) in HY(M),
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U = oo + GL + -+ & + o(1) in HZ(SM),

where )
vf = (RE) 2By 1 (UL),

o = (RE) ™' Brop 1 (Th),

with o, = (png) ' and py () = eTp,k (RE.). Also By are smooth compactly supported
functions, such that 8, = 1 on By(2*) and supp(By) C Ba(x*). Moreover, we have

p
E(un, n) = E(tioo, Poo) + Y Ers (Uk,, UE) + o(1).
k=1

5 Existence of a positive solution

In this section we will prove Theorem (1.3): for our convenience we will split the two state-
ments, and we will prove them separately. First we need the following characterization of the
first eigenvalue of the Dirac operator: let us fix v > 0 and let us consider the minimization
problem

Ay = inf {I(¢); for ¢ € H%(EM) s.t. 1(y) >0, P™ (Dgyp — I(¢)u’y) = 0}’
then we have

Proposition 5.1. For a given w > 0 and smooth, we have that Au > 0. Moreover, the
minimization problem is achieved and A\, is the first eigenvalue for the Dirac operator Dy, ,
where g, = u'g.

Proof. Let 1, be a minimizing sequence, that is I(1,) — Au. Without loss of generality, we
can assume that [, u?|t,|[*dvy = 1. Then we have

I(n) = 0517 = o 1%,

but
1% = T(6a) / (s Vg,
M

hence, using Holder’s inequality, we have

e 12 < T(n) ( /M u%m?dvg)z .

Since, the projector P~ : H %(EM ) — H 2 isa pseudo-differential operator of order zero,
we have that

[ 12 < CI(¥y),

thus, we have

[ |17 < CI(thn).
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Therefore, if I(1,) — 0, we would have that ¢, — 0in H 3 (XM), contradicting the fact that
[y W ¥n]*dvg = 1. Therefore A, > 0, and any minimizing sequence has [[¢, | > § > 0.
Now we will prove the existence of a minimizer. We notice that without the condition

/M<Dgw ()2, Q)dvy = 0, Ve HI,

we would be in a classical variational setting allowing us to find a minimizer: unfortunately
this is not the case, so we use here the idea in [32], later on inproved in [37]. First, we claim
that

S = {1 € H2(SM): P~(Dy — I()u) = 0},

is a manifold. Indeed, we consider the operator
G:H:(SM)— H>",  G) =P (Dg — I()up),

so that S = G~1(0); therefore, if DG is onto, then S will be indeed a manifold. We compute
then DG:
DG()h = P~Y(Dyh — I(¥)u?h).

If we restrict this operator to H %’_, we have that
(DG 1) = =IWE=1(0) [ i,

Thus, DG(7)) is definite negative and hence invertible thus onto and S is a manifold. Now,
using Ekeland’s variational principle, see [13], we can find a minimizing sequence for Ay that
is a (PS) sequence. We want to show that it is still a (PS) sequence in H%(EM) So let
¥y, be a (PS) sequence for I in S. We write DI(¢,) = £,. We have that L' (the tangential
component of &, on the tangent space of the manifold S) already converges to zero since 1,
is a (PS) sequence for I on S. We want to show that also the normal component converges
to zero.

As we did previously, the operator DG (1) : H%(EM) — H2~ is onto, hence it has a left

inverse K, : H 37— Him. Moreover, since we can always assume that [, u? |y |*dvg = 1,
we have that || K|, < C. The operator P, = A,, o DG(¢,) is now a projector on H2™

parallel to T}, S. Indeed, we have that if h € H3~ then P,h = h and Ty, S = ker DG (¢,,).
We consider then the adjoint of P,, denoted by P;: it is a projector of NyS (the orthogonal

space to the tangent space) parallel to H3+. Now we notice that (en, ) =0forall p € H%V_,

1
hence ¢,, € H2" so we have
en = Prel,

Thus &, — 0 and 1, is a (PS) sequence for I in H %(ZM ). This (PS) sequence then satisfies
H¢IH2<(%?”%¢$H¢nmvg+*ﬁ!¢iﬂ)<(7+%KH¢$!%

and a similar inequality holds for ¢, which gives us the boundedness in > (XM). The rest
of the proof is classical in order to show that v, — ¢ in H %(EM ) and v satisfies

Db = Auep.
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Finally, since ), is a minimizer then by a conformal change of the metric g, = u*g we have
that

Au = A1(Dg,).

Now we prove the following;:

Proposition 5.2. It holds:

Yy (MG (M) < Yy(M) < Y (S*)A], () = Yo (7).

Proof. We first notice that using the Sobolev inequality and Proposition (5.1), we have for
any non-trivial (u,) € H'(M) x Hz(SM):

N ;/ <Dg¢’¢>dvg
E(u, 1)) > Y,(M) ( /M“6d”~"> /My 2[2d
U Vg
M

> Y, (M)A1(gu)Vol(gu)3
> Y, (M)NF(M), (5.1)

which proves the first inequality of the claim. We also recall that we set g, = u*g. Now for
the second inequality, we consider a spinor ¥y € (XR3) such that [¥g| = % and we define

o) = (13 )ga—x)-%,

1+ |z|?

1
2 2
Up=|——1] .
° <1+le2>

Then an easy computation shows that (Up, V) is a critical point for Frs and

the standard spinor

and bubble

1
B(Uo, o) = 5 Van(S%)255(5°).

Now, we fix g € M and let A > 0 be a parameter that we will be tending to zero. We define
as in (4.10)) and (4.11), pa(x) = exps,(Ax), and we consider 5 a cut-off function supported
in By(xp) and equals 1 on Bi(zp). We can therefore define the functions

ux = "2 803 (Uo),
wz\ = Ailﬂg;(q]o)a
where o = py!. Similar computations as in Lemma (4.5) show that

dE(U)\,Q/)A) — 0, A—0.

Also we have
/ uxLguydvg = / |VU0|2dUgR3 +o(1),
M R3
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/ <Dg¢/\7w>\>dvg:/ <D9R3\I/07\I’0>d”gR3 +o(1),
M R3

[ tusProsPay = [ |00 1oPdsy,, + o)
M R3
Now, for these test functions we might have the possibility that

P~ (Dgthx — (o) lua*vn) # 0,

so we want to perturb ¢ so that the previous inequality is satisfied. Therefore we have to
show that there exists h € H2'~ so that

P (Dy(thx + h) = I(9x + h)|ua[*(r + h)) = 0.
This is equivalent to solving
Dyh — P~[I(¢x)|ur*h] + B(h) = Ay,
where
Ax = P~ (Dgthx — I(9oa) [ur*n),
and

P~ ([1( I(Wx + B)]ual*(ox + 1)) -
So we consider the operator T : H 3~ = H3~ defined by

T(h) = Dgh — I(¥x) P~ (Jual*h) + B(h).

Then
dT(0)¢ = Dy — I(a) P~ ([ual*0) — (dI(9r), 0) P (Jux[*4hs)-
The operator
¢ = Do — I(A) P~ (|ur[*p)

is negative definite on H %’7, hence it is invertible for all A > 0, and for A small enough we
have that

(dI(¥r), o) lurPn = 0,
hence dT'(0) is invertible for A small enough. Since Ay — 0 as A — 0, we have by the implicit

function theorem, the existence of hy € Hz~ such that T(hy) = Ay, moreover hy — 0 as
A — 0. Now we check that

/ (Dg(1hx + ), (¥ + ha)dvg = / (Dgys ¥o, Yo)dvg,, +o(1),
M R3

and
[ o+ iy = [ 00RIB0Pdug, +o(1),
Hence, we have
E(ux, o + ha) = Yy (S*)AL (S%) + o(1),

therefore we can conclude that

Va(M) < ¥y (S%).



Now we consider the original functional E(u, ) end the minimization problem giving YQ(M ).
We complete the proof of Theorem (1.3) by proving the following

Proposition 5.3. If ~ .
Yg(M) < Vg (S%),

then the problem (1.2) has a non-trivial solution with u > 0.

Proof. We introduce here a generalized Nehari manifold. We consider the functional £ and
we notice first that there exist ¢ > 0 and s > 0 small such that if |ju|| =t and ||¢/|| = s then
E(u,v) > ¢ > 0. Indeed, we have that

2B (u, ) = [[ull® + /M<Dgw,w>dvg - /M 2 4 2.

Now using the fact that [, (Dt — I(¥)u?, p)dv, = 0, by taking ¢ = ¢~ we have

[~ (17 < I() /M [ul* [l |9~ |dvg < CT()|ullZollll sl |z, (5.2)
hence
1o~ [1 < CI() |ullZs |9l s-
Therefore,
19117 = 1912 + 1~ 112 < 94112 + CI@) lull 76191175
Now

2F (u, ) > t* + 5% — CO1t*s* — Cot?s?
> 12457 — C(t° + s° +t* + 51
> 2 - C(t8 + 1) 4+ % — C(s® + s%).

Hence for t and s small enough, we have that E(u,) > ¢ > 0.
Moreover, if we fix u and ¢ such that [, [u|?|¢|*dvy = 1, we have that

E(ru, ) < r?|ul®* = 2|~ ||* = r* = —oco, when r — oc.

This tells us that E has the geometry of mountain pass, so we consider the following, min-max
problem

m = inf{ max E(tu,s¢); I(¢) > 0; P~ (Dgyp — I(?/))UQ@ZJ) = 0} .

£>0,5>0

So, if E satisfies (PS) at the level m and we disregard the orthogonality condition, then m is
a critical value. An easy computation shows that,

E p—
Joax (tu, sv)

E(u,v)

N |

Therefore 2m = Y,(M). Now we consider the Nehari manifold

N = { (u,9) € HY (M) x H%(EM);fM uLgudvg = [, (Dgth,¥)dvg = [} |ul[4[*dvg # 0; }
P~ (Dytb — I(@h)u2p) =0
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We first claim that IV is indeed a manifold. We consider the operator
G:H' (M) x H3(SM) >R xR x Hz™,

defined by
G, ) = [ /M uLgu — [uf? | Pdv,, /M<Dg¢ ~ Juf?, P)dug, P~ (Dytp — 1()[uf?0)] -

Clearly, we have that N = G~1(0) thus, if DG(u,) is onto for all (u,1)) € N then N is a
manifold. So we fix (ug, o) € N and we will show invertibility of DG(ug, 1) restricted to
some special subspace. Indeed, we will use the following parametrization

(tug, svo + h) = [t, s, h], he Hi,

and we will express DG(ug, ¢) in the basis of R x R x H3~. Since Jur [uo|? |10 2dvg # 0, we
will assume for the sake of simplicity that [, |ug|?|¢o|*dvy = 1. We have then

DG(U(), wg)[l, 0, 0] = [0, —2,2P~ (Dgwo)],

DG(UOa 1#0)[07 170] = [_2’0’0]7

and
DG (uo,10)[0,0,h] = [2(Dgtbo, h), 0, Dgh — |ug|*h].

Now we notice that the operator K : h — Dgjh — |ug|2h is negative definite on Ha, Indeed,
(Kh, by = —||B]J? - / o *h2du,.
M

Therefore, K is invertible. Now, given [a,b,c] € R x R x H%’_, we want to find [z1, 2, w] so
that DG(ug, o, w) = [a, b, c]. First, we have

x S _9
1 — 27
and

201 P~ (Dgtpo) + Kw = c.

Hence,
w =K' (c+bP™(Dyip)).

Finally, we have that
—2x9 4+ 2(Dgtho, w) = a,

thus a
r3 = — % + (Dytio, K~ (c+ bP™ (Dyiy).

This proves that DG(ug, o) is onto and hence N is a manifold. Moreover, DG (ug, o) has
a left inverse A(ug, o) : R x R X H>™ — Rug @ Repo @ H2~ and

[ A(u0, o) llop < C(l[uoll, [I400l)-
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Using Ekeland’s principle now, we have the existence of a minimizing (PS) sequence for
E restricted to N: we want to show that this is indeed a (PS) sequence for E also in

HY(M)x H 3 (XM). Let us call such a sequence (uy,1,) € N. Then similarly as in the proof
of Proposition (5.1), we set DE(uy,,v,) = &,. We clearly have that . — 0, since it is the
tangential part of the (PS) sequence and it is a (PS) sequence in N. Notice now that

P, = A(“nv ¢n) o DG(UTL’ wn)
is a projector on Rug @ Ry & H 3 parallel to T{,, ) N. Now since
1
B(untn) = 5 [ Junllin Py = m,
M

we have that |u,||? < C. Also, we have

e |? = /M|un|2<wn,¢n>dvg.

Thus
Il < [ unl?lall07
M
1 1
21 12 2 2 =12 2
< ([ nonany) ([ ol P,
M M
< Chllunllzellvon [l 3-
Therefore

logll < C,
but we have that
It — | = /M et |2y,

hence
|1 < C.

Therefore, we have that A(uy,y) is uniformly bounded and so is P,,. We consider now the
operator P, the adjoint of P,. Then P} is also a projector on (Rug @ Ry & H %’_)L parallel
to Ny, 1,) IV, the normal space of NV at the point (uy, ). We also notice that

En € (Ruo @ Ry & H‘%’*)J‘7

hence, ¢, = P’el and so (tn, 1) is indeed a (PS) sequence for E. Therefore, this (PS)

sequence is at the energy level Y, (M): from Theorem (1.1), if Y, (M) < Y, (S?), then this
(PS) sequence converges and thus we have a solution to our problem. O
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6 [Existence of infinitely many solutions in symmetric mani-
folds

Here we will consider a three-dimensional closed manifold (M, g) with an isometric group
action G acting on M, such that the orbits of G have infinite cardinality. As an example, we
can consider the standard sphere $3 C R* with the action introduced by Ding [11], that is
G = O(2) x O(2). Such symmetries where exploited an improved in other settings such as in
[27, 30, 31]. We will show the following

Theorem 6.1. Given a manifold M as described above, then (1.2) has two infinite families
of solutions.

Proof. First of all we notice that the functional E satisfies the (PS) condition on the space
1 1

Hg = HL(M) x HZ(XM), where H5(M) and H2(XM) are respectively the subspaces of

HY(M) and H %(ZM ) which are invariant under the action of G. In order to prove this

claim, let us consider z,, € Hg a (PS) sequence for E, then according to the characterization
in Theorem (1.1) above we have that

E(zn) = E(z00) + Y _ & + (1),
k=1

where ¢, = Egs(ZE) > Y (S%), and ZE are solutions of equation (4.6) in R?. The main point
is that the number of these solutions is finite and that the energy is finite. In particular if {z,}
is a (PS) sequence that concentrates on 2!, - -+ | 2™ then z,(h-) concentrates at h-z!,--- , h-2™
for every h € G. Now, since z, € Hg, then z,(h-) = z, hence z, concentrates at all the
orbits of x!,---, 2™ under the action of G; but the orbits are infinite: therefore the set of
concentration needs to be empty and hence the (PS) condition holds.

Now we consider the functional F : Hgz — R defined by

1
E(u,v) = 3 </M ulLgudvg + /M<Dgzp,1/1>dvg — /M |u2|¢]2dvg> .
We will study the restriction of this functional to the Nehari manifold Ng defined by

N = { (u,) € H: [y uLgudo = [y, |uf2lpl2dvy = [, (Dyth, ¢)dvy # 0; }
P~ (Dgvy — 1()]ul) = 0 |

As in the previous section, N¢ is a manifold, moreover critical points of Ejy, are critical
points of F, as we saw above, and moreover any (PS) sequence of |y, is a (PS) sequence of
E. Therefore, Ey,, satisfies the (PS) condition. So now we want to use the classical min-max
theorem on the manifold Ny, so we define a collection A of sets A C Ng such that —A = A
and
cp = inf max F(u
£ bt ogza P V)

where v(A) denotes the genus of A. Now, if we can show that Ng contains sets of arbitrarily
high genus, we can show that we have infinitely many solutions. To this aim, we will prove
that there exists a continuous Zs-equivariant map

T:{-1,1} x ST — Ng,
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where ST is the unit sphere of H 3t First, we recall that tlhe generalized Nehari manifold
originates from considering the functional R : RT™ x R™ x H2'~ — R, defined by

R(t’ 5, ()0) = E(tu’ 8(1/} + 30))

Therefore, the nonzero critical points of R are in Ng. Indeed, if such a critical point exists,

then it satisfies
/ uLguduvg
M

/M 24 + p[2dv,

(

s? =

) /M<Dg(¢ + ), ¥ + ¢)duy,
2= :
/ 24 + pf2dv,
M

P=(Dg(v + @) — I(th + @) |ul* (v + ¢)) = 0.

Now, the main issue in solving this system resides in the last equation, which is equivalent
to solving

T(p) + B(p) = Alp),

where

T(p) = P~ (Dgp — I(¥)|ul?p),

Blp) = P~ (I(¢) = I + @) |ul*(¥ + ¢)),

and

A(p) = P~ (Dgth — I()|u*p).
Again, as in the previous section, the operator 7' is invertible, so the term that we need to
consider here is B(yp). Now, we notice that for some particular choice of u and ¢ we can
always find a solution to this system. Indeed, if u is constant and ¢ € H %’Jr, then we can
take ¢ = 0, so that we have a unique critical point of R denoted by (t(uﬁw), S(u)s 0) such that
(t(u,)Us S(u)(¥)) € Ng. Therefore, we will consider the map T defined by

T(1,9) = (ta,w), 5a,0)%),

where )
t =
ST
and )
/ Rgdvg
o 8w 7
S T P

Clearly T(—(d,%)) = —7(d,%) where § = +1 and the map T is continuous. Now, since T
is an equivariant map, and since S has infinite genus, that is v(S*) = 400, we have also
that Ng has infinite genus; moreover if A C ST is symmetric and such that v(A) = k, then
T(A) C Ng satisfies v(T(A)) > k. Also since E is bounded from below on N¢, we have by
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classical min-max argument, see [33], that E\|n, has infinitely many critical points, hence £
has infinitely many critical points.

Finally, in order to find another infinite family of solutions, we argue in a similar way, by
noticing that the set Ng is invariant under the action of S on the spinorial part, defined by

0 - (ua ,QD) = (u7 €i27r91/))-

Clearly, F)y,, is also invariant under the this action of S L. Therefore we can define the family
of sets K by saying that a set A belongs to X if and only if €>™A = A. We define also the
min-max levels

Cp, = inf E

C Aeﬂ(;il;ll (A)>k (lepz)%éA (u, 9),
where ig1 is the Faddell-Rabinowitz cohomological index [14]. Then, we use a restriction of
the previous map T, that we denote here by G : ST — Ng, defined by

5(¢) = T(1,¢)
We see that G is S'-equivariant, hence ig1(Ng) = +o00 and hence, E|n, has infinitely many
critical points. O
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