
Characterization of the Palais-Smale sequences for the

conformal Dirac-Einstein problem and applications

Ali Maalaoui(1) & Vittorio Martino(2)

Abstract In this paper we study the Palais-Smale sequences of the conformal Dirac-Einstein problem.

After we characterize the bubbling phenomena, we prove an Aubin type result leading to the existence

of a positive solution. Then we show the existence of infinitely many solutions to the problem provided

that the underlying manifold exhibits certain symmetries.

Keywords: Dirac-Einstein equation, bubbling phenomena, critical exponent.

2010 MSC. Primary: 58J05, 58E15. Secondary: 53A30, 58Z05.

Contents

1 Introduction and statement of the results 1

2 Conformally invariant operators, spaces of variations and splitting 4

3 Regularity 6

4 Classification of the (PS) sequences 8

5 Existence of a positive solution 29

6 Existence of infinitely many solutions in symmetric manifolds 36

1 Introduction and statement of the results

We start by recalling the super-symmetric model consisting of coupling gravity with fermionic
interaction. We fix a three dimensional closed (compact, without boundary) manifold M ,
then we define the energy functional E of this model by

E(g, ψ) =

∫
M
Rgdvg +

∫
M
⟨Dgψ,ψ⟩ − ⟨ψ,ψ⟩dvg,
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2Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5, 40127 Bologna, Italy.
E-mail address: vittorio.martino3@unibo.it

1



where g is a Riemannian metric on M , ψ is a spinor in the spin bundle ΣM on M , Rg is the
scalar curvature, Dg is the Dirac operator and ⟨·, ·⟩ is the compatible Hermitian metric on
ΣM ; we will give the precise definitions in the next section. The functional E generalizes the
classical Hilbert-Einstein functional and it is invariant under the group of diffeomorphisms
of M as well; we address the reader to [7, 15, 22], where it was introduced and studied.
As in the classical case of the Hilbert-Einstein functional, since the group of diffeomorphisms
is usually big, in first instance we restrict the functional to a fixed conformal class, namely
given a Riemannian metric g, we set

[g] =
{
u4g; u ∈ C2,α(M)

}
.

In this way, the energy functional reads as

E(u, ψ) =
1

2

(∫
M
uLgu+ ⟨Dgψ,ψ⟩ − |u|2|ψ|2dvg

)
, (1.1)

where Lg is the conformal Laplacian of the metric g.
This energy functional can also be seen as the three dimensional version of the super-Liouville
equation investigated in [20, 21], which is fundamental in the study of string fermions, see
[17].
By the first variation of the functional E, we see that its critical points satisfy the coupled
system 

Lgu = |ψ|2u
on M.

Dgψ = |u|2ψ
(1.2)

Since the functional is conformally invariant, one expects compactness to be violated for this
problem; moreover, due to the presence of the Dirac operator, it is strongly indefinite. For
the later part, the authors studied an effective method, based on a homological approach
[26, 28, 29], for general functionals with this feature of being strongly indefinite; here we will
focus on the first issue, that is the lack of compactness.

We recall that a C1 function F satisfies the Palais-Smale condition (PS) if: for any sequence
xk such that F (xk) → c and ∇F (xk) → 0 (such a sequence is then called a (PS) sequence),
there exists a converging subsequence.
The (PS) condition is fundamental in the study of problems with variational structure as
min-max theorems or Morse type methods, which rely heavily on this condition since it guar-
anties the convergence of the deformation flow. In several geometric problems though, such
condition is violated, mainly because of the conformal invariance. We recall the widely inves-
tigated cases of prescribing curvatures as the Yamabe problem or the Q-curvature problem
(see for instance [23, 3, 9, 5, 6] and the references therein). In the previously stated prob-
lems, the lack of compactness is well understood and there is a specific characterization for
the (PS) sequences. The pioneering works in the study of the behaviour of the (PS) sequences
are [35] (see also [34], [38]) and [24, 25, 10, 4]; for an exhaustive explanation of these kind of
phenomena we refer the reader also to the books [36, 12].

The first result in this paper concerns the study and the characterization of the (PS) sequences
of the functional E, in particular we will show the following:
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Theorem 1.1. Let us assume that M has a positive Yamabe constant Yg(M) and let (un, ψn)
be a Palais-Smale sequence for E at level c. Then there exist u∞ ∈ C2,α(M), ψ∞ ∈ C1,β(ΣM)
such that (u∞, ψ∞) is a solution of (1.2), m sequences of points x1n, · · · , xmn ∈ M such that
limn→∞ xkn = xk ∈ M , for k = 1, . . . ,m and m sequences of real numbers R1

n, · · · , Rmn
converging to zero, such that:

i) un = u∞ +
m∑
k=1

vkn + o(1) in H1(M),

ii) ψn = ψ∞ +

m∑
k=1

ϕkn + o(1) in H
1
2 (ΣM),

iii) E(un, ψn) = E(u∞, ψ∞) +

m∑
k=1

ER3(Uk∞,Ψ
k
∞) + o(1),

where
vkn = (Rkn)

− 1
2βkσ

∗
n,k(U

k
∞),

ϕkn = (Rkn)
−1βkσ

∗
n,k(Ψ

k
∞),

with σn,k = (ρn,k)
−1 and ρn,k(·) = expxkn(R

k
n·) is the exponential map defined in a suitable

neighborhood of R3. Also, here βk is a smooth compactly supported function, such that βk = 1
on B1(x

k) and supp(βk) ⊂ B2(x
k) and (Uk∞,Ψ

k
∞) are solutions to our equations (1.2) on R3

with its Euclidian metric gR3.

Remark 1.2. The assumption on M of having a positive Yamabe constant implies in par-
ticular that there are no harmonic spinors, namely the Dirac operator Dg has no kernel: this
will be used in the proof. In fact, by conformal invariance of the Dirac operator, the vanishing
of the kernel is preserved by conformal change. So if the Yamabe constant is positive, then
the conformal class of the metric contains a metric with positive scalar curvature, hence using
the Schrödinger-Lichnerowicz formula for this last metric and denoting by ∆Σ the connection
Laplacian, we have that

D2
g = −∆Σ +

Rg
4
,

which implies the vanishing of the kernel of Dg.

Here H1(M) and H
1
2 (ΣM) are suitable Sobolev spaces on which the functional E is well

defined (see next section).

Now, for non-trivial (u, ψ) ∈ H1(M)×H
1
2 (ΣM), we define the functionals

Ẽ(u, ψ) =

(∫
M
uLgudvg

)(∫
M
⟨Dgψ,ψ⟩dvg

)
∫
M

|u|2|ψ|2dvg
, I(ψ) =

∫
M
⟨Dgψ,ψ⟩dvg∫

M
|u|2|ψ|2dvg

.

Also, we let P− be the projector on H
1
2
,− (the negative space of H

1
2 (ΣM) according to the

splitting given by the eigenspinors of the Dirac operator), so that for a given ψ ∈ H
1
2 (ΣM)

P−(ψ) = 0 ⇐⇒
∫
M
⟨ψ,φ⟩dvg, ∀φ ∈ H

1
2
,−.
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As for the Yamabe problem, we define a conformal constant

Ỹg(M) = inf

{
Ẽ(u, ψ); for (u, ψ) ∈ H1(M) \ {0} ×H

1
2 (ΣM) \ {0} s.t. I(ψ) > 0,

P− (Dgψ − I(ψ)u2ψ
)
= 0

}
.

Indeed, we first recognize that the constant Ỹg(M) only depends on the conformal class of
the metric g, then we have an Aubin type result by comparing Ỹg(M) with the invariants on
the sphere S3 with its standard metric g0. In particular we will show the following

Theorem 1.3. It holds:

Yg(M)λ+g (M) ≤ Ỹg(M) ≤ Yg0(S
3)λ+g0(S

3) = Ỹg0(S
3).

Moreover, if
Ỹg(M) < Ỹg0(S

3),

then problem (1.2) has a non-trivial ground state solution.

Here we have denoted by

λ+g (M) := inf
g̃∈[g]

λ1(g̃)V olg̃(M)
1
3

the invariant as defined in [18] and λ1(g) being the smallest positive eigenvalue of Dg on M .
We recall that λ+g (M) can be characterized as follows (see [1, 2]):

λ+g (M) = inf
ψ∈imC∞Dg\{0}

(∫
M

|ψ|
3
2dvg

) 4
3

∣∣∣∣∫
M
⟨ψ,D−1

g ψ⟩dvg
∣∣∣∣

= inf
φ∈W 1, 32 (ΣM)\{0}

(∫
M

|Dgφ|
3
2dvg

) 4
3

∣∣∣∣∫
M
⟨φ,Dgφ⟩dvg

∣∣∣∣ ,
where imC∞Dg is the image of the operator Dg : C

∞(ΣM) → C∞(ΣM).

Finally, in the last section we will consider a three-dimensional closed manifold M with an
isometric group action G acting on M , such that the orbits of G have infinite cardinality and
we will show that equations (1.2) admit two infinite families of solutions on such a manifold.

2 Conformally invariant operators, spaces of variations and
splitting

In this section we will briefly recall some notations and properties of conformally invariant
operators involved and we will give the definition of the Sobolev spaces that we are going to
use.
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Let (M, g) be a closed (compact, without boundary) three dimensional Riemannian manifold,
we define the conformal Laplacian acting on functions by

Lgu := −∆gu+
1

8
Rgu,

where ∆g is the standard Laplace-Beltrami operator and Rg is the scalar curvature. The
conformal invariance of Lg reads as follows: if g̃ = gu = u4g is a metric in the conformal class
of g, then we have

Lg̃f = u−5Lg(uf).

We will denote by H1(M) the usual Sobolev space on M , and we recall that by the Sobolev
embedding theorems there is a continuous embedding

H1(M) ↪→ Lp(M), 1 ≤ p ≤ 6,

which is compact if 1 ≤ p < 6.
Now let ΣM the canonical spinor bundle associated to M see [16], whose sections are simply
called spinors on M . This bundle is endowed with a natural Clifford multiplication Cliff, a
hermitian metric and a natural metric connection ∇Σ. The Dirac operator Dg acts on spinors

Dg : C
∞(ΣM) −→ C∞(ΣM)

defined as the composition Cliff ◦ ∇Σ in the following way

∇Σ : C∞(ΣM) −→ C∞(T ∗M ⊗ ΣM),

Cliff : C∞(TM ⊗ ΣM) −→ C∞(ΣM),

where T ∗M ≃ TM have been identified by means of the metric. We also have a conformal
invariance that in our situation, g̃ = u4g, reads as follows

Dg̃ψ = u−4Dg(u
2ψ).

The functional space that we are going to define is the Sobolev spaceH
1
2 (ΣM). First we recall

that the Dirac operator Dg on a compact manifold is essentially self-adjoint in L2(ΣM), has
compact resolvent and there exists a complete L2-orthonormal basis of eigenspinors {ψi}i∈Z
of the operator

Dgψi = λiψi,

and the eigenvalues {λi}i∈Z are unbounded, that is |λi| → ∞, as |i| → ∞. Now if ψ ∈
L2(ΣM), it has a representation in this basis, namely:

ψ =
∑
i∈Z

aiψi.

Let us define the unbounded operator |Dg|s : L2(ΣM) → L2(ΣM) by

|Dg|s(ψ) =
∑
i∈Z

ai|λi|sψi.
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We denote by Hs(ΣM) the domain of |Dg|s, namely ψ ∈ Hs(ΣM) if and only if∑
i∈Z

a2i |λi|2s < +∞.

Hs(ΣM) coincides with the usual Sobolev spaceW s,2(ΣM) and for s < 0, Hs(ΣM) is defined
as the dual of H−s(ΣM). For s > 0, we can define the inner product

⟨u, v⟩s = ⟨|Dg|su, |Dg|sv⟩L2 ,

which induces an equivalent norm in Hs(ΣM); we will take

⟨u, u⟩ := ⟨u, u⟩ 1
2
= ∥u∥2

as our standard norm for the space H
1
2 (ΣM). Even in this case, the Sobolev embedding

theorems say that there is a continuous embedding

Hs(ΣM) ↪→ Lp(ΣM), 1 ≤ p ≤ 3,

which is compact if 1 ≤ p < 3. Finally, we will decompose H
1
2 (ΣM) in a natural way. Let us

consider the L2-orthonormal basis of eigenspinors {ψi}i∈Z: we denote by ψ−
i the eigenspinors

with negative eigenvalue, ψ+
i the eigenspinors with positive eigenvalue and ψ0

i the eigenspinors
with zero eigenvalue; we also recall that the kernel of Dg is finite dimensional. Now we set:

H
1
2
,− := span{ψ−

i }i∈Z, H
1
2
,0 := span{ψ0

i }i∈Z, H
1
2
,+ := span{ψ+

i }i∈Z,

where the closure is taken with respect to the H
1
2 -topology. Therefore we have the orthogonal

decomposition H
1
2 (ΣM) as:

H
1
2 (ΣM) = H

1
2
,− ⊕H

1
2
,0 ⊕H

1
2
,+.

Also, we let P+ and P− be the projectors on H
1
2
,+ and H

1
2
,− respectively.

Finally, sometimes we will denote by H the product space H = H1(M)×H
1
2 (ΣM).

3 Regularity

Here we will prove the regularity of weak solutions of the system of equations (1.2). Due to
the critical nonlinearity, the bootstrap argument does not work, and we explicitly note the
two equations in (1.2) are strongly coupled, therefore we cannot apply the existing results
for the conformal Yamabe equation and the conformal Dirac one separately; anyway we will
proceed as in [19] and we will be able to prove the following

Theorem 3.1. Let (u, ψ) ∈ H1(M)×H
1
2 (ΣM) be a weak solution of the system of equations

(1.2), then (u, ψ) ∈ C2,α(M)× C1,β(ΣM), for some 0 < α, β < 1.

Proof. First of all, by the Sobolev embedding there is a continuous injection

H1(M) ↪→ Lp(M), 1 ≤ p ≤ 6,
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H
1
2 (ΣM) ↪→ Lp(ΣM), 1 ≤ p ≤ 3.

Now let ρ, η ∈ C∞(M), with η = 1 on supp(ρ) and let us denote B = supp(η). We compute

Lg(ρu) = −∆g(ρu) +
1

8
Rgρu

= −ρ∆gu− u∆gρ− 2g(∇ρ,∇u) + 1

8
Rgρu

= ρLg(u)− u∆gρ− 2g(∇ρ,∇u)
= η|ψ|2ρu− u∆gρ− 2g(∇ρ,∇u),

and
Dg(ρψ) = ρDgψ +∇ρ · ψ = ηu2ρψ +∇ρ · ψ,

where we have denoted by · the Clifford multiplication for brevity. Now, since

u ∈ H1(M), ψ ∈ L3(ΣM),

we have that also

u∆gρ+ 2g(∇ρ,∇u) ∈ L2(M), ∇ρ · ψ ∈ L3(ΣM).

We define the two maps:

P1 :W
2,q(M) −→ Lq(M), P1(v) = η|ψ|2v,

P2 :W
1,p(ΣM) −→ Lp(ΣM), P2(ϕ) = ηu2ϕ.

By Hölder’s inequality, the previous maps are well defined if 1 < q < 3
2 and 1 < p < 3,

moreover there are constants depending on q and p, such that the operator norms are bounded
as follows:

∥P1∥op ≤ Cq∥ψ∥2L3(ΣB), ∥P2∥op ≤ Cp∥u∥2L6(B).

In this way the operators

Lg − η|ψ|2 :W 2,q(M) −→ Lq(M), 1 < q <
3

2
,

Dg − ηu2 :W 1,p(ΣM) −→ Lp(ΣM), 1 < p < 3,

are invertible if ∥ψ∥L3(ΣB) and ∥u∥L6(B) are small, which is possible by taking B even smaller.
Therefore there are unique solutions v ∈W 2,q(M) and ϕ ∈W 1,p(ΣM) to the equations

Lgv − η|ψ|2v = −u∆gρ− 2g(∇ρ,∇u),
Dgϕ− ηu2ϕ = ∇ρ · ψ,

if 1 < q < 3
2 and 1 < p < 3.

Now we will consider the two dual maps, defined as follows:

P̃1 : L
6(M) −→W−1,6(M), P̃1(ṽ) = η|ψ|2ṽ,

P̃2 : L
3(ΣM) −→W−1,3(ΣM), P̃2(ϕ̃) = ηu2ϕ̃.
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Again, by Hölder’s inequality and Sobolev embedding, the previous maps are well defined
and there exist constants, such that the operator norms are bounded as follows:

∥P̃1∥op ≤ Cq∥ψ∥2L3(ΣB), ∥P2∥op ≤ Cp∥u∥2L6(B).

Even in this case, the operators

Lg − η|ψ|2 : L6(M) −→W−1,6(M),

Dg − ηu2 : L3(ΣM) −→W−1,3(ΣM),

are invertible if ∥ψ∥L3(ΣB) and ∥u∥L6(B) are small; therefore there are unique solutions ṽ ∈
L6(M) and ϕ̃ ∈ L3(ΣM) to the equations

Lgṽ − η|ψ|2ṽ = −u∆gρ− 2g(∇ρ,∇u),
Dgϕ̃− ηu2ϕ̃ = ∇ρ · ψ.

Moreover, since

W 2,q(M) ↪→ L6(M),
6

5
≤ q <

3

2
,

W 1,p(ΣM) ↪→ Lp(ΣM),
3

2
≤ p < 3,

then by the uniqueness ṽ = v = ρu and ϕ̃ = ϕ = ρψ, under the above conditions on q and
p. Now, since ρ and η are smooth functions with arbitrary small supports, we have that
u ∈ W 2,q(M) and ψ ∈ W 1,p(ΣM), provided 6

5 ≤ q < 3
2 and 3

2 ≤ p < 3. Therefore, by
the Sobolev embedding, we get that u ∈ Lq(M) and ψ ∈ Lp(ΣM), for any 1 < q, p < ∞;
and then by plugging them in the initial equations, we have that u ∈ W 2,q(M) and ψ ∈
W 1,p(ΣM), for any 1 < q, p < ∞, by the elliptic regularity estimates. Once more, by the
Sobolev embedding for the Hölder spaces, we have that there exist 0 < α, β < 1 such that
u ∈ C0,α(M) and ψ ∈ C0,β(ΣM); finally by the elliptic regularity again, we get u ∈ C2,α(M)
and ψ ∈ C1,β(ΣM).

4 Classification of the (PS) sequences

Here we will prove Theorem (1.1). We will need many preliminary propositions and lemmata.

Proposition 4.1. If kerDg = {0}, then every (PS) sequence for E is bounded.

Proof. Let (un, ψn)n∈N ∈ H1(M)×H
1
2 (ΣM) be a (PS) sequence for E, that is

E(un, ψn) → c, dE(un, ψn) → 0, in H−1(M)×H− 1
2 (ΣM).

Therefore, there exists a sequence (εn, δn) ∈ H−1(M)×H− 1
2 (ΣM) such that

Lgun = |ψn|2un + εn, (4.1)

Dgψn = |un|2ψn + δn, (4.2)
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with
εn → 0, in H−1(M) and δn → 0, in H− 1

2 (M).

We let zn = (un, ψn) ∈ H, then

2E(zn)− ⟨dE(zn), zn⟩ =
∫
M

|un|2|ψn|2dvg.

Hence ∫
M

|un|2|ψn|2dvg = 2c+ o(∥zn∥). (4.3)

Multiplying (4.1) by un and integrating we have

∥un∥2 =
∫
M

|un|2|ψn|2dvg + o(∥un∥),

hence
∥un∥2 = 2c+ o(∥zn∥). (4.4)

Now multiplying (4.2) by ψ+
n = P+(ψn), we find

∥ψ+
n ∥2 ≤ C

∫
M

|un|2|ψn||ψ+
n |dvg + o(∥ψ+

n ∥)

≤ C

(∫
M

|un|2|ψn|2dvg
) 1

2
(∫

M
|un|2|ψ+

n |2dvg
) 1

2

+ o(∥ψ+
n ∥)

≤ C
(
2c+ o(∥zn∥)

) 1
2 ∥un∥L6∥ψ+

n ∥L3 + o(∥ψn∥)
≤ C

(
2c+ o(∥zn∥)

)
∥ψn∥+ o(∥ψn∥).

Similarly, we have for ψ−
n = P−(ψn) that

∥ψ−
n ∥2 ≤ C

(
2c+ o(∥zn∥)

)
∥ψn∥+ o(∥ψn∥).

Hence,
∥ψn∥ ≤ C

(
2c+ o(∥zn∥)

)
+ o(1),

so that
∥zn∥ ≤ C + o(∥zn∥)

and ∥zn∥ is bounded.

From the previous proposition, we have that up to a subsequence, zn ⇀ z∞ = (u∞, ψ∞) in
H, also un → u∞ in Lp for p < 6 and ψn → ψ in Lq for q < 3. We claim that z∞ is a week
solution to (1.2). Indeed, let z0 = (u0, ψ0) ∈ H, since (zn) is a (PS) sequence for E, we have∫

M
u0Lgundvg =

∫
M

|ψn|2unu0dvg + o(1),

but |ψn|2 ∈ L
3
2 and un ∈ L6, thus un|ψn|2 converges weakly to u∞|ψ∞|2 in L

6
5 , hence∫

M
|ψn|2unu0dvg →

∫
M

|ψ∞|2u∞u0dvg.
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Also, by the weak convergence we have that∫
M
u0Lgundvg →

∫
M
u0Lgu∞dvg.

Therefore,
Lgu∞ = |ψ∞|2u∞,

and similarly it holds
Dgψ∞ = |u∞|2ψ∞.

We let now vn = un − u∞ and ϕn = ψn − ψ∞, then we have the following

Lemma 4.2. Let hn = (vn, ϕn), then

E(hn) = E(zn)− E(z∞) + o(1)

and
dE(hn) → 0, in H−1(M)×H− 1

2 (ΣM).

Proof.

2E(zn) =

∫
M
(vn + u∞)Lg(vn + u∞)dvg +

∫
M
⟨Dg(ϕn + ψ∞), ϕn + ψ∞⟩dvg

−
∫
M

|vn + u∞|2|ϕn + ψ∞|2dvg

= 2E(hn) + 2E(z∞) + ⟨dE(z∞), hn⟩ −
∫
M

|vn|2|ψ∞|2 + 2|vn|2⟨ϕn, ψ∞⟩

+ |v∞|2|ϕn|2 + 2|ϕn|2vnu∞ + 2|ψ∞|2u∞vn − 4vnu∞⟨ψ∞, ϕn⟩dvg.

Now, we first notice that since dE(z∞) = 0, we focus on the remaining terms. By the
regularity result in Theorem (3.1), we have that u∞ ∈ C2,α(M) and ψ∞ ∈ C1,β(ΣM). Since
vn → 0 strongly in L2(M) and ϕn → 0 in L2(ΣM) we have that

−
∫
M

|vn|2|ψ∞|2 + 2|vn|2⟨ϕn, ψ∞⟩+ |v∞|2|ϕn|2 + 2|ψ∞|2u∞vn − 4vnu∞⟨ψ∞, ϕn⟩dvg → 0.

The last term is
∫
M 2|ϕn|2vnu∞dvg, but we have that ϕn → 0 in L

5
2 (ΣM) and vn → 0 in

L5(M) therefore we conclude that

E(zn) = E(hn) + E(z∞) + o(1),

and this finishes the energy estimate. Now for the gradient part dE, we denote by duE and
dψE the scalar and the spinorial components respectively. We have:

duE(hn) = duE(un, ψn) + duE(u∞, ψ∞) + |ψn|2u∞ − |ψ∞|2un + 2⟨ψn, ψ∞⟩vn.

But again, duE(u∞, ψ∞) = 0 and since ψn → ψ∞ in L
12
5 (ΣM) and un → u∞ in L

6
5 (M) we

have that
|ψn|2u∞ − |ψ∞|2un → 0
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in L
6
5 (M) hence in H−1(M). We also have that vn → 0 in L

12
5 (M) and ψn → ψ∞ in

L
12
5 (ΣM), thus ⟨ψn, ψ∞⟩vn → 0 in L

6
5 (M), thus in H−1(M). Therefore,

duE(hn) = o(1), in H−1(M).

We move now to the spinorial part, that is

dψE(hn) = dψE(un, ψn)− dψE(u∞, ψ∞) + |un|2ψ∞ − |u∞|2ψn + 2unu∞ϕn.

Again dψE(u∞, ψ∞) = 0 and un → u∞ in L
6
2 (M) and ψn → ψ∞ in L

3
2 (ΣM). Moreover we

have that ϕn → 0 in L
5
2 (ΣM) and un → u∞ in L

15
4 (M). It follows that

dψE(hn) = o(1), in H− 1
2 (ΣM).

So from now on, we will assume that our (PS) sequence zn = (un, ψn), converges weakly to

zero in H1(M)×H
1
2 (ΣM) and strongly in Lp(M)× Lq(ΣM), for p < 6 and q < 3.

We assume that zn does not converge to zero in H1(M)×H
1
2 (ΣM) since otherwise the (PS)

condition would be satisfied. Now, let us denote by Br(x) the geodesic ball with center in
x ∈M and radius r, we define the following sets, for a given ϵ0 > 0:

Σ1 =

{
x ∈M ; lim inf

r→0
lim inf
n→∞

∫
Br(x)

|un|6dvg ≥ ϵ0

}
,

Σ2 =

{
x ∈M ; lim inf

r→0
lim inf
n→∞

∫
Br(x)

|ψn|3dvg ≥ ϵ0

}
,

Σ3 =

{
x ∈M ; lim inf

r→0
lim inf
n→∞

∫
Br(x)

|un|2|ψn|2dvg ≥ ϵ0

}
.

We have:

Lemma 4.3. There exists ϵ0 > 0 depending on M , such that if x0 ̸∈ Σ1∩Σ2∩Σ3, then there
exists r > 0 such that zn → 0 in H1(Br(x0))×H

1
2 (ΣBr(x0)).

Proof. We will prove this result by contradiction, by assuming that for every ϵ > 0, there
exists x0 ̸∈ Σ1 ∩ Σ2 ∩ Σ3, such that for every r > 0, zn ̸→ 0 in H1(Br(x0))×H

1
2 (ΣBr(x0)).

Case I : x0 ̸∈ Σ1.
Given ϵ > 0, there exists r > 0 such that

∫
B4r(x0)

|un|6dvg < ϵ. We first estimate the ψ

component. That is, we consider a smooth cut off function η supported on B4r(x0) and
equals to 1 on B2r(x0), then by (4.2) we have:

Dg(ηψn) = ηDgψn +∇η · ψn
= η|un|2ψn +∇η · ψn + ηδn,
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where ∥δn∥
H− 1

2
→ 0. Hence

∥ηψn∥
H

1
2
≤ C1∥η|un|2ψn +∇η · ψn + ηδn∥

H− 1
2

≤ C2

(
∥η|un|2ψn∥

L
3
2
+ ∥ψn∥

L
3
2
+ ∥δn∥

H− 1
2

)
.

Since ∥ψn∥
L

3
2
→ 0, it remains to estimate

∥η|un|2ψn∥
L

3
2
≤ ∥un∥2L6(B4r(x0))

∥ηψn∥L3 ≤ C3ϵ
1
3 ∥ηψn∥

H
1
2
.

Hence, taking C3ϵ <
1
2 , we deduce that ηψn → 0 in H

1
2 , yielding

∥ηψn∥L3 → 0.

Now we estimate the u component. We consider a smooth cut off function ρ supported on
B2r(x0) and equals to 1 on Br(x0), then by (4.1) we have

Lg(ρun) = ρLgun − un∆gρ− 2g(∇ρ,∇un)
= ρ|ψn|2un − un∆gρ− 2∇ρ · ∇un + ρεn

where εn → 0 in H−1(M). From elliptic estimates now we have that

∥ρun∥H1 ≤ C∥ρ|ψn|2un − un∆ρ+ 2g(∇ρ,∇un) + ρεn∥H−1

≤ C1

(
∥ρ|ψn|2un∥

L
6
5
+ ∥un∆ρ∥

L
6
5
+ 2∥g(∇ρ,∇un)∥H−1

)
.

First we estimate ∥ρ|ψn|2un∥
L

6
5
:

∥ρ|ψn|2un∥
L

6
5
≤ ∥ηψn∥2L3∥ρun∥L6 ≤ C1∥ηψn∥2

H
1
2
∥ρun∥H1 .

From the previous estimates, for n big enough we have that CC1∥ηψn∥2
H

1
2
< 1

2 . Thus we

have that
∥ρun∥H1 ≤ ∥un∆ρ∥

L
6
5
+ 2∥g(∇ρ,∇un)∥H−1 .

Now clearly
∥un∆ρ∥

L
6
5
≤ C∥un∥L2 ,

and the term

∥g(∇ρ,∇un)∥H−1 ≤ sup
k∈H1;∥k∥H1≤1

∣∣∣∣∫
M
g(∇ρ,∇un)kdvg

∣∣∣∣ .
But ∣∣∣∣∫

M
g(∇ρ,∇un)kdvg

∣∣∣∣ ≤ ∣∣∣∣∫
M
un (k∆ρ+ g(∇ρ,∇k)) dvg

∣∣∣∣ ≤ C∥k∥H1∥un∥L2 → 0.

Hence ρun converges to zero in H1(Br(x0)) and this leads to a contradiction.
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Case II : x0 ̸∈ Σ2.
Given ϵ > 0, there exists r > 0 such that

∫
B4r(x0)

|ψn|3dvg < ϵ. Then again we compute

Lg(ρun) = ρ(Lgun)− un∆gρ− 2g(∇ρ,∇un)
= ρ|ψn|2un − un∆gρ− 2g(∇ρ,∇un) + ρεn,

where εn → 0 in H−1. From elliptic estimates now we have that

∥ρun∥H1 ≤ C∥ρ|ψn|2un − un∆gρ+ 2g(∇ρ1,∇un) + ρεn∥H−1

≤ C1

(
∥ρ|ψn|2un∥

L
6
5
+ ∥un∆gρ∥

L
6
5
+ 2∥g(∇ρ,∇un)∥H−1

)
.

Again, we estimate

∥ρ|ψn|2un∥
L

6
5
≤ ∥ψn∥2L3∥ρun∥L6 ≤ C1ϵ

2
3 ∥ρun∥H1 .

Taking C1Cϵ <
1
2 , we have that

∥ρun∥H1 ≤ C1

(
∥un∆gρ∥

L
6
5
+ 2∥g(∇ρ,∇un)∥H−1 + ∥ρεn∥H−1

)
,

and as in the previous case we have that

∥un∆gρ∥
L

6
5
+ 2∥g(∇ρ,∇un)∥H−1 + ∥ρεn∥H−1 → 0.

Hence ∥ρun∥H1 → 0. Next, we estimate the spinorial component:

∥ηψn∥
H

1
2
≤ C1∥η|un|2ψn +∇η · ψn + ηδn∥

H− 1
2

≤ C2

(
∥η|un|2ψn∥

L
3
2
+ ∥ψn∥

L
3
2
+ ∥δn∥

H− 1
2

)
.

But
∥η|un|2ψn∥

L
3
2
≤ ∥ρun∥2L6∥ηψn∥

H
1
2
.

Using the fact that ∥ρun∥H1 → 0, we have that zn → 0 in H1(Br(x0)) × H
1
2 (ΣBr(x0)),

yielding a contradiction.

Case III : x0 ̸∈ Σ3.
Again, given ϵ > 0, let r > 0 so that

∫
B2r(x0)

|un|2|ψn|2dvg < ϵ. We have that

∥ρψn∥
H

1
2
≤ C2

(
∥ρ|un|2ψn∥

L
3
2
+ o(1)

)
.

But

∥ρ|un|2ψn∥
L

3
2
≤

(∫
B2r(x0)

|un|2|ψn|2dvg

) 1
2

∥ρun∥L6 ,

thus
∥ρψn∥

H
1
2
≤ Cϵ

1
2 ∥ρun∥H1 + o(1).
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Similarly, we have for the u component,

∥ρun∥H1 ≤ C∥ρ|ψn|2un∥
L

6
5
+ o(1),

and

∥ρ|ψn|2un∥
L

6
5
≤

(∫
B2r(x0)

|un|2|ψn|2dvg

) 1
2

∥ρψn∥L3 .

Hence
∥ρun∥H1 ≤ Cϵ

1
2 ∥ρψn∥

H
1
2
+ o(1).

Combining both the previous inequalities we have ρzn → 0 in H1Br(x0) × H
1
2ΣBr(x0),

leading to a contradiction.

From the previous lemma we deduce the following properties.

Corollary 4.4. If (zn) does not satisfy the (PS) condition, then

Σ1 = Σ2 = Σ3 ̸= ∅.

Corollary 4.5. Let (zn) be a (PS) sequence at the level c. If c < ϵ0
2 then zn converges

strongly to zero.

Proof. The proof follows from the boundedness of the (PS) sequences. Indeed, from (4.3) we
have ∫

M
|un|2|ψn|2dvg = 2c+ o(1).

Hence if 2c < ϵ0, we have that for n big enough,∫
M

|un|2|ψn|2dvg < ϵ0,

thus zn → 0.

Now, for a given (PS) sequence (zn), we define the concentration function Qn for r > 0 by

Qn(r) = sup
x∈M

∫
Br(x)

|un|2|ψn|2dvg.

We explicitly notice that one can define equivalently the sup on the integrals relative to Σ1

and Σ2. We choose ϵ > 0 so that 3ϵ < ϵ0, then if Σ3 ̸= 0, we have the existence of xn ∈ M
and Rn → 0 such that

Qn(Rn) =

∫
Bxn (Rn)

|un|2|ψn|2dvg = ϵ.

Without loss of generality, we can always assume that xn → x0 and i(M) ≥ 3, where i(M)
is the injectivity radius of M . Also, we define the map ρn(x) = expxn(Rnx) for x ∈ R3 such
that Rn|x| < 3; we denote also σn = ρ−1

n . We let B0
R denote the Euclidian ball centered at

zero and with radius R. That is,

B0
R = {x ∈ R3; |x| < R}.
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We can then consider the metric gn on B0
R defined by a suitable rescaled of the pull-back of

g:
gn = R−2

n ρ∗ng.

Clearly, the two Riemannian patches (B0
R, gn) and (BRRn(xn), g) are conformally equivalent

for n large enough and gn → gR3 in C∞(B0
R). We consider now the identification map (see

[8])
(ρn)∗ : Σp(B

0
R, gn) → Σρn(p)(BRRn(xn), g),

and we set
ρ∗n(φ) = (ρn)

−1
∗ ◦ φ ◦ ρn.

Using these maps, we can define the spinors Ψn on ΣB0
R by

Ψn = Rnρ
∗
nψn,

and from the conformal change of the Dirac operator, we have that

DgnΨn = R2
nρ

∗
nDgψn.

So we get: ∫
B0

R

⟨DgnΨn,Ψn⟩dvgn =

∫
BRRn (xn)

⟨Dgψn, ψn⟩dvg,∫
B0

R

|Ψn|3dvgn =

∫
BRRn (xn)

|ψn|3dvg.

Now we consider the u component, that is we define

Un = R
1
2
nρ

∗
nun,

so that by conformal change of the conformal Laplacian, we have:

LgnUn = R
5
2
nρ

∗
nLgun.

Hence ∫
B0

R

UnLgnUndvgn =

∫
BRRn (xn)

unLgundvg,∫
B0

R

|Un|6dvgn =

∫
BRRn (xn)

|un|6dvg, (4.5)

and ∫
B0

R

|Un|2|Ψn|2dvgn =

∫
BRRn (xn)

|un|2|ψn|2dvg.

We have the following:

Lemma 4.6. Let us set

Fn = LgnUn − |Ψn|2Un, Hn = DgnΨn − |Un|2Ψn.

Then

Fn → 0 in H−1
loc (R

3), Hn → 0 in H
− 1

2
loc (ΣR

3).
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Here the convergence in H−1
loc is understood in the sense that for all R > 0,

sup
{
⟨Fn, F ⟩H−1,H1 ;F ∈ H1(R3), supp(F ) ⊂ B0

R, ∥F∥H1 ≤ 1
}
→ 0,

and similarly for Hn.

Proof. We first notice that by construction, we have that

LgnUn − |Ψn|2Un = R
5
2
nρ

∗
n(Lgun − |ψn|2un).

Hence we get

Fn = R
5
2
nρ

∗
n(εn),

and similarly
Hn = R2

nρ
∗
n(δn).

Now we consider F ∈ H1(R3) such that supp(F ) ⊂ B0
R and ∥F∥H1 ≤ 1. Since Rn → 0, then

for n big enough we have that:

⟨Fn, F ⟩H−1,H1 =

∫
B0

R−1
n

FnFdvgn

=

∫
B0

R−1
n

ρ∗n(εn)R
5
2
nFdvgn

=

∫
B0

R−1
n

ρ∗n(εn)R
− 1

2
n Fdvρ∗ng

=

∫
B1(xn)

εnR
− 1

2
n σ∗n(F )dvg.

But we have that ∥R− 1
2

n σ∗n(F )∥H1 ≤ C, hence

⟨Fn, F ⟩H−1,H1 → 0.

A similar estimate holds for Hn.

Now, let us re recall the spaces

D1(R3) =
{
u ∈ L6(R3); |∇u| ∈ L2(R3)

}
and

D
1
2 (ΣR3) =

{
ψ ∈ L3(ΣR3); |ξ|

1
2 |ψ̂| ∈ L2(R3)

}
,

where here ψ̂ is the Fourier transform of ψ. We have then the following:

Lemma 4.7. For ϵ > 0 small enough, there exist U∞ ∈ D1(R3) and Ψ∞ ∈ D
1
2 (ΣR3) such

that Un → U∞ in H1
loc(R3) and Ψn → Ψ∞ in H

1
2
loc(ΣR

3). Moreover they satisfy
−∆gR3

U∞ = |Ψ∞|2U∞
on R3.

DgR3
Ψ∞ = |U∞|2Ψ∞

(4.6)
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Proof. Since the sequence Zn = (Un,Ψn) is bounded in H1
loc ×H

1
2
loc, for every β ∈ C∞

0 (R3),

we have that βZn is bounded in H1×H
1
2 , hence there exist U∞ and Ψ∞ such that Un ⇀ U∞

in H1
loc and Un → U∞ strongly in Lploc for p < 6. Similarly Ψn ⇀ Ψ∞ in H

1
2
loc and strongly in

Lploc for p < 3. Now we notice that from (4.5), we have that∫
B0

R

|Un|6dvgn =

∫
BRRn (xn)

|un|6dvg.

Hence

lim sup
n→∞

∫
B0

R

|Un|6dvgn ≤ sup
n≥1

∫
M

|un|6dvg < +∞, (4.7)

hence U∞ ∈ L6(R3) and similarly Ψ∞ ∈ L3(ΣR3). Also as in the proof of Proposition (4.1),
we see that (U∞,Ψ∞) satisfies equation (4.6); hence∫

R3

|∇U∞|2dvg <∞

and ∇Ψ∞ ∈ L
3
2 (ΣR3) ⊂ H− 1

2 (ΣR3), which leads to the fact that U∞ ∈ D1(R3) and Ψ∞ ∈
D

1
2 (ΣR3). Now, using again Lemma (4.2), we can assume at this stage that Ψ∞ = 0 and

U∞ = 0 by replacing Ψn by Ψn − Ψ∞ and Un by Un − U∞. Now let x ∈ R3, then by
assumption we have that for n big enough,∫

B0
1

|Un|2|Ψn|2dvgn ≤ ϵ.

Let β ∈ C∞
0 (R3), then by elliptic regularity, we have that

∥β2Un∥H1 ≤ C
(
∥LgR3 (β

2Un)∥H−1 + ∥β2Un∥L2

)
(4.8)

≤ C
(
∥Lgn(β2Un)∥H−1 + ∥(LgR3 − Lgn)(β

2Un)∥H−1 + ∥β2Un∥L2

)
.

Now, we have that ∥β2Un∥L2 → 0, and we want to estimate the term

∥(LgR3 − Lgn)(β
2Un)∥H−1 .

First, we have that for every F ∈ H1:

⟨(LgR3 − Lgn)(β
2Un), F ⟩H−1,H1 = ⟨βUn, β(LgR3 − Lgn)

∗F ⟩,

where (LgR3 − Lgn)
∗ is the adjoint of LgR3 − Lgn with respect to the metric gR3 . Now since

gn → gR3 in C∞, we have that

∥(LgR3 − Lgn)(β·)∥H2,L2 → 0,

and by duality
∥β(LgR3 − Lgn)

∗∥L2,H−2 → 0.

Similarly, we have also that
∥β(LgR3 − Lgn)

∗∥H2,L2 → 0,
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therefore, by interpolation, we have that

∥β(LgR3 − Lgn)
∗∥H1,H−1 → 0. (4.9)

So we have that:

|⟨(LgR3 − Lgn)(β
2Un), F ⟩H−1,H1 | ≤ C∥βUn∥H1∥β(LgR3 − Lgn)

∗F∥H−1

≤ C∥β(LgR3 − Lgn)
∗∥H1,H−1∥F∥H1 ,

hence
∥(LgR3 − Lgn)(β

2Un)∥H−1 → 0.

It remains to estimate the term ∥Lgn(β2Un)∥H−1 , but we have that

∥Lgn(β2Un)∥H−1 ≤ ∥β2(|Ψn|2Un + Fn)∥H−1 + o(1),

and from Lemma 4.6, we have that β2Fn → 0 in H−1, therefore, we have that

∥β2Un∥H1 ≤ C∥β2|Ψn|2Un∥H−1 + o(1).

Now, if we take supp(β) ∈ B0
1 , we have that

∥β2Un∥H1 ≤ C∥β2|Ψn|2Un∥
L

6
5 (B0

1)
+ o(1)

≤ C

(∫
B0

1

|Un|2|Ψn|2dvgn

) 1
2

∥β2Ψn∥L3 + o(1)

≤ Cϵ
1
2 ∥β2Ψn∥L3 + o(1).

A similar computation can be done to show that

∥β2Ψn∥
H

1
2
≤ Cϵ

1
2 ∥β2Un∥L6 + o(1),

and combining these last two estimates we have that

∥β2Un∥H1 + ∥β2Ψn∥
H

1
2
→ 0.

It follows from this lemma in particular, since∫
B0

1

|Un|2|Ψn|2dvgn = Q(Rn) = ϵ,

that also ∫
B0

1

|U∞|2|Ψ∞|2dvgR3 = ϵ,

and hence U∞ ̸= 0 and Ψ∞ ̸= 0 and they satisfy equation (4.6); by the regularity results
proved in the previous section, we have that U∞ ∈ C2,α(R3) and Ψ∞ ∈ C1,β(ΣR3).
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Now, we assume that xn → x and we consider a cut-off function β = 1 on B1(x) and
supp(β) ⊂ B2(x), we define then vn ∈ C2,α(M) and ϕn ∈ C1,β(ΣM) by

vn = R
− 1

2
n βσ∗n(U∞) (4.10)

and
ϕn = R−1

n βσ∗n(Ψ∞). (4.11)

We are going to prove the following

Lemma 4.8. Let un = un − vn and ψn = ψn − ϕn. Then, up to a subsequence, un ⇀ 0 in

H1(M) and ψn ⇀ 0 in H
1
2 (ΣM).

Proof. We already have that un ⇀ 0 and ψn ⇀ 0, thus to prove the lemma we only need
to show the weak convergence for vn and ϕn: these sequences are bounded in H1(M) and
H1/2(ΣM) respectively, then up to subsequences, they converge to some limit. So if we show
that the distributional limit is zero, then the limit in the desired space is also zero. So let
f ∈ C∞(M) and h ∈ C∞(ΣM). We want to show that∫

M
vnfdvg → 0

and ∫
M
⟨ϕn, h⟩dvg → 0.

We fix R > 0, then we have∫
BRnR(xn)

vnfdvg = R
− 1

2
n

∫
BRnR(xn)

βσ∗n(U∞)fdvg

= R
5
2
n

∫
B0

R

ρ∗n(β)ρ
∗
n(f)U∞dvgn .

Hence ∣∣∣∣∣
∫
BRnR(xn)

vnfdvg

∣∣∣∣∣ ≤ CR
5
2
n∥f∥∞

∫
B0

R

|U∞|dvgR3 .

Also, for n big enough we have that∫
M\BRnR(xn)

vnfdvg =

∫
B3(xn)\BRnR(xn)

vnfdvg

= R
5
2
n

∫
B0

3R−1
n

\B0
R

ρ∗n(β)ρ
∗
n(f)U∞dvgn .

Hence, we have ∣∣∣∣∣
∫
M\BRnR(xn)

vnfdvg

∣∣∣∣∣ ≤ CR
5
2
n∥f∥∞

∫
B0

3R−1
n

\B0
R

|U∞|dvgR3

≤ C∥f∥∞

∫
B0

3R−1
n

\B0
R

|U∞|6dvgR3

 1
6

.
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Based on these last two inequalities we have that

∣∣∣∣∫
M
vnfdvg

∣∣∣∣ ≤ C∥f∥∞

R 5
2
n

∫
B0

R

|U∞|dvgR3 +

(∫
R3\B0

R

|U∞|6dvgR3

) 1
6

 .

Letting n→ ∞ and then R→ ∞ we get the desired result. A similar inequality holds for ϕn
and h.

Now we estimate the differential, that is

Lemma 4.9. We have

dE(vn, ϕn) → 0 and dE(un, ψn) → 0,

in H−1(M)×H− 1
2 (ΣM).

Proof. We set
fn = Lgvn − |ϕn|2vn

and
hn = Dgϕn − |vn|2ϕn.

Let f ∈ H1(M) and h ∈ H
1
2 (ΣM), we compute∫

M
fnfdvg = R

− 1
2

n

(∫
M
(−∆gβ)σ

∗
n(U∞)fdvg + 2

∫
M
g(−∇β,∇σ∗n(U∞))fdvg

)
+R

− 1
2

n

∫
M
βLg(σ

∗
n(U∞))fdvg −R

− 5
2

n

∫
M
β3|σ∗n(Ψ∞)|2σ∗n(U∞)fdvg

= R
− 1

2
n

∫
M
(∆gβ)σ

∗
n(U∞)fdvg + 2R

− 1
2

n

∫
M
g(∇β,∇f)σ∗n(U∞)dvg

+R
− 5

2
n

∫
M
βσ∗n(LgnU∞)fdvg −R

− 5
2

n

∫
M
β3σ∗n(|Ψ∞|2U∞)fdvg

= R
− 1

2
n

∫
M
(∆gβ)σ

∗
n(U∞)fdvg + 2R

− 1
2

n

∫
M
g(∇β,∇f)σ∗n(U∞)dvg

+R
− 5

2
n

∫
M
βσ∗n

(
(Lgn − LgR3 )V

)
fdvg +R

− 5
2

n

∫
M
(β − β3)σ∗n(|Ψ∞|2U∞)fdvg

= I1 + I2 + I3 + I4.

We estimate first I1, so we fix γ ∈ C∞(M) such that γ = 1 on supp(β). Then we have

I1 = R
− 1

2
n

∫
M
(∆gβ)σ

∗
n(U∞)γfdvg

= R
− 1

2
n

∫
R3

ρ∗n(∆gβ)U∞ρ
∗
n(γf)dvρ∗ng

= R
5
2
n

∫
R3

ρ∗n(∆gβ)U∞ρ
∗
n(γf)dvgn .
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Thus

|I1| ≤ R2
n∥ρ∗n(∆gβ)U∞∥

L
6
5 (R3,gn)

∥R
1
2
nρ

∗
n(γf)∥L6(R3,gn)

≤ R2
n∥ρ∗n(∆gβ)U∞∥

L
6
5 (R3,gn)

∥γf∥L6(M)

≤ R2
n∥ρ∗n(∆gβ)U∞∥

L
6
5 (R3,gn)

∥f∥H1(M).

But, ∫
R3

|ρ∗n(∆gβ)U∞|
6
5dvgn ≤ C

∫
R−1

n exp−1
xn (B2(x))\R−1

n exp−1
xn (B1(x))

|U∞|
6
5dvgR3

≤ CR
− 12

5
n

∫
B0

3R−1
n

\B0
1
2R−1

n

|U∞|6dvgR3

 1
5

. (4.12)

Therefore,

|I1| ≤ C

∫
B0

3R−1
n

\B0
1
2R−1

n

|U∞|6dvR3

 1
6

∥f∥H1(M),

and since U∞ ∈ D1(R3), we have that

|I1| ≤ o(1)∥f∥H1 .

The estimate for I2 is very similar to the one of I1, indeed we have

|I2| ≤ R
5
2
n

∫
R3

|ρ∗n(∇β)||U∞||ρ∗n(∇f)|dvgn

≤ R2
n∥ρ∗n(∇β)|U∞|∥L2(R3,gn)∥R

1
2
nρ

∗
n(∇f)∥L2(R3,gn)

≤ R2
n∥ρ∗n(∇β)|U∞|∥L2(R3,gn)∥f∥H1(M).

But ∫
R3

|ρ∗n(∇β)|2|U∞|2dvgn ≤ C

∫
R−1

n exp−1
xn (B2(x))\R−1

n exp−1
xn (B1(x))

|U∞|2dvR3

≤ CR−2
n

∫
B0

3R−1
n

\B0
1
2R−1

n

|U∞|6dvR3

 1
3

, (4.13)

which allows us to conclude that
|I2| ≤ o(1)∥f∥H1 .

We move now to I3. We first notice that

I3 =

∫
M

((Lgn − LR3)U∞)R
− 1

2
n ρ∗n(βγf)dvgn .

Therefore,
|I3| ≤ C∥βρ∗n((Lgn − LR3)U∞)∥

L
6
5 (R3,gn)

∥f∥H1(M),
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but
∥βρ∗n((Lgn − LR3)U∞)∥

L
6
5
≤

≤ ∥βρ∗n((Lgn − LR3)U∞)∥
L

6
5 (B0

R)
+ ∥βρ∗n((Lgn − LR3)U∞)∥

L
6
5 (R3\B0

R)
.

Now, since gn → gR3 in C∞(B0
R), and since −∆gR3

U∞ = |Ψ∞|2U∞ ∈ L
6
5 (R3), we have as in

(4.13), by letting n→ ∞ and then R→ ∞ that

|I3| ≤ o(1)∥f∥H1 .

It remains now to consider the term I4:

I4 =

∫
R3

ρ∗n(β − β3)|Ψ∞|2U∞R
1
2
nρ

∗
n(γf)dvgn .

We have
|I4| ≤ C∥ρ∗n(β − β3)|Ψ∞|2U∞∥

L
6
5 (R3,gn)

∥f∥H1 ,

and

∫
R3

|ρ∗n(β − β3)|
6
5 |Ψ∞|

12
5 |U∞|

6
5dvgn ≤ C∥Ψ∞∥

6
5

L3

∫
B0

3R−1
n

\B0
1
2R−1

n

|U∞|2|Ψ∞|2dvgR3

 3
5

.

Then using the fact that U∞ ∈ D1(R3) and Ψ∞ ∈ D
1
2 (ΣR3), we have that

|I4| ≤ o(1)∥f1∥.

Therefore, we have that fn → 0 in H−1(M) and a similar convergence holds for hn → 0 in

H− 1
2 (ΣM).

Next we move to (un, ψn) and again we fix f ∈ H1(M). First we notice that

duE(un, ψn)f =

∫
M
fLgundvg −

∫
M

|ψn|2unfdvg

= duE(un, ψn)f − duE(vn, ϕn)f +

∫
M
Anfdvg,

where
An = |ψn|2vn − |ϕn|2un + 2⟨ψn, ϕn⟩(un − vn).

Now, since we already proved that duE(un, ψn) → 0 and duE(vn, ϕn) → 0, it is enough to
show that An → 0 in H−1. First we have that

∫
M\BRRn (xn)

|ψn|
12
5 |vn|

6
5dvg ≤ ∥ψn∥

12
5

L3

(∫
M\BRRn (xn)

|vn|6dvg

) 1
5

≤ C∥ψn∥
12
5

H
1
2

∫
B0

3R−1
n

\B0
R

|U∞|6dvgn

 1
5

.

22



But since ∥ψn∥
H

1
2
is bounded and dvgn ≤ CdvgR3 , we have that∫

B0

3R−1
n

\B0
R

|U∞|6dvgn → 0,

as R→ ∞ uniformly on n; hence

∥|ψn|2vn∥
L

6
5 (M\BRRn (xn))

→ 0.

Similarly, we have that

∫
M\BRRn (xn)

|ϕn|
12
5 |un|

6
5dvg ≤ ∥un∥

6
5

L6

(∫
M\BRRn (xn)

|ϕn|3dvg

) 4
5

≤ C∥un∥
6
5

H1

∫
B0

3R−1
n

\B0
R

|Ψ∞|3dvgn

 4
5

.

Hence the same conclusion holds when R → ∞. To finish this estimate on the exterior
domain, we consider the mixed terms:

∫
M\BRRn (xn)

|ϕn|
6
5 |ψn|

6
5 |un|

6
5dvg ≤ ∥un∥

6
5

L6∥ψn∥
6
5

L3

(∫
M\BRRn (xn)

|ϕn|3dvg

) 2
5

≤ C∥ψn∥
6
5

H
1
2
∥un∥

6
5

H1

∫
B0

3R−1
n

\B0
R

|Ψ∞|3dvgn

 2
5

.

Now ∫
M\BRRn (xn)

|ϕn|
6
5 |ψn|

6
5 |vn|

6
5dvg ≤

≤ ∥ψn∥
6
5

L3

(∫
M\BRRn (xn)

|ϕn|3dvg

) 2
5
(∫

M\BRRn (xn)
|vn|6dvg

) 1
5

≤ C∥ψn∥
6
5

H
1
2

∫
B0

3R−1
n

\B0
R

|Ψ∞|3dvgn

 2
5
∫

B0

3R−1
n

\B0
R

|U∞|6dvgn

 1
5

.

We need now an estimate inside the ball BRRn(xn), that is∫
BRRn (xn)

|An|
6
5dvg =

=

∫
BRRn (xn)

||ψn|2(vn − un) + (|ψn|2 − |ϕn|2)un + 2⟨ψn, ϕn⟩(un − vn)|
6
5dvg ≤∫

B0
R

(
|Ψn|2|ρ∗n(β)U∞ − Un|+ (|Ψn|2 − |ρ∗n(β)Ψ∞|2)|Un|+ 2|Ψn||ρ∗n(β)Ψ∞||Un − ρ∗n(β)U∞|

) 6
5 dvgn .
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Hence for n large, we have that ∫
BRRn (xn)

|An|
6
5dvg

≤
∫
B0

R

(
|Ψn|2|U∞ − Un|+ (|Ψn|2 − |Ψ∞|2)|Un|+ 2|Ψn||Ψ∞||Un − U∞|

) 6
5 dvgn ,

and since Ψn → Ψ∞ in H
1
2
loc(ΣR

3) and Un → U∞ in H1
loc(R3), we have that∫

BRRn (xn)
|An|

6
5dvg → 0,

which finishes the proof for duE. The same computations also hold for dψE.

Now we estimate the energy, that is:

Lemma 4.10. We have

E(un, ψn) = E(un, ψn)− ER3(U∞,Ψ∞) + o(1).

Proof. We have
E(un, ψn) =

=
1

2

(∫
M
(un − vn)Lg(un − vn) + ⟨Dg(ψn − ϕn), ψn − ϕn⟩ − |ψn − ϕn|2|un − vn|2dvg

)
=

= E(un, ψn) + E(vn, ϕn)− dE(vn, ϕn)(un, ψn) +Bn,

where

Bn =
1

2

(∫
M

|un|2|ϕn|2 + |vn|2|ψn|2 − 2|un|2⟨ψn, ϕn⟩ − 2|ψn|2unvn + 4unvn⟨ψn, ϕn⟩dvg
)
.

We first notice that since (un, ψn) is bounded in H1(M) × H
1
2 (ΣM), from Lemma 4.2, we

have that
dE(vn, ϕn)(un, ψn) → 0.

We are going to estimate the five terms of Bn, one by one.∫
M

|un|2|ϕn|2 =
∫
M

|un|2R−2
n |β|2|σ∗nΨ∞|2dvg

=

∫
R3

|ρ∗n(β)|2|Un|2|Ψ∞|2dvgn

=

∫
R3

|U∞|2|Ψ∞|2dvgn −
∫
R3

(|U∞|2 − |ρ∗n(β)Un|2)|Ψ∞|2dvgn .

For n large, we have ∫
R3

(|U∞|2 − |ρ∗n(β)Un|2)|Ψ∞|2dvgn =

=

∫
B0

R

(|U∞|2 − |Un|2)|Ψ∞|2dvgn +

∫
R3\B0

R

(|U∞|2 − |ρ∗n(β)Un|2)|Ψ∞|2dvgn .
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Now since Un → U∞ in H1
loc(R3), we have that∫

B0
R

(|U∞|2 − |Un|2)|Ψ∞|2dvgn → 0,

as n→ ∞. Now ∣∣∣∣∣
∫
R3\B0

R

(|U∞|2 − |ρ∗n(β)Un|2)|Ψ∞|2dvgn

∣∣∣∣∣ ≤
≤ C∥Ψ∞∥2L3(R3\B0

R)

(
∥U∞∥2L6(R3) + ∥Un∥L6(B0

3R−1
n

\B0
R)

)
.

From (4.7), ∥Un∥L6(B0

3R−1
n

) is bounded, hence we can take R→ ∞ uniformly in n to get that

∫
M

|un|2|ϕn|2dvg =
∫
R3

|U∞|2|Ψ∞|2dvgR3 + o(1).

The next term that we want to estimate is∫
M

|vn|2|ψn|2dvg =
∫
R3

|U∞|2|ρ∗n(β)|2|Ψn|2dvgn

=

∫
R3

|U∞|2|Ψ∞|2dvgn +

∫
R3

|U∞|2|
(
ρ∗n(β)|2|Ψn|2 − |Ψ∞|2

)
dvgn .

Again by splitting the integral in B0
R and R3 \B0

R, we get that∫
M

|vn|2|ψn|2dvg =
∫
R3

|U∞|2|Ψ∞|2dvgR3 + o(1).

Next,∫
M

|un|2⟨ψn, ϕn⟩dvg =
∫
R3

ρ∗n(β)|Un|2⟨Ψn,Ψ∞⟩dvgn

=

∫
R3

|U∞|2|Ψ∞|2dvgn +

∫
R3

⟨ρ∗n(β)|Un|2Ψn − |U∞|2Ψ∞,Ψ∞⟩dvgn .

Similarly, we have ∫
R3

⟨ρ∗n(β)|Un|2Ψn − |U∞|2Ψ∞,Ψ∞⟩dvgn =

=

∫
B0

R

⟨|Un|2Ψn − |U∞|2Ψ∞,Ψ∞⟩dvgn +

∫
R3\B0

R

⟨ρ∗n(β)|Un|2Ψn − |U∞|2Ψ∞,Ψ∞⟩dvgn .

Using the convergence of Un and Ψn in H1
loc(R3) and H

1
2
loc(ΣR

3) respectively, we have that∫
B0

R

⟨|Un|2Ψn − |U∞|2Ψ∞,Ψ∞⟩dvgn → 0,

as n→ ∞. For the term in R3 \B0
R, we have∣∣∣∣∣

∫
R3\B0

R

⟨ρ∗n(β)|Un|2Ψn − |U∞|2Ψ∞,Ψ∞⟩dvgn

∣∣∣∣∣ ≤
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≤ C∥Ψ∞∥L3(R3\B0
R)

(
∥Ψ∞∥L3(R3\B0

R)∥U∞∥2L6(R3\B0
R) + ∥Ψn∥L3(B0

3R−1
n

\B0
R)∥Un∥2L6(B0

3R−1
n

\B0
R)

)
.

Thus ∫
M

|un|2⟨ψn, ϕn⟩dvg =
∫
R3

|U∞|2|Ψ∞|2dvgR3 + o(1).

The remaining two terms can be handled in the same way. Therefore, so far we have

E(un, ψn) = E(un, ψn) + E(vn, ϕn)− 2ER3(U∞,Ψ∞) + o(1).

Now we estimate E(vn, ϕn). First, we have∫
M

|vn|2ϕn|2dvg =
∫
R3

|ρ∗n(β)|4|U∞|2|Ψ∞|2dvgn

=

∫
B0

R

|U∞|2|Ψ∞|2dvgn +

∫
R3\B0

R

|ρ∗n(β)|4|U∞|2|Ψ∞|2dvgn ,

but ∫
R3\B0

R

|ρ∗n(β)|4|U∞|2|Ψ∞|2dvgn ≤ C

∫
R3\B0

R

|U∞|2|Ψ∞|2dvgR3 .

Hence, if we let R→ ∞, we have∫
M

|vn|2|ϕn|2dvg =
∫
R3

|U∞|2|Ψ∞|2dvgR3 + o(1).

Now, ∫
M
vnLgvndvg =

∫
R3

ρ∗n(β)U∞Lgn(ρ
∗
n(β)U∞)dvgn

=

∫
R3

|ρ∗n(β)|2U∞LgnU∞dvgn +

∫
R3

ρ∗n(β)(−∆gnρ
∗
n(β))|U∞|2dvgn

− 2

∫
R3

U∞ρ
∗
n(β)g(∇ρ∗n(β),∇U∞)dvgn .

Now ∫
R3

|ρ∗n(β)|2U∞LgnU∞dvgn =

=

∫
R3

|ρ∗n(β)|2U∞LgR3U∞dvgn +

∫
R3

|ρ∗n(β)|2U∞(Lgn − LgR3 )U∞dvgn .

Clearly, ∫
R3

|ρ∗n(β)|2U∞LgR3U∞dvgn =

∫
R3

|∇U∞|2dvgR3 + o(1),

and ∣∣∣∣∫
R3

|ρ∗n(β)|2U∞(Lgn − LgR3 )U∞dvgn

∣∣∣∣ ≤
≤
∫
B0

R

|U∞||(Lgn − LgR3 )U∞|dvgn + C

∫
B0

3R−1
n

\B0
R

|U∞||(Lgn − LgR3 )U∞|dvgn .
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The first term converges to zero as n→ ∞ from (4.9). For the second term, we use the fact
that ∇U∞ ∈ L2(R3) hence it converges to zero if we let R→ ∞ uniformly on n. Also∣∣∣∣∫

R3

ρ∗n(β)(−∆gnρ
∗
n(β))|U∞|2dvgn

∣∣∣∣ ≤ C∥U∞∥2L6(B0

3R−1
n

\B0
1
2R−1

n
) = o(1),

and ∣∣∣∣∫
R3

U∞ρ
∗
n(β)g(∇ρ∗n(β),∇U∞)dvgn

∣∣∣∣ ≤
≤ C∥∇U∞∥L2(B0

3R−1
n

\B0
1
2R−1

n
)∥U∞∥L6(B0

3R−1
n

\B0
1
2R−1

n
) = o(1).

Hence ∫
M
vnLgvndvg =

∫
R3

|∇U∞|2dvgR3 + o(1),

and similarly ∫
M
⟨Dgϕn, ϕn⟩dvg =

∫
R3

⟨DgR3
Ψ∞,Ψ∞⟩dvgR3 + o(1).

Combining al these estimates, we have that

E(un, ψn) = E(un, ψn)− ER3(U∞,Ψ∞) + o(1).

Now we will prove the following energy lower bound for solutions in R3.

Proposition 4.11. Let (U,Ψ) ∈ D1(R3)×D
1
2 (ΣR3) be a non trivial solution of

−∆gR3
U = |Ψ|2U

on R3.
DgR3

Ψ = |U |2Ψ

Then
ER3(U,Ψ) ≥ Ỹg0(S

3) =: c3.

Proof. First we recall that

Yg0(S
3) ≤

∫
R3

|∇U |2dvgR3(∫
R3

|U |6dvgR3
) 1

3

.

But ∫
R3

|∇U |2dvgR3 =

∫
R3

|U |2|Ψ|2dvgR3

≤
(∫

R3

|U |6dvgR3
) 1

3
(∫

R3

|Ψ|3dvgR3
) 2

3

.

Thus

Yg0(S
3) ≤

(∫
R3

|Ψ|3dvgR3
) 2

3

.
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On the other hand, if we denote by (u, ψ) the pull-back of (U,Ψ) by the standard stereographic
projection, we have

λ+g0(S
3) ≤

(∫
S3

|Dg0ψ|
3
2dvg0

) 4
3

∫
S3

⟨Dg0ψ,ψ⟩dvg0
.

Again, we have ∫
S3

⟨Dg0ψ,ψ⟩dvg0 =

∫
S3

|u|2|ψ|2dvg0 ,

and ∫
S3

|Dg0ψ|
3
2dvg0 =

∫
S3

|u|3|ψ|
3
2dvg0

≤
(∫

S3

|u|6dvg0
) 1

3
(∫

S3

|u|2|ψ|2dvg0
) 3

4

.

Hence,

λ+g0(S
3) ≤

(∫
S3

|u|6dvg0
) 1

3

.

Now, using the Sobolev inequality

Yg0(S
3)

(∫
R3

|U |6dvgR3
) 1

3

≤
∫
R3

|∇U |2dvgR3 ,

hence

ER3(U,Ψ) =
1

2

∫
R3

|U |2|Ψ|2dvgR3 ≥ 1

2
Yg0(S

3)λ+g0(S
3) = c3.

Proof. of Theorem (1.1)
From the previous results, we can re-iterate the process m times, for (un, ψn) since they
satisfy the same assumptions as (un, ψn), and we will have

E(un, ψn) = E(u∞, ψ∞) +
m∑
k=1

ER3(Uk∞,Ψ
k
∞) + o(1),

where (Uk∞,Ψ
k
∞) are solutions to equations (1.2) on R3. Now using the fact that

m∑
k=1

ER3(Uk∞,Ψ
k
∞) ≥ mc3,

we stop the process when c−mc3 < ϵ0
2 . Then from Corollary 4.5, we have the existence of m

sequences x1n, · · ·xmn such that xkn → xk ∈ M , and m sequences of real numbers R1
n, · · · , Rmn

converging to zero, such that

un = u∞ + v1n + · · ·+ vmn + o(1) in H1(M),
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ψn = ψ∞ + ϕ1n + · · ·+ ϕmn + o(1) in H
1
2 (ΣM),

where
vkn = (Rkn)

− 1
2βkσ

∗
n,k(U

k
∞),

ϕkn = (Rkn)
−1βkσ

∗
n,k(Ψ

k
∞),

with σn,k = (ρn,k)
−1 and ρn,k(·) = expxkn(R

k
n·). Also βk are smooth compactly supported

functions, such that βk = 1 on B1(x
k) and supp(βk) ⊂ B2(x

k). Moreover, we have

E(un, ψn) = E(u∞, ψ∞) +

p∑
k=1

ER3(Uk∞,Ψ
k
∞) + o(1).

5 Existence of a positive solution

In this section we will prove Theorem (1.3): for our convenience we will split the two state-
ments, and we will prove them separately. First we need the following characterization of the
first eigenvalue of the Dirac operator: let us fix u > 0 and let us consider the minimization
problem

λ̃u = inf
{
I(ψ); for ψ ∈ H

1
2 (ΣM) s.t. I(ψ) > 0, P− (Dgψ − I(ψ)u2ψ

)
= 0
}
,

then we have

Proposition 5.1. For a given u > 0 and smooth, we have that λ̃u > 0. Moreover, the
minimization problem is achieved and λ̃u is the first eigenvalue for the Dirac operator Dgu,
where gu = u4g.

Proof. Let ψn be a minimizing sequence, that is I(ψn) → λ̃u. Without loss of generality, we
can assume that

∫
M u2|ψn|2dvg = 1. Then we have

I(ψn) = ∥ψ+
n ∥2 − ∥ψ−

n ∥2,

but

−∥ψ−
n ∥2 = I(ψn)

∫
M
u2⟨ψn, ψ−

n ⟩dvg,

hence, using Holder’s inequality, we have

∥ψ−
n ∥2 ≤ I(ψn)

(∫
M
u2|ψ−

n |2dvg
) 1

2

.

Since, the projector P− : H
1
2 (ΣM) → H

1
2
,− is a pseudo-differential operator of order zero,

we have that
∥ψ−

n ∥2 ≤ CI(ψn),

thus, we have
∥ψ+

n ∥2 ≤ CI(ψn).
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Therefore, if I(ψn) → 0, we would have that ψn → 0 in H
1
2 (ΣM), contradicting the fact that∫

M u2|ψn|2dvg = 1. Therefore λ̃u > 0, and any minimizing sequence has ∥ψn∥ ≥ δ > 0.
Now we will prove the existence of a minimizer. We notice that without the condition∫

M
⟨Dgψ − I(ψ)u2ψ,φ⟩dvg = 0, ∀φ ∈ H

1
2
,−,

we would be in a classical variational setting allowing us to find a minimizer: unfortunately
this is not the case, so we use here the idea in [32], later on inproved in [37]. First, we claim
that

S = {ψ ∈ H
1
2 (ΣM);P−(Dψ − I(ψ)u2ψ) = 0},

is a manifold. Indeed, we consider the operator

G : H
1
2 (ΣM) → H

1
2
,−, G(ψ) = P−(Dgψ − I(ψ)u2ψ),

so that S = G−1(0); therefore, if DG is onto, then S will be indeed a manifold. We compute
then DG:

DG(ψ)h = P−1(Dgh− I(ψ)u2h).

If we restrict this operator to H
1
2
,−, we have that

⟨DG(ψ)h, h⟩ = −∥h∥2 − I(ψ)

∫
M
u2|h|2dvg.

Thus, DG(ψ) is definite negative and hence invertible thus onto and S is a manifold. Now,
using Ekeland’s variational principle, see [13], we can find a minimizing sequence for λ̃u that

is a (PS) sequence. We want to show that it is still a (PS) sequence in H
1
2 (ΣM). So let

ψn be a (PS) sequence for I in S. We write DI(ψn) = εn. We have that εTn (the tangential
component of εn on the tangent space of the manifold S) already converges to zero since ψn
is a (PS) sequence for I on S. We want to show that also the normal component converges
to zero.
As we did previously, the operator DG(ψn) : H

1
2 (ΣM) → H

1
2
,− is onto, hence it has a left

inverse Kn : H
1
2
,− → H

1
2
,−. Moreover, since we can always assume that

∫
M u2|ψn|2dvg = 1,

we have that ∥Kn∥op ≤ C. The operator Pn = An ◦ DG(ψn) is now a projector on H
1
2
,−

parallel to TψnS. Indeed, we have that if h ∈ H
1
2
,− then Pnh = h and TψnS = kerDG(ψn).

We consider then the adjoint of Pn, denoted by P ∗
n : it is a projector of NψS (the orthogonal

space to the tangent space) parallel to H
1
2
,+. Now we notice that ⟨εn, φ⟩ = 0 for all φ ∈ H

1
2
,−,

hence εn ∈ H
1
2
,+ so we have

εn = P ∗
nε

T
n .

Thus εn → 0 and ψn is a (PS) sequence for I in H
1
2 (ΣM). This (PS) sequence then satisfies

∥ψ+
n ∥2 ≤

∫
M
u2|ψ+

n ||ψn|dvg + o(∥ψ+
n ∥) ≤ C + o(∥ψ+

n ∥),

and a similar inequality holds for ψ−
n which gives us the boundedness in H

1
2 (ΣM). The rest

of the proof is classical in order to show that ψn → ψ in H
1
2 (ΣM) and ψ satisfies

Dgψ = λ̃uu
2ψ.

30



Finally, since λ̃u is a minimizer then by a conformal change of the metric gu = u4g we have
that

λ̃u = λ1(Dgu).

Now we prove the following:

Proposition 5.2. It holds:

Yg(M)λ+g (M) ≤ Ỹg(M) ≤ Yg0(S
3)λ+g0(S

3) = Ỹg0(S
3).

Proof. We first notice that using the Sobolev inequality and Proposition (5.1), we have for

any non-trivial (u, ψ) ∈ H1(M)×H
1
2 (ΣM):

Ẽ(u, ψ) ≥ Yg(M)

(∫
M
u6dvg

) 1
3

∫
M
⟨Dgψ,ψ⟩dvg∫

M
|u|2|ψ|2dvg

≥ Yg(M)λ1(gu)V ol(gu)
1
3

≥ Yg(M)λ+g (M), (5.1)

which proves the first inequality of the claim. We also recall that we set gu = u4g. Now for
the second inequality, we consider a spinor Ψ0 ∈ (ΣR3) such that |Ψ0| = 1√

2
and we define

the standard spinor

Ψ0(x) =

(
2

1 + |x|2

) 3
2

(1− x) ·Ψ0,

and bubble

U0 =

(
2

1 + |x|2

) 1
2

.

Then an easy computation shows that (U0,Ψ0) is a critical point for ER3 and

E(U0,Ψ0) =
1

2
Yg0(S

3)λ+g0(S
3).

Now, we fix x0 ∈M and let λ > 0 be a parameter that we will be tending to zero. We define
as in (4.10)) and (4.11), ρλ(x) = expx0(λx), and we consider β a cut-off function supported
in B2(x0) and equals 1 on B1(x0). We can therefore define the functions uλ = λ−

1
2βσ∗λ(U0),

ψλ = λ−1βσ∗λ(Ψ0),

where σλ = ρ−1
λ . Similar computations as in Lemma (4.5) show that

dE(uλ, ψλ) → 0, λ→ 0.

Also we have ∫
M
uλLguλdvg =

∫
R3

|∇U0|2dvgR3 + o(1),
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∫
M
⟨Dgψλ, ψλ⟩dvg =

∫
R3

⟨DgR3
Ψ0,Ψ0⟩dvgR3 + o(1),∫

M
|uλ|2|ψλ|2dvg =

∫
R3

|U0|2|Ψ0|2dvgR3 + o(1).

Now, for these test functions we might have the possibility that

P−(Dgψλ − I(ψλ)|uλ|2ψλ) ̸= 0,

so we want to perturb ψλ so that the previous inequality is satisfied. Therefore we have to
show that there exists h ∈ H

1
2
,− so that

P−(Dg(ψλ + h)− I(ψλ + h)|uλ|2(ψλ + h)) = 0.

This is equivalent to solving

Dgh− P−[I(ψλ)|uλ|2h] +B(h) = Aλ,

where
Aλ = P−(Dgψλ − I(ψλ)|uλ|2ψλ),

and
B(h) = P− ([I(ψλ)− I(ψλ + h)]|uλ|2(ψλ + h)

)
.

So we consider the operator T : H
1
2
,− → H

1
2
,− defined by

T (h) = Dgh− I(ψλ)P
−(|uλ|2h) +B(h).

Then
dT (0)φ = Dgφ− I(ψλ)P

−(|uλ|2φ)− ⟨dI(ψλ), φ⟩P−(|uλ|2ψλ).

The operator
φ 7→ Dφ− I(ψλ)P

−(|uλ|2φ)

is negative definite on H
1
2
,−, hence it is invertible for all λ > 0, and for λ small enough we

have that
⟨dI(ψλ), φ⟩|uλ|2ψλ → 0,

hence dT (0) is invertible for λ small enough. Since Aλ → 0 as λ→ 0, we have by the implicit

function theorem, the existence of hλ ∈ H
1
2
,− such that T (hλ) = Aλ, moreover hλ → 0 as

λ→ 0. Now we check that∫
M
⟨Dg(ψλ + hλ), (ψλ + hλ⟩dvg =

∫
R3

⟨DgR3
Ψ0,Ψ0⟩dvgR3 + o(1),

and ∫
M

|uλ|2|ψλ + hλ|2dvg =
∫
R3

|U0|2|Ψ0|2dvgR3 + o(1).

Hence, we have
Ẽ(uλ, ψλ + hλ) = Yg0(S

3)λ+g0(S
3) + o(1),

therefore we can conclude that
Ỹg(M) ≤ Ỹg0(S

3).
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Now we consider the original functional Ẽ(u, ψ) end the minimization problem giving Ỹg(M).
We complete the proof of Theorem (1.3) by proving the following

Proposition 5.3. If
Ỹg(M) < Ỹg0(S

3),

then the problem (1.2) has a non-trivial solution with u > 0.

Proof. We introduce here a generalized Nehari manifold. We consider the functional E and
we notice first that there exist t > 0 and s > 0 small such that if ∥u∥ = t and ∥ψ∥ = s then
E(u, ψ) ≥ c > 0. Indeed, we have that

2E(u, ψ) = ∥u∥2 +
∫
M
⟨Dgψ,ψ⟩dvg −

∫
M

|u|2|ψ|2dvg.

Now using the fact that
∫
M ⟨Dψ − I(ψ)u2ψ,φ⟩dvg = 0, by taking φ = ψ−, we have

∥ψ−∥2 ≤ I(ψ)

∫
M

|u|2|ψ||ψ−|dvg ≤ CI(ψ)∥u∥2L6∥ψ∥L3∥ψ−∥L3 , (5.2)

hence
∥ψ−∥ ≤ CI(ψ)∥u∥2L6∥ψ∥L3 .

Therefore,
∥ψ∥2 = ∥ψ+∥2 + ∥ψ−∥2 ≤ ∥ψ+∥2 + CI(ψ)∥u∥4L6∥ψ∥2L3 .

Now

2E(u, ψ) ≥ t2 + s2 − C1t
4s4 − C2t

2s2

≥ t2 + s2 − C(t8 + s8 + t4 + s4)

≥ t2 − C(t8 + t4) + s2 − C(s8 + s4).

Hence for t and s small enough, we have that E(u, ψ) ≥ c > 0.
Moreover, if we fix u and ψ such that

∫
M |u|2|ψ|2dvg = 1, we have that

E(ru, rψ) ≤ r2∥u∥2 − r2∥ψ−∥2 − r4 → −∞, when r → ∞.

This tells us that E has the geometry of mountain pass, so we consider the following, min-max
problem

m = inf

{
max
t≥0,s≥0

E(tu, sψ); I(ψ) > 0;P− (Dgψ − I(ψ)u2ψ
)
= 0

}
.

So, if E satisfies (PS) at the level m and we disregard the orthogonality condition, then m is
a critical value. An easy computation shows that,

max
t≥0,s≥0

E(tu, sψ) =
1

2
Ẽ(u, ψ)

Therefore 2m = Ỹg(M). Now we consider the Nehari manifold

N =

{
(u, ψ) ∈ H1(M)×H

1
2 (ΣM);

∫
M uLgudvg =

∫
M ⟨Dgψ,ψ⟩dvg =

∫
M |u|2|ψ|2dvg ̸= 0;

P− (Dgψ − I(ψ)u2ψ
)
= 0

}
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We first claim that N is indeed a manifold. We consider the operator

G : H1(M)×H
1
2 (ΣM) → R× R×H

1
2
,−,

defined by

G(u, ψ) =

[∫
M
uLgu− |u|2|ψ|2dvg,

∫
M
⟨Dgψ − |u|2ψ,ψ⟩dvg, P−(Dgψ − I(ψ)|u|2ψ)

]
.

Clearly, we have that N = G−1(0) thus, if DG(u, ψ) is onto for all (u, ψ) ∈ N then N is a
manifold. So we fix (u0, ψ0) ∈ N and we will show invertibility of DG(u0, ψ0) restricted to
some special subspace. Indeed, we will use the following parametrization

(tu0, sψ0 + h) = [t, s, h], h ∈ H
1
2
,−,

and we will express DG(u0, ψ0) in the basis of R×R×H
1
2
,−. Since

∫
M |u0|2|ψ0|2dvg ̸= 0, we

will assume for the sake of simplicity that
∫
M |u0|2|ψ0|2dvg = 1. We have then

DG(u0, ψ0)[1, 0, 0] = [0,−2, 2P−(Dgψ0)],

DG(u0, ψ0)[0, 1, 0] = [−2, 0, 0],

and
DG(u0, ψ0)[0, 0, h] = [2⟨Dgψ0, h⟩, 0, Dgh− |u0|2h].

Now we notice that the operator K : h→ Dgh− |u0|2h is negative definite on H
1
2
,−. Indeed,

⟨Kh, h⟩ = −∥h∥2 −
∫
M

|u0|2h2dvg.

Therefore, K is invertible. Now, given [a, b, c] ∈ R×R×H
1
2
,−, we want to find [x1, x2, w] so

that DG(u0, ψ0, w) = [a, b, c]. First, we have

x1 = − b
2
,

and
2x1P

−(Dgψ0) +Kw = c.

Hence,
w = K−1(c+ bP−(Dgψ0)).

Finally, we have that
−2x2 + 2⟨Dgψ0, w⟩ = a,

thus
x2 = −a

2
+ ⟨Dgψ0,K

−1(c+ bP−(Dgψ0))⟩.

This proves that DG(u0, ψ0) is onto and hence N is a manifold. Moreover, DG(u0, ψ0) has

a left inverse A(u0, ψ0) : R× R×H
1
2
,− → Ru0 ⊕ Rψ0 ⊕H

1
2
,− and

∥A(u0, ψ0)∥op ≤ C(∥u0∥, ∥ψ0∥).

34



Using Ekeland’s principle now, we have the existence of a minimizing (PS) sequence for
E restricted to N : we want to show that this is indeed a (PS) sequence for E also in

H1(M)×H
1
2 (ΣM). Let us call such a sequence (un, ψn) ∈ N . Then similarly as in the proof

of Proposition (5.1), we set DE(un, ψn) = εn. We clearly have that εTn → 0, since it is the
tangential part of the (PS) sequence and it is a (PS) sequence in N . Notice now that

Pn = A(un, ψn) ◦DG(un, ψn)

is a projector on Ru0 ⊕ Rψ0 ⊕H
1
2
,− parallel to T(u0,ψ0)N . Now since

E(unψn) =
1

2

∫
M

|un|2|ψn|2dvg → m,

we have that ∥un∥2 ≤ C. Also, we have

−∥ψ−
n ∥2 =

∫
M

|un|2⟨ψn, ψ−
n ⟩dvg.

Thus

∥ψ−
n ∥2 ≤

∫
M

|un|2|ψn||ψ−
n |dvg

≤
(∫

M
|un|2|ψn|2dvg

) 1
2
(∫

M
|un|2|ψ−

n |2dvg
) 1

2

≤ C1∥un∥L6∥ψ−
n ∥L3 .

Therefore
∥ψ−

n ∥ ≤ C,

but we have that

∥ψ+
n ∥2 − ∥ψ−

n ∥2 =
∫
M

|un|2|ψn|2dvg,

hence
∥ψ+

n ∥2 ≤ C.

Therefore, we have that A(un, ψn) is uniformly bounded and so is Pn. We consider now the

operator P ∗
n , the adjoint of Pn. Then P

∗
n is also a projector on (Ru0⊕Rψ0⊕H

1
2
,−)⊥ parallel

to N(un,ψn)N , the normal space of N at the point (un, ψn). We also notice that

εn ∈ (Ru0 ⊕ Rψ0 ⊕H
1
2
,−)⊥,

hence, εn = P ∗
nε

T
n and so (un, ψn) is indeed a (PS) sequence for E. Therefore, this (PS)

sequence is at the energy level 1
2 Ỹg(M): from Theorem (1.1), if Ỹg(M) < Ỹg0(S

3), then this
(PS) sequence converges and thus we have a solution to our problem.
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6 Existence of infinitely many solutions in symmetric mani-
folds

Here we will consider a three-dimensional closed manifold (M, g) with an isometric group
action G acting on M , such that the orbits of G have infinite cardinality. As an example, we
can consider the standard sphere S3 ⊆ R4 with the action introduced by Ding [11], that is
G = O(2)×O(2). Such symmetries where exploited an improved in other settings such as in
[27, 30, 31]. We will show the following

Theorem 6.1. Given a manifold M as described above, then (1.2) has two infinite families
of solutions.

Proof. First of all we notice that the functional E satisfies the (PS) condition on the space

HG := H1
G(M) × H

1
2
G(ΣM), where H1

G(M) and H
1
2
G(ΣM) are respectively the subspaces of

H1(M) and H
1
2 (ΣM) which are invariant under the action of G. In order to prove this

claim, let us consider zn ∈ HG a (PS) sequence for E, then according to the characterization
in Theorem (1.1) above we have that

E(zn) = E(z∞) +
m∑
k=1

ck + o(1),

where ck = ER3(Zk∞) ≥ Ỹ (S3), and Zk∞ are solutions of equation (4.6) in R3. The main point
is that the number of these solutions is finite and that the energy is finite. In particular if {zn}
is a (PS) sequence that concentrates on x1, · · · , xm then zn(h·) concentrates at h·x1, · · · , h·xm
for every h ∈ G. Now, since zn ∈ HG, then zn(h·) = zn hence zn concentrates at all the
orbits of x1, · · · , xm under the action of G; but the orbits are infinite: therefore the set of
concentration needs to be empty and hence the (PS) condition holds.
Now we consider the functional E : HG → R defined by

E(u, ψ) =
1

2

(∫
M
uLgudvg +

∫
M
⟨Dgψ,ψ⟩dvg −

∫
M

|u|2|ψ|2dvg
)
.

We will study the restriction of this functional to the Nehari manifold NG defined by

NG =

{
(u, ψ) ∈ HG;

∫
M uLgudv =

∫
M |u|2|ψ|2dvg =

∫
M ⟨Dgψ,ψ⟩dvg ̸= 0;

P−(Dgψ − I(ψ)|u|2ψ) = 0

}
.

As in the previous section, NG is a manifold, moreover critical points of E|NG
are critical

points of E, as we saw above, and moreover any (PS) sequence of E|NG
is a (PS) sequence of

E. Therefore, E|NG
satisfies the (PS) condition. So now we want to use the classical min-max

theorem on the manifold Ng, so we define a collection A of sets A ⊂ NG such that −A = A
and

ck = inf
A∈A;γ(A)≥k

max
(u,ψ)∈A

E(u, ψ),

where γ(A) denotes the genus of A. Now, if we can show that NG contains sets of arbitrarily
high genus, we can show that we have infinitely many solutions. To this aim, we will prove
that there exists a continuous Z2-equivariant map

T : {−1, 1} × S+ −→ NG,
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where S+ is the unit sphere of H
1
2
,+. First, we recall that the generalized Nehari manifold

originates from considering the functional R : R+ × R+ ×H
1
2
,− → R, defined by

R(t, s, φ) = E(tu, s(ψ + φ)).

Therefore, the nonzero critical points of R are in NG. Indeed, if such a critical point exists,
then it satisfies 

s2 =

∫
M
uLgudvg∫

M
|u|2|ψ + φ|2dvg

,

t2 =

∫
M
⟨Dg(ψ + φ), ψ + φ)dvg∫
M

|u|2|ψ + φ|2dvg
,

P−(Dg(ψ + φ)− I(ψ + φ)|u|2(ψ + φ)) = 0.

Now, the main issue in solving this system resides in the last equation, which is equivalent
to solving

T (φ) +B(φ) = A(φ),

where
T (φ) = P−(Dgφ− I(ψ)|u|2φ),

B(φ) = P−([I(ψ)− I(ψ + φ)]|u|2(ψ + φ)),

and
A(φ) = P−(Dgψ − I(ψ)|u|2φ).

Again, as in the previous section, the operator T is invertible, so the term that we need to
consider here is B(φ). Now, we notice that for some particular choice of u and ψ we can

always find a solution to this system. Indeed, if u is constant and ψ ∈ H
1
2
,+, then we can

take φ = 0, so that we have a unique critical point of R denoted by (t(u,ψ), s(u,ψ), 0) such that
(t(u,ψ)u, s(u,ψ)(ψ)) ∈ NG. Therefore, we will consider the map T defined by

T(1, ψ) = (t(1,ψ), s(1,ψ)ψ),

where

t(1,ψ) =
1

∥ψ∥L2

,

and

s(1,ψ) =

1

8

∫
M
Rgdvg

∥ψ∥L2

.

Clearly T(−(δ, ψ)) = −T(δ, ψ) where δ = ±1 and the map T is continuous. Now, since T

is an equivariant map, and since S+ has infinite genus, that is γ(S+) = +∞, we have also
that NG has infinite genus; moreover if A ⊂ S+ is symmetric and such that γ(A) = k, then
T(A) ⊂ NG satisfies γ(T(A)) ≥ k. Also since E is bounded from below on NG, we have by
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classical min-max argument, see [33], that E|NG
has infinitely many critical points, hence E

has infinitely many critical points.
Finally, in order to find another infinite family of solutions, we argue in a similar way, by
noticing that the set NG is invariant under the action of S1 on the spinorial part, defined by

θ · (u, ψ) = (u, ei2πθψ).

Clearly, E|NG
is also invariant under the this action of S1. Therefore we can define the family

of sets K by saying that a set A belongs to K if and only if ei2πθA = A. We define also the
min-max levels

c̃k = inf
A∈K;iS1 (A)≥k

max
(u,ψ)∈A

E(u, ψ),

where iS1 is the Faddell-Rabinowitz cohomological index [14]. Then, we use a restriction of
the previous map T, that we denote here by G : S+ → NG, defined by

G(ψ) = T(1, ψ).

We see that G is S1-equivariant, hence iS1(NG) = +∞ and hence, E|NG
has infinitely many

critical points.
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