Existence and Multiplicity Results for a

non-Homogeneous Fourth Order Equation
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Abstract In this paper we investigate the problem of existence and multi-
plicity of solutions for a non-homogeneous fourth order Yamabe type equa-
tion. We exhibit a family of solutions concentrating at two points, provided
the domain contains one hole and we give a multiplicity result if the domain
has multiple holes. Also we prove a multiplicity result for vanishing positive

solutions in a general domain.

1 Introduction and statements of the main results

In this paper we will study the existence and the multiplicity of positive

solutions for a non-homogeneous problem of the form:

A’ = [uf'u+f on Q
u=Auy = 0 on 0N

(P)
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where € is a smooth bounded set of R™ and p = Z—fi is the so-called critical
exponent. These kind of problems were deeply studied in the case of the
Laplacian (see for instance [1],[11], [19]). Let us recall that problem (P)
was studied by Selmi [26] and Ben Ayed - Selmi [9] where the authors prove
the existence of a one-bubble solution to the problem under assumptions on
f. Here we will show that we can get two-bubble solutions if the domain
contains small holes, and vanishing type solutions for a small generic per-
turbation f in the C° sense.

We recall that for f = 0, this problem has a deep geometrical meaning, in
fact if (M, g) is an n—dimensional compact closed riemannian manifold with
n > 5, we can define the (Q—curvature

n3 —4n? 4+ 16n — 16 2 2
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where R is the scalar curvature and Ric is the Ricci curvature. After a
4
conformal change of the metric one gets for g = un-ig ,

n+4

gun—4 = Pyu, (1)

where P, is the Paneitz operator, defined by

—2)2+4 4 n—4
Pyu = A2u — di (n - ——Ri ——Qu.
g U Ju—div ((2(n o n = 1)Rg — 2ch> du) + 2 Qu

This gives rise to the problem of prescribing the ()—curvature, as the anal-
ogous problem on the scalar curvature (see [12], [13] and [23]). We remark
that in the flat case, for instance if we consider an open set of R", the
problem of prescribing constant @-curvature coincides with (P) with f =0,

namely

Ay = |uP~t . (2)



The variational formulation of (2) under Navier boundary conditions in a
bounded set was deeply studied, especially with the methods of critical
points at infinity theory, introduced by Bahri [3] (see [13], [18] and [17]).
We also remark the fact that this problem is not compact, namely, for the
case f = 0 it corresponds exactly to the limiting case of the Sobolev embed-
ding H%(Q) N H} () — L%7 (see [27]), and thus we loose the compact
embedding, so the variational setting in the classical spaces fails to show
existence of solutions: in fact as in the case of the Laplacian, if the domain
is star shaped we know that it has no positive solutions ([27], [28]). Finally
we recall that in the recent paper [22], we studied the same Yamabe type
problem, with a slightly super-critical exponent.

This work contains two main parts. In the first one we deal with a pertur-

bation of the form ef, that is

A2 = |uf lutef on
u=Au = 0 on Of)

) (F:)
where f is a positive function in C* (Q2), 0 < a < 1, and Q@ =D — B(P, p),
for a given domain D and P € D. In this setting we have the following

result:

Theorem 1.1. There exists a constant puy = po (D, f) > 0 such that for
each 0 < p < po fized, there exist ¢g > 0 and a family of solutions u: of

(P:) for 0 < e < ¢, having exactly two concentration points, namely:
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and 0 (r) — 0 as e — 0 uniformly.



Indeed one gets more information about the solutions along the proof, for
instance we will see that 6. (x) = ew + o(g), where w is the solution of:
A2w = f on
w=Aw = 0 on 80
And within the proof we have that the point (({f, £5), (an(A5)"4, an()\g))”*‘l)

is a critical point of the function ¥ defined by :

2 2
V(A = % <Z ATH (&,&) — 200G (51;52)) + A (&),
=1 1=1

where G is the Green’s function of the 2 and H its regular part.
Moreover if we consider a domain with multiple holes we obtain a mul-
tiplicity result. In fact, if Q = D — Uy<;<xB(P;, p) with Py, ..., Py € Q, the

previous result can be generalized as in [14] and [22] to the following:
Theorem 1.2. Let 1 < m < k. There exists a constant po = po (D, f) >0

such that for each 0 < p < po fized, there exist €9 > 0 and a family of

solutions uz of (P:) for 0 < e < gq, of the following form

and 0. (x) — 0 as ¢ — 0 uniformly.

In particular for a domain with k holes we have at least 2¥ — 1 two-bubble
solutions.

In the second part of the paper we deal with the problem

A2 = [P lu+f on Q
u=Au = 0 on 0f

, (Pr)

with no topological constraint on the domain €2 and f > 0 non identically

zero. We prove the following:



Theorem 1.3. There exist a residual subset D C C? (ﬁ) and € > 0, such
o0

that if f € D and |f|C(Q) < €, the problem (Py) has at least Py, dim H; (Q)+1
positive solutions.

Here H, (2) denotes the singular homology of Q2. We have additional in-
formation for these solutions as well. In fact we will see that they vanish
when |f |C(Q) — 0, and they have energy smaller than the energy of a single
bubble; in contrast with the solutions of the first theorem, where the energy

of the solutions is greater than the one of the bubbles, and the solutions

blow-up as ¢ — 0.
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2 Preliminaries and first estimates

Let us start by defining the following functions:

n—4

_ A 5
Vien () = <A2 + |a:—£|2> ’

where A > 0 and ¢ € Q. For u € D? (), we will write Pu for the projection

of won H?(Q) N HE (), defined as the unique solution of the problem

A%y = u on

v=Av = 0 on 0f)



We also recall that the Green’s function of A? for a set , with Navier

boundary conditions is defined as the solution of

A2G (x,y) = 40, on
G(z,y) = AzG (x,y) 0 on 90

This function can be written as

Qan

G(iﬁay)zm

*H(l‘,y)’ Vﬂf,yGQandg:;éy,

where a,, is a positive constant depending on n and H the positive smooth
solution to
A2H (z,y) = 0 on
_ 1 _ 1 ’
H(z,y) = P AH (z,y) = A P— on Of)
Now let &1, & be two points in Q, and A, A2 > 0, we will write U; = U(Ei,/\i)
and U; = PU;. Then one has U; = U; — 6; and

n—4 n—4
0i(x) = H(:n,gi)AiQ/ T (y)dy + o\ ).
]Rn
Away from x = £, we have
Ui(z) = G, &)\ / T (y)dy + oA, T ).

For more details about these estimates we refer to the Appendix.

Let us set now J to be the functional defined by

1 1
5 [isal - [
2 Ja p+1Jg

and let us find an expansion of

J(Uy 4+ Us) = /\A U1+U2| —/ (U + Uy)?



For that we define the set

Os (Q) :{(51,52) GQXQ; |§1—£2| > 9, d(fz,aQ) >5},

where § > 0 is a small fixed number and we put
et
p+1

Lemma 2.1. For (£1,£2) in Os () we have

Then we have the following:

1

JUAT) = 20+ ( / nU?) (H(gl,a)xf—“+H<§2,§2>A3—4—2Af24 e G(&@))

+o (max()\l, )\2)"74) .

Proof. The proof follows from the following estimates (see the Appendix):

2
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]m QUierl = ]M/QUP+1 . </ Up) H(éu&) )\?744_0()\;174)7

n—4 n—4

1 “\2 n-a
0¥ T (U1+U2)p+1U{’“U§“=2(/ Up> A7 A7 G (6, &)+o (max(M, A2)" 7).
(9] n

Therefore one has

and

1
JU1+U2 /‘A U1+U2| —? (U1—|—U2)p

1 2 1 1 1 1 1 1
= Z AU — ——pyPt /A A _/ p+l_pp+l_prp+
§:<2/Q| UiF - =50 >+ [ aviat—— [ i+ oyt v vy
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2
Now, we set ). = ¢ »-4(), and we put:

v(z') = Eu(sn%a?’)

Then every solution u of (P.) corresponds to a solution v, by means of the

previous rescaling, of the following problem:

A2y = [P lo+ePtlf oon Q.

v=Av = 0 on O0f)

where f (/) = f (Eﬁx’ ). Hence we define the following perturbed energy

functional:

1 1 ~
I, (u):2/Q \Aqu—pH/Q \u|P—sp+1/Q fu.

We consider the function w defined by

A’w = f on
w=Aw = 0 on 0N

7 3)

and we obtain the following proposition. Set A = (Aj,A2) and \? =
(o747



Proposition 2.2. Let V be the sum of Uy,Us rescaled on )., then for
(&1,&2) € Os5 (), one has

Je (V) = 2Cn + 52\1} (§7 A) + 0(52)7

where
1 (2 2
V(A = 5 <Z; A?H (&,8) — 2A1A2G(51,§2)> + ;Aiw (&) -
Proof. The only term we need to estimate is
/f(U1 LUy = / (A2w) (U + Us)
Q Q
2 n—4 n—4
= Z/ (A%w) (G(m,fi))\i 2 / W(y)dy) +o(N\ %)
i=1 7% "
2 n—d — n—d
= S w@NT [ Ty +onT).
i=1 "
The conclusion follows. O

3 Reduction process

From now on let ). = 5_ﬁ9. We will consider points & € €2, and numbers
A; > 0, for i = 1,2, such that |} — &| > (55_ﬁ, d(&,090.) > e 71 and
§ < A; < 6% Here we will adopt the same notations as in [14], that is
Vi(z) = U%Af for A} = (an?)ﬁ; the related projections on H? (Q¢) N
H} (Q.) will be denoted by V;. Consider the functions

oV,

= 0V

ij = [ 1= 1, N and Zz'n+1 =
651‘]‘



and their projections Z;; = PZij. Let V=Vi+Voand V=V, 4+ Vs.

For a given smooth function h, we want to solve the following linear problem:

Ao —pVPlp = h+ ¥, eV Zy on 2
0= Ayp = 0 on 00,
<Vipflzl.j,¢> = Jo. V' ' Zijp=0 for i=12;j=1..n+1

(4)
We define the following weighted L°° norms : for a function u defined on 2.
-8 Sy B
lull, = [[wn +w2) ]+ | (wr +wa) V]|
n—4
h Y U B = 4 and
wihere wl - 1+’$_§;‘2 9 — n—4 " a
HUH** = H(wl + w2)_’yuHLoo

where v = %. We define also the set

__2 __2
05 () = {(61,6) € 0 x Qus €1 — & > 0777, d(§,09) > 6= w7 |
We refer to [22] for the proof of the following :
Proposition 3.1. There ezist €9 > 0 and C' > 0 such that for all0 < e < gqg

and all h € C*(Qe), the problem (4) admits a unique solution p = L.(h).

Moreover we have

[Le(R)ll. < C Al lcijl < C Rl

*x ) *%

and

Ve nLe(M)||, < CllAl..-

To split the difficulties, we start by finding a solution of

A2V ) — (V) —ePtlf = S VP T Zi; on 0.
n=An = 0 on 08,

10

,n—+1



where ¢ is the solution of

A2 = ePHf on  Q
p=A0Ap = 0 on 0,

If we take 7 =7 + ¢, then the equation on 7 reads as follows:

A’ —pVP ' = N.(7) — Re + Y _ eV ' 2y (5)
i
with
N =V+T+e T (V+n+0), —pVP ' @+9) - V7,
and

R.=VP U U5 —p|V[" .

Therefore, taking ¢» = —L. (R.) and 7 = ¢ + v, we get an equation on v of

the following form :

A2 —pVP~ho = Ne(@) + Y e VP 2y
i?j
Lemma 3.2. There exists C > 0 such that for € > 0 small enough and

loll, < 1, we have

C (Il + e oll, +eP+1) ifn <12

||N€(¢+U)H** S 2
C (81 oll2 + €2 [loll, +¢%) if n> 12

Proof. First, we recall that [|¢||, < Ce? and since |¢| < CePT!, we have
|V P < 0PV P < 02
hence ||p||, < Ce? and we can choose e small enough so that

7l <[l + vl < 1.

11



Now, we have

N =PV i@ e,

for a certain ¢ € (0,1) and hence if n < 12 we have

__8
Vo mtN: (1)

IN

_93__8 .
VTSV I+ o2

IN

C |7+ |2

If n > 12 we have to distinguish two cases. First consider 4 > 0 and take
the region d(y,0€Q) > 56_%3, then one has the existence of Cs5 > 0 such
that V > CsV and therefore we get

_ & 28— 4p-2 _
N. () V Va2 4 | ?

IN

A

-2 ||= 2
CeP |17+ ¢l

If d(y, 09;) < e~ we have, by using Hopf lemma, that for § sufficiently
small V (y) ~ 9¥d(y,99.), (recall that |[VV| = |VV|+0(1)) and |VV]| >
C’ez%i, for & small enough. Thus V (y) > CsQZ%Zd(y, 09Q.), therefore

8 —2

L —— 8 on=3 p _ 2
NV < oV (P, 00)) " (1+¢)
_____8 n— -2
< OV (A, 00)) (14 0)
n— n -2
< o(@EE) g+ el
< CePHm ol
Finally
C(le+v+el?,) ifn<12
||N5(¢+U)H** S 2
C (525*1 v +v+ g0H*> ifn>12
Which finishes the proof. O

12



Now we want to find a solution to (5). The problem can be seen as a fixed

point problem if we write it in the following way
v=—L:(N: (¢ +v)) = A (v). (6)
We have the following:

Proposition 3.3. There exists C > 0 such that for € > 0 small enough, the
problem (6) has a unique solution v, with ||v||, < Ce%. Moreover, the map

(¢, A) — v is C' with respect to the norm |-, , and HV(ECA)UH* < O

Proof. Let
F={ueH*(Q)nNH)Q),]|ul, <},
and then consider A. : F — H? (Q)NH} (Q). By using the previous lemma

and proposition (3.1) we get

IA- (u)ll, < CIlIN(u+ ),
C (lull? + ¢ lul, + 1) ifn <12
c (525_1 ull2 + €2 Jul, + e3p> it n > 12

Cedifn <12

Ce2b+3 ifn > 12

so for € > 0 small enough, we have that A, maps F' into itself. Now we

estimate || A (a) — A (b)||, for a,b € F. Since
14z (a) = Ac (O)]], < C[[Ne(a +9) = Ne(b+ ).,

it suffices to show that . is a contraction to finish the proof of the propo-

sition. Note that by construction we have

DUNE(u—I—Lb)=p]V+u+¢+90]p_2(V+u+w+90)—pr_l.

13



Then arguing as in [22], we obtain that N, is a contraction. Hence the
existence and uniqueness of v follows. Next we prove that the map is C!.

We will apply the implicit function theorem to the map K defined by
K (&,A,v) =v— A (v).
We recall that

D&/Ng(u) =p [|V +u+ 30|p72 (V +u+ C)O) — (p — ].) VP—2 (U + QO) - Vp_l Dglv

Also,
DyK (¢,A,u) h =h+ Le(DyN:(u+1)h) = h + M(h).
Now
(M), < C|lDuNe(u+)hl,,
T-a2g+8
< o| v DN )|l
and since
___ 8 __93__
VDN 0)| < OV u
we get
—— & 43 e if n <12
|7 o <c |
o0 2841 if p > 12
hence

1M (R)]], < Ce™mE25E ||,

Therefore by using the implicit function theorem, we have that ¢ depends
continuously on the parameter (¢, A). On the other hand if we differentiate

with respect to £ we get
D¢ K (€', A, u) = Dgu+ D Le(N(u + v))

14



From proposition (3.1) we get that
| DerLe(h)]], < C|lAll,.
Thus we need to compute
Derp = (DerLe)(Re) + Le(Der Re),
but
Dg R = pVP 'DgV —pUt 'DgUs —p(p—2) VI > Dy Ve

which depends continuously on the parameters, and this is enough to prove

that v is C! with respect to the parameters (¢, A). Moreover we have
-1
Dev = — (DyK (&',A,v)) " [(DerLe) (Ne (v +4)) +

+Le (Der(Nz (v +))) + Le (Dy(N:) (v + ) Dertp) ]

hence

HD&/’U

< C(IN- (w+ ¥, + || De (N (v +9)]],, + || Do(Ne) (v + ) Derb|) ) -

Now, from Lemma (3.2), we know that

Ce?ifn <12

Ce2Pt3 if n > 12

and also

|Der(N- (w)] = p [IV tut P 2 (Vtute)—p—1) VP2 (u+p) = VP DV
< VP DV fu] < OV 2R |y

We get

___ 8 __n—=3 _
Vo D (N (w)] < CV 47 ),

15



therefore

1Dg (V- (v + 9], < Ce?

A similar estimate gives
| Dy(N2) (v + %) Derp|,, < Ce>.

Since there is no difference in the case of the differentiation with respect to

A, we omit it. O

4 Reduction of the functional

Here we want to go back to our original set €2, therefore we will denote
2

& = e 1§ where & € Q and we remark that if we take & and A so that

ci; = 0, then we obtain a solution of our original problem. Let Z. be the

functional defined by

1 1
Is(u):2/Q|AU|2—p+1/Q|U|p+1—5/QfU

so that u =V + v + ¢ + 1 is a solution for our problem if and only if it is a
critical point for this functional. Let us consider the functions defined on €2

by

and



then
IEN=J.V+yv+v+o).

Next we state the following result and we refer to [22] for the proof.

Lemma 4.1. u = U + 124— (&, A) + @ is a solution of the problem (P) if

and only if (§,\) is a critical point of I.

UfZ/wa,

Proposition 4.2. We have the following expansion:

Now we define

and we obtain

I(&,N) =20, +* (U (&,A) + af) + o(e?),

2

where o(e?) — 0 ase — 0 in the C' sense, uniformly in Os (Q) x (5, 5‘1)2 .

Proof. Let us show first that

and
View (160 - (T+6+3)) = o(e?).

Indeed, using a Taylor expansion we have

J. (ﬁ+$+@(f,A)+<ﬁ)—J€ ((7+z$+g2) :/OltDng ((7+J+g2+tﬁ) [3,9] dt

and this holds since D.J, (U + zZ + o+ ﬁ) = 0. Therefore, we have
1 PR 1
/ tD?.J. <U+z/z+g5+t6> [A,@]dt:/ t [/ ik —p(V—i—l/J—l-go—i-tv)p_va} dt
0 0 Qe
1
:/ t/ p [VIH - (V+w+go+tv)p*1} v? 4+ N. (v + ) vdt.
0o Ja.

17



We have ||v]|, + |l¢ll, + |¥]l, = O (¢?) , and by using Lemma (3.2), we get

N. (v + $)v < / VN )L, ol < O / 7 < e
QE £ QE

Now, the remaining part can be estimated as follows
/Q [Vp*1 —(V+y+o+ tv)p_l] v? < 054/9 v [Vp” — (V49 +tp)P
) < O, E
Same estimates hold if we differentiate with respect to £. In fact we have
Dy <J5 <ﬁ+$+ﬁ(§,A)+gﬁ) —J. ((7+z$+$)> =

1
= / t/ pDer ([Vp_l - V+y+p+ tv)pﬁl} 1)2) +Dg¢r (Ne (v+ ) v)dt,
0 JO.
and the conclusion follows again from Lemma (3.2). Next step is to prove

that
T, (ﬁ—FiZ—F@) -7 <ﬁ+s5) =0 (&?)
and
D¢ (ZE ([?—HZ—F@) — 7. (ﬁ—l—@)) 20(52),

So we start by writing

LU +9+@) — LU +3) = LU+ +¢) — LU + )

:/01(1_t)dp/ga(vwﬂw—wz_/ﬂsmw\z]_

[ (vt sovete) o [ wv).

€ £

Also

(5 (04 5+2) -7 (08)) = [ [ -0 (0o [ oo

18



- [ 1awp|dt=De [ (WP - o) v e [ w0
Q. Qe Qe
Again, by using the fact that [[¢[], +[|R*|l,, + || Vea) ||, + || Vien B, <
Ce?, with ||p||, < CeP if n < 12 and ||¢||, < Ce? if n > 12, we get the

desired result. The final steps, namely showing

~

7. (ﬁ + @) -7 (U) = 820'f +o0 (52) ,
and
(5 (0+2) -2 () ~of),

are also obtained by using the same kind of estimates. O

5 Analysis of the exterior domain

Let us consider here Q@ = D — B(0, ) for > 0 small enough. Also for
E =R" — B(0,1) define the set

1 1
v ={(@) € B xRN Glay) - MG a) R ) <0} 1 (5710).

where G and Hg are the Green’s function and its regular part on the set

E.
Let us take f =1 and F, = {x € R";1 < |z| < a,a > 1}, then the solu-

tion of
A2w, = f on F,
w,=Aw, = 0 on JF,
is given by
1 a4 -1 4—n 4 4—n (1 B an)
wa(x)__Sn(n+2) (a4”—1|x| ~lzl +a atn—1)’

It is easy to see that it has a maximum for

2] = 4(1—a*m) -
T\ -y )

19




and |z,] — oo as @ — co. Now we consider the function ¢r, defined, on

the set F, by

oo (o) — L7 () wa ) + Hr, (3.) wa (1) + 2, (3,9) wa (y) wa (2)
e 2 —Hr, (z,2) HF, (y,y) + G% (2, y) ’

we will extend it to the full exterior domain E = {x € R™;1 < |z|}, for that

we just extend w, by zero for |x| > a. Hence knowing that

lyl (z = )"~

where § = ﬁ, and since w, is radially symmetric, we get that ¢ has a

Hg (x,y)

critical point (x,y) if and only if sin(f) = 0 where 6 is the angle between x
and y. Now we set z = se and y = —te, where e is a unit vector and s and

t are real number greater than 1. we write

oE (s,t) = v (se,—te).

Explicitly :

~ 2 ~ 2
oo )= (P2 O a0 (- )

(82 o 1)71—4 (t2 o 1)71—4 (8 + t>n—4 (St + 1)71—4

<<<3 T +11>”‘4>2 (F- 1>"—4>> R

We recall now (see [22] ) that the function defined by

(5.0 —a <_ 1 B S >
PR " eonT(2-nT Q+s)"t s+t

has a unique maximum point of the form (K, K), for s, > 1 and a unique
k satisfying p (k,k) = 0. we can choose ay > 0, big enough, such that for

a > ag, we have k < K < |z,|. Hence we can get the following :

Lemma 5.1. The function pg admits a unique minimum, of the form

(Tas Ta) - Moreover 7, € (k, K).

20



Next we will work on the domain Q@ = D — B (0, ). We set m, (resp
M) the radius of the largest (resp smallest) ball contained (resp containing)
D, and set « = ming f, and 8 = maxq f. Thus, by using the maximum

principle, we have z,, < w < z)s for pu < |z| < m, with w as defined in (3),

Zm () = ot wg, (u_la:) ,

and
M (I) = B:U’4wa2 (:u_lx) )

1

here a1 = p~'m and a1 = p~' M. we obtain the following

Lemma 5.2. For p > 0 small enough the function ¢g has a relative min-
imum in o point (Ty,Yu), with |T,| and |y,| belonging to (k,%) , and k
independent of p.

The proof of this lemma follows if we show that there exist k > K
satisfying

B, (%75)

PF., (K, K)

the conclusion will follow from the fact that ¢z, < ¢p < ¢r,, and pr, has

> 1,

a unique minimum point for a big enough.

Let us Define the set
X = {(x,y) €V, such that k < |z|, |y| < E},

and call ¢, = g (Ty, yu) - Now we choose 6, > ¢, in such way that the set
{(z,y) € X,op =9d,} is a closed curve on which Vypg # 0. Observe then
that if we call

J ={(z,y) € X, such that o <4,},
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two situation might happen on 0.7 : either there exist a tangential direction
7 such that Vg -7 # 0, or z and y point in two different directions and
Vg (x,y) # 0 points in the normal direction to 0.7 .

Now if we look at E,, = R™ — B (0, i), then we can easily see that Gg,
and Hp,, are defined by

G, (x,y) = u* "Gp (W o, u™'y)

and
Hg, (v,y) = p* "Hg (W, u™'y) .
Note that S, = uJ, corresponds exactly to the set {ng (/flx, ,Lfly) < 5#} .
Also
G (z,y) =Gg, (x,y) + O(1)

on the set uX. Therefore, it follows that:

1

pa (z,y) = u"op (W e, uty) +o(1)

where

oo (2.g) = LH2 (@20 ) + Ha (y,y) v (@)° + 260 (@.9) v () w (@)
’ 2 G4 (x,y) — Ho (z,2) Ho (y,y)

and o(1) — 0 as u — 0 in the C! sense.

6 Proof of Theorem 1.1

Since the function ¥ defined in section 2 is singular on the diagonal of
Q2 x 2, we replace the terms G (£1,€2) by G (€1, &2) = min (G (§1,&2) , M)

for a constant M > 0 to be fixed later. Hence ¥ is well defined on S, x Ri
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We remark that in that set, we have p(z,y) = H(a:,x)% H (y, y)% —
G(x,y) < 0, therefore the principal part of ¥ which is a quadratic form, has
a negative direction. We will set e ({1,&2) the vector defining the negative

direction :

‘We have

N |=

e (€1,6) = ( H(6,6) H (6,6)} )

1 ) 1
H (€27§2)2 p(§17§2) H(§17£1)2 10(517{2)
Now we are going to consider the vector € such that, for each (&1,&2),
€(£1,&) is the critical point of W ((£1,&2),-). This vector can be written

explicitly in the following form

H (&,&%)w (&) + G (61,8)) w (&) w (&)
G%(&1,&2) — H (&2,82) H (§1€2=1) ’

H(&,6)w (&) + G (61,6)w(é))w (fl)))
G%(&1,82) — H (&2,62) H (§162=1) '

Therefore we can check that W ((£1,£2),€(&1,£2)) = ¢q (&1,€2) .

8 (61,6) = <

Now we can set the min-max scheme, in a similar way as in [1], [14] and

[22]. Let us define

Ky =A{(z,y) € X, (2], ly]) = p (|7l s [9)}

We consider the family of curves R, satisfying the following properties, v :

K2 x [s,571] x[0,1] — A, x R% such that :

i) for (&1,&) € K7, t €[0,1] it holds

Y (§17£2a S,t) = (517527 se (51752)) )

and

v (5175275717t) = (5175278716(51762)) .
11)’7 (517£27t7 0) = (€1’§27t5 (‘51752))7 for all (611527t) € KZ X [37371] :
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Now arguing as in [22], the min-max value defined by

C () = inf sup U (v (&1,&2,t,1)),
VER (£1,62,t)e K2 x[s,571]

is a critical value of W.

Then the proof of theorem 1.1 follows as in ([15]).

7 Vanishing Solutions

In this section we will prove a multiplicity result concerning problem (Py).
Let us start by introducing a slightly different notation from the previous

part. We set

n—4

a 2
=cp | ——m ,
(2.0) n<1+a2|x—z\2>

for every z € Q (it corresponds to a = % in the first part of the paper). Also,

<l

we set:
_ 0 —
Z(z,a),i = %U(z,a)a
fori=1,--- ,n, and
_ o0 —
Z(z,a),n+1 = %U(z,a)

Now we consider the functional I defined on H? () N HJ () by

1 1 +1
I(U)_2/Q’AU|2—p+1/Q‘“+‘p ;

We know that critical points of this functional are positive solutions to the
problem
A’y = uw? on
u=Au = 0 on 0
and, if 2 = R"™ then the solutions for
A’y = wP on R™

>0 and u in D*2?(R")

)
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are of the form U(Zﬂ). We define the set

S= {u € H? ()N Hy (Q) - {0};/9 |Auf® = /Q \u*tp“}v

It is easy to show that for every u € S, we have I(u) > % Now we take
0 < dp < 1 small enough so that, if d(z, 9Q) < dy, then there exists a unique
y € 02 such that |z —y| = d(z,09). We put d(z) = min(dg, d(z, d9)), for

every x in 2. Next we set

and

O(r) ={(x,a) € QA x (1,00) ;d(z)a > r}.
If we consider the eigenvalue problem
A%y = 7pU€Z’a)v on D? (R"),
then obviously U(z’a) is an eigenfunction corresponding to v = %. We take
T2 0) = span {Z(Zﬂ),i,i =1,....,n+ 1} ,

and by using the classification in [21], we have that T(, .y is exactly the
eigenspace corresponding to the eigenvalue 1. We set Ty the eigenspace

corresponding to the eigenvalue v; and

T = (Th®Tew)"

(za)

where orthogonality here is with respect to the scalar product (u,v) =
fQ AuAv, for every u,v € D? (). Now by means of the sterographic projec-
tion from R” to the sphere, we obtain a linear eigenvalue problem on a com-
pact manifold, with operator (Paneitz) having compact resolvent. Therefore

we have the following:
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Lemma 7.1. There exists v > 0 such that for every (z,a) € Qx (1,00),v €

+
T(z,a

) we have

v, A0 —pUY, o) >~ [ pU, 02
(z,0) 0 (2,0)
We are going to find a particular solution to the problem (Pf):

Lemma 7.2. There exist 9 > 0 and Co > 0 such that if || f| ) < €0, the

problem (Pf) has a unique solution ug € H* (Q) N H} (Q), satisfying

[uoller < Collflleey -

1 2 1 1 C
S Aug)? - [t On.
2/9( o) p+1/9“0 /9“0f<2n

Proof. Let A1 be the first eigenvalue of the operator A2. For a fixed 0 < A <

Moreover:

A1, consider the function

[tHP if t < to
h(t) =
At| if ¢ > to
where tg is chosen such that A is continuous. Hence, since h has a linear

growth at infinity and it is non-resonant, we can always find a solution to
the problem
A%v = h(u)+f on Q
u=Au = 0 on 0N
Moreover, using Schauder estimates we get that [luglc1 < Co[[f||¢q) - Thus

by taking g > 0 small enough, we have the desired result. O

Let us consider f > 0in C (ﬁ) with f # 0. We get, by using Hopf’s lemma,
that there exists ¢; > 0 such that

C1 8UO
5< $<01,V3§'€89.
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Therefore, there exists co > 0 such that
up(x) > cod(x), Vo € 00.

Next we want to find solutions of the form ug + v. We define on H? (2) N
H} (Q) the functional

J(u) = 1/Q(AU)2 - p%l—l o ((Uo + U)+)p+1 — (p+ Lufv — uﬁ“.

We note that v is a critical point of J if and only if ug + v is a positive

solution to (Py).

Lemma 7.3. There exists €1 > 0 such that for ||f|loq) < €1, and v €
H?(Q) N HL(Q), vt #£0, there exists a unique t, >t > 0 such that J(tv)

is increasing on (t1.t,], decreasing on (t,,o0), and J(t,v) = max;~q J(tv).

Proof. We give a sketch of the proof: since we can pick €1 small enough, it
suffices to prove the result for up = 0 and then argue by continuity. The

functional J is now equal to I. Let us consider then
I(tv) = t2a; — tPTla,

where a; = 3 [, (Av)? and as = ﬁ Jo (vt)P*! . This is just a polynomial

equation to study. The result follows. ]
Now we define the Nehari manifold
S = {tyv;v € H*(Q) N H) (Q) — {0}}

We have that for v in S, J(v) > 0, and (VJ(v),v) = 0 if and only if
v € SU{0}. Therefore the critical points of J are in S.

Lemma 7.4. The functional J satisfies the Palais-Smale condition on (0, %) .
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Proof. Let {u;j} be a (P-S) sequence at the level 0 < d < <. Then we
know by using the concentration compactness lemma, that there exists u,

21, .0, 2k € Q, a1, .., a € RY such that

k
uj =+ ZU(Zhai) + 0(1)
=1

in the weak sense. After localization of the blow-up points, namely by
testing against a function with support around the z;, we get that the energy
J (uj) > k% This happens if and only if k¥ = 0 since d < %, therefore the

convergence holds. O

We will need the following estimates.

Lemma 7.5. There exists ro > 2, such that for every (z,a) € O(ro)

/uoU@a) > 0(d(z)a™"7),
Q
Ul wg < O(a™? [In(a)]),

n—4

and
/Q Wi UL < 0(d(z) T30 ().
Proof. We have (see Appendix):
—p—1
uOUpZa Zc\/dx Upza _pezaUpza b
/Q () Q()((» <,><,)>

and

AV
QU
i
SN—
S—
=3
K
<
3
L
VR
—_
_l_
o |8
)
3
[}
N———
nN
o8
3

Y
Q




Moreover:

/Q O Uy = 0 (a7°")

Then the first inequality is proved. For the second one, we get:

HU(z,a)H% < HU(Z@)HZT%
< 00w} 0
< Ca” % [In(a)],

Finally, for the last inequality we have:

nedyrned AT ed
/ u Ul S / w5 Uy
Q Q

and by using the fact that there exists ¢ > 0 such that up(z) < cd(2)

whenever |z — z| < d(z), we get the desired result. O

Now we define the following sets :
M = {U(Z,a); (z,a) € Q X (1,00)},

1
N = {AU(Z@); (z,a) € QA x (1,00),\ € <2,2>}
and we call T(Z,a) the tangent space to N at U(z,a)- We also set F(_

za)
. + ol : — pt -
{M(zai A € R} and F[ =T, ). Finally, let F(, o) = F , @ F_ ) and

K be the linear operator defined by
Ku = u; — us,
for any u = uy 4+ us, with uy € F(‘Z o) and ug € F(; o) We have the following

Lemma 7.6. There exist positive constants €9, r1, d and C1 such that for

f € C(Q) with \flo@) < €2 (2,a) € O(r1) and w € Bs (U, q)) , it holds:
(A% = pwt w0, Koy = G [ (o), (7)
Q
Jor every v € F_ o).
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Proof. Again it is enough to show this inequality for ug = 0 and then argue
by continuity. So let us take uy = 0 and by contradiction, let us assume that
the inequality does not hold. Then there exists a sequence (2, ax) € O(r9),

Ok € Foy ap) with [Jog|l = 1, d(zx)ar = 1 — o0, and wy, € H? () N Hy (Q)

Zk,Qk

such that Hwk — U(%ak)H — 0 as k — oo, verifying
lim sup <A2vk — p (wi)! g, Kvk> <0.

We can always write vy = vg1 + vg2 according to the splitting of Fi,, ,,)-.
Since r — 00, we have HU(%%) — U(Zk,ak)H — 0. Therefore it is easy to
see that

diSt(F(Zmak)’ span {T(Ziwak)’ U(Zk:ak) }) — 0.
Thus,

. ; + =
lim dist (Uk,lv F(Zlmak)> =0

k—o0

and by using Lemma (7.1.) we have for k big enough

<Uk,1, APvp1 —p (w}:)p_l Uk,1> > % /Qp (wl{f)p_1 R 1-

Now let us assume for instance that ||vy || > ¢, for k big enough. Then

there exists ¢ > 0, such that <vk71, A2vk,1 —-p (w/,":)p_1 Uk,1> > ¢, and hence

lim sup <vk,17 A%k’l —p (w,":)p vk,1> > C.

By definition of vy o we have
-1
(vnas A%z = (W) v ) < Jowall L =p).
Therefore, knowing also that

lim dist (Uk,% F(;k,ak)> =0

k—o0

30



we get that either ||vg 1] = ||vg2]| =0, that is |Jvg| =0, or
lim sup <A2vk — p (wi)} vk, Kvg) >0
which is a contradiction. Then the lemma holds. O

Proposition 7.7. There exist ro > 0 and Cy > 0 satisfying: for every
feC(Q), |f|C(Q) < €2, and each (z,a) € O (ra), there ewists w,.) €
SN B% (U(z,a)) such that

[Wa,2) = Uy || < C2|VT (Uiz)) | (8)
and
(W(a,z)) ueF(gzl)lr?B%(O)veF(‘zT?WXB O (Utza) +u+0)
that s

T (Wa) +0) < T (W(a2) < J(Wiaz) + 1),
for every u € F(J; 0N B;s (0) and v € F(; 0N Bs (0).

Proof. The existence of w(, . follows from the fact that HVJ (U(z,a)) H —0
as d(z)a — oo and (7): by Taylor expansion we see that the functional is
convex in the direction of F) (':ﬂ) and concave in the direction of F (;a). We
have a saddle point, therefore w (a, ) exists as in [2] and it is in F{; ;). Now

we want to prove that
W@z = Uewll < C2[[VI (Upza)l

We note first that since wy, .) is a saddle point, we have (V.J (w (a, 2)) ,w (a, 2)) =

0, then w (a, z) € S. Using again a Taylor expansion we have

(VI (Wea) s K (Wiza) = Ugza))) =
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— (VI (Vi) + " (V) (We0) = Upe) s K (0ei0) = Upei) )40 ([[040.9) = Uper )

By noticing that
J" (U)o = A?h = p|Ui) " 1y
and by using (7), we get
(VI (W) K (Wea) = Usa)) 2 (VI (U)K (@(z0) = Uza))) +

+Ct [0y = Ul + 0 (l00.0) = U )

But <VJ (w(zﬂ)) , K (w(z’a) — U(Z’a))> = 0 by construction of w(; 4), there-
fore we obtain the desired result by a simple application of Cauchy-Schwartz

inequality. O

Lemma 7.8. Let f = 0. There exists ro9 > 0 such that for every r > ro,

there exists ¢, > % verifying

J(w(z,a)) > Cry
for every (z,a) € O (r).

Proof. By using the expansion of HU(z,a)H2 (see Appendix), we have the
existence of m > 0, such that ||U,q || > m for (z,a) € O(ry). Let now
r > 7. Since f = 0 and w(, 4) € S, then J(w( q)) > % for all (z,a) € O(r).

So let us assume by contradiction that

Ch
inf  J(w,q) =—.
(z,0)€0(r) ( (2, )) n

Then there exists a sequence (z,ax) € O (r), such that




where (2},,a},) € Q x (1, 00) is such that d(z},) aj, — co. Thus

waw ~Ulea))

Using (8), we haveHw(zk,ak) - U
leads to HU — U(

|| < 2, since (zg,ax) € O (rz). This

Zlmak

Zk ak

o) ’ < 7. But we know that d(z}) aj, — oo and

d (zr) ap = r, therefore

hm HU(Zk ar) — U( 1 al)
which is a contradiction. O

Lemma 7.9. Let f € C (ﬁ) , such that |f|C(§) < g9, then there exist rg > 0,
C3,Cy > 0 such that

n—4

% + C5(d(2)a)" ™™ — Cyd(z)a"T

J(w(z,a)) <

for every (z,a) € O (r3).

Proof. For (z,a) € O (ry), we take ﬁ(z,a) = tv, Uz as in [19]. So we

have J (ﬁ(z,a)> = max¢>0 (tU(z,a)) . Hence by construction of w; 4y, we have

J(w(zq)) < J (ﬁ(z,a)> :

We see that in fact, ¢ < .. <2 for every (z,a) € O (r2) with t; and to

two fixed real numbers. Now

~ 1 ) 9 1
U <m = AU = p+ippp+1 L
J( (Z’a)) - tza@({2 /Qt ( (Z’a)) p+1 Qt (z,a)

T S VP g P _opHl
1 Si<ty {P +1 /Q ((uo + V) ) Uty = (0 + DUz 0) — ug

after studying the polynomial equation

1 2 2 1 1
- t A o tp+1 p+
2/Q (AU(z.0)) p+1/9 Uty
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and using the estimate in the Appendix, one can see that

Ly 2_ 1 p+Lpptl Q ~(n-4) (n—1)
%135{2/975 (AU(,M)) P t U(Za) +0(a ) < c+O0((ad(2))~ )

By using a Taylor expansion near zero and at infinity, we find that

! F\PH et P 1
4+ 1 > PP _
p+1Jq ((UO + tU(z,a)) ) —t U(Z a) (]H—l)tuOU( P Quot U(Z o)
_C/Qt” i UL
Therefore

: 1 H\PH pri et
B tlgltlgm {]H-l /Q ((UO + tU(Z’a)) ) -t U(Z a)

1 n—
_(p + 1)tugU(Z a) ~ u8+ < C/ 24 4 4) /Quotzl)U(P;,a)

By using the estimates in Lemma (7.5), we get

c/t" Ui | wtU?, ) < O(d(z)75a™F In(a)))-O(d(z)a"F"),
Q

z a) (z,a)

therefore
=7 CTL —(n— -n_ _n _n—=
J(Uw) < =2 +0((ad(=)" ") + 0(d(z)™7a"% [In(a)]) - O(d(z)a="7")
< %0 (ad(2))~ " + Ad(z)"“1a" % [In(a)| — Bd(z)a~"T
n
for A and B two positive constants. The conclusion follows. O

Now we define the set:
—(n—4) n—4
R = {(z a) € O(rs); Cs(d(2)a) < Cyd(2)a"s }

In this set we have J (w(z’a)) < % and thus Palais-Smale holds.
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Proof. of Theorem (1.3.)
Now the proof of the theorem follows straightforward. In fact, using a
minmax argument on the homology classes of R, we obtain critical points of
(z,a) — J (w(s,q)), namely for each [a] € H, (R) = H, (Q), we have that
the values ¢, defined by

a — i J z,a
o = muin s T (0ew)

are critical values of the function defined before. Moreover, these critical
values corresponds to critical points belonging to the inside of the set O(r3),
by Lemma (7.8). Now we use a transversality theorem (see Appendix) on

the map defined by
U (u, f) = A% — JufP " u—f,

to show that these critical points are non-degenerate. This ends the proof.

O

8 Appendix

Here we will give a list of estimates that we used in some of the proofs.

n—4
Here the O is for f\l—i — oo and e19 — 0. Let Ug y) (2) = (W) -

and for i = 1,2, we will set U; = U(Smi)' By using the same notation as in

section 1, we set U; = PU;, € L and d; = dist(&;,000) .
ion 1, w ; i €12 = PN WAL nd d; = dist(&;, 09)

Lemma 8.1. Let 6, = U, — Uy, then :

i)0 < 6, < Uy,
W (@) = H (5, AT + A ) )
ZZ?,)fl( > ) a)\ fl =0 <)5\11132>

n
2

) fi (2) = O (; )
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Lemma 8.2. It holds:

n—2
IO = (01, 01) = Co = 1 H (61,60 % +0 (=)
. n—4 n—4 )\n 2 )\n 2
”) <U27U1> =1 <512 _H(§1a€2) )\12 >\22 >+O (512 + dn 7 + dn 2>

2n_ 2
i) [ U™ = G — 25 H (60, ) A" + 0 (3=

n—4 AT .
. ntd 0(5124111 (5121) +ﬁln (%)) ifn>8
Z’U) fQ Uln_ Uy = <U2,U1>+ 1y 2=d gn—d
O <612 In (61_2) " d’11_4> ifn <7
1

Lemma 8.3. We have the following estimates on 8‘%\ U;.
n—2
i)<U1, ,\11 a,\U1> e H (G,6) M7+ 0 (dn 2)
1 An 2
=2(U1, k&) +0 (3=)

U
) 1 9 n—4 ngd | oot Ao A2 a2
m)<U2, T(’TU1> =c1 (sognciet T H (EL,L) A7 A7 )40 f 4+ dikz + #

o <5124 In (1) + dﬁll In ( §*
: nei 10y _ 10

2

O(esl2 ln(612)+dn1 (dl ) if n > 8
4

v Ui@U%i—U,l U _n_r
o Uas; (301) < DA 1> O<512ln(€1_21) a 2;11—4) ifn <7

Lemma 8.4. We have the following estimates on ggUl
2
i)<U1,,\%a%lU1> —SerH (&,6) AT 3+O<dn 2)

m)fQU" i/\l BglUl <U1,/\1 % U1>+O(dz 2)

- )\n 2 )\n—2

%Z)<U2v%1‘a£1 U1> <>\1 gec12 — ag H (§1:62) A\ o A7 >+0 (512 e 7=t d’21_2>
ntd 5 5 0] ({512 41n (5121) + % In (%)) an > 8

. m—4 1 1

’L’U)fQ U2 4X8751U1 = <U2’)\7187§1U1>+ 1 n—4 )\?—4

O(slzln(512) " d;’_4> ifn <7

ntd O(&?{LQle In (5121)4—%111 <d—i>> ifn>38
4

by
v) [, Uz - <iU1> = <U2, iiU1>+ n—4 yn—
1




The proof of these estimates are similar to the ones in [3]. For more details
we refer also to [7], [8] and [17].

Next we state a Transversality Theorem: see [| for the proof.

Theorem 8.5. Let XY and Z be three Banach spaces, and ¥ : X XY — Z
be a C' map satisfying the following conditions: given z € Z

i) for every (xz,y) € W~ (z), the map D, V¥ (z,y) : X — Z is a
Fredholm operator of index 0.

ii)for every (z,y) € U1(2), the map D ¥ (z,y) : X xY — Z is
surjective.
Then the set of y € Y, satisfying that z is a regular value of U (-,y), is a

residual set in Y.
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