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Abstract In this paper we investigate the problem of existence and multi-

plicity of solutions for a non-homogeneous fourth order Yamabe type equa-

tion. We exhibit a family of solutions concentrating at two points, provided

the domain contains one hole and we give a multiplicity result if the domain

has multiple holes. Also we prove a multiplicity result for vanishing positive

solutions in a general domain.

1 Introduction and statements of the main results

In this paper we will study the existence and the multiplicity of positive

solutions for a non-homogeneous problem of the form: ∆2u = |u|p−1 u+ f on Ω

u = ∆u = 0 on ∂Ω
(P )
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where Ω is a smooth bounded set of Rn and p = n+4
n−4 is the so-called critical

exponent. These kind of problems were deeply studied in the case of the

Laplacian (see for instance [1],[11], [19]). Let us recall that problem (P )

was studied by Selmi [26] and Ben Ayed - Selmi [9] where the authors prove

the existence of a one-bubble solution to the problem under assumptions on

f . Here we will show that we can get two-bubble solutions if the domain

contains small holes, and vanishing type solutions for a small generic per-

turbation f in the C0 sense.

We recall that for f = 0, this problem has a deep geometrical meaning, in

fact if (M, g) is an n−dimensional compact closed riemannian manifold with

n ≥ 5, we can define the Q−curvature

Q :=
n3 − 4n2 + 16n− 16

8 (n− 2)2 (n− 1)2
R2 − 2

(n− 2)2
|Ric|2 +

1

2(n− 1)
∆R,

where R is the scalar curvature and Ric is the Ricci curvature. After a

conformal change of the metric one gets for g̃ = u
4

n−4 g ,

Qg̃u
n+4
n−4 = Pgu, (1)

where Pg is the Paneitz operator, defined by

Pgu := ∆2
gu− div

((
(n− 2)2 + 4

2 (n− 2) (n− 1)
Rg − 4

n− 2
Ric

)
du

)
+
n− 4

2
Qu.

This gives rise to the problem of prescribing the Q−curvature, as the anal-

ogous problem on the scalar curvature (see [12], [13] and [23]). We remark

that in the flat case, for instance if we consider an open set of Rn, the

problem of prescribing constant Q-curvature coincides with (P ) with f = 0,

namely

∆2u = |u|p−1 u. (2)
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The variational formulation of (2) under Navier boundary conditions in a

bounded set was deeply studied, especially with the methods of critical

points at infinity theory, introduced by Bahri [3] (see [13], [18] and [17]).

We also remark the fact that this problem is not compact, namely, for the

case f = 0 it corresponds exactly to the limiting case of the Sobolev embed-

ding H2 (Ω) ∩ H1
0 (Ω) ↪→ L

2n
n−4 , (see [27]), and thus we loose the compact

embedding, so the variational setting in the classical spaces fails to show

existence of solutions: in fact as in the case of the Laplacian, if the domain

is star shaped we know that it has no positive solutions ([27], [28]). Finally

we recall that in the recent paper [22], we studied the same Yamabe type

problem, with a slightly super-critical exponent.

This work contains two main parts. In the first one we deal with a pertur-

bation of the form εf, that is ∆2u = |u|p−1 u+ εf on Ω

u = ∆u = 0 on ∂Ω
, (Pε)

where f is a positive function in Cα (Ω), 0 < α < 1, and Ω = D − B(P, µ),

for a given domain D and P ∈ D. In this setting we have the following

result:

Theorem 1.1. There exists a constant µ0 = µ0 (D, f) > 0 such that for

each 0 < µ < µ0 fixed, there exist ε0 > 0 and a family of solutions uε of

(Pε) for 0 < ε < ε0, having exactly two concentration points, namely:

uε (x) = cn

 ε
2

n−4λ1,ε

ε
4

n−4λ2
1,ε + |x− ξε1|

2

n−4
2

+cn

 ε
2

n−4λ2,ε

ε
4

n−4λ2
2,ε + |x− ξε2|

2

n−4
2

+θε (x)

and θε (x) −→ 0 as ε −→ 0 uniformly.
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Indeed one gets more information about the solutions along the proof, for

instance we will see that θε (x) = εw + o(ε), where w is the solution of: ∆2w = f on Ω

w = ∆w = 0 on ∂Ω
.

And within the proof we have that the point
(
(ξε1, ξ

ε
2), (an(λε1)n−4, an(λε2))n−4

)
is a critical point of the function Ψ defined by :

Ψ (ξ,Λ) =
1

2

(
2∑
i=1

Λ2
iH (ξi, ξi)− 2Λ1Λ2G (ξ1, ξ2)

)
+

2∑
i=1

Λiw (ξi) ,

where G is the Green’s function of the Ω and H its regular part.

Moreover if we consider a domain with multiple holes we obtain a mul-

tiplicity result. In fact, if Ω = D − ∪1≤i≤kB(Pi, µ) with P1, ..., Pk ∈ Ω, the

previous result can be generalized as in [14] and [22] to the following:

Theorem 1.2. Let 1 ≤ m ≤ k. There exists a constant µ0 = µ0 (D, f) > 0

such that for each 0 < µ < µ0 fixed, there exist ε0 > 0 and a family of

solutions uε of (Pε) for 0 < ε < ε0, of the following form

uε (x) = cn

k∑
i=1

2∑
j=1

 ε
2

n−4λi,j,ε

ε
4

n−4λ2
i,j,ε +

∣∣∣x− ξεi,j∣∣∣2


n−4
2

+ θε (x)

and θε (x) −→ 0 as ε −→ 0 uniformly.

In particular for a domain with k holes we have at least 2k − 1 two-bubble

solutions.

In the second part of the paper we deal with the problem ∆2u = |u|p−1 u+ f on Ω

u = ∆u = 0 on ∂Ω
, (Pf )

with no topological constraint on the domain Ω and f ≥ 0 non identically

zero. We prove the following:

4



Theorem 1.3. There exist a residual subset D ⊂ C2
(
Ω
)

and ε > 0, such

that if f ∈ D and |f |C(Ω̄) < ε, the problem (Pf ) has at least
∞∑
i=0

dimHi (Ω)+1

positive solutions.

Here H∗ (Ω) denotes the singular homology of Ω. We have additional in-

formation for these solutions as well. In fact we will see that they vanish

when |f |C(Ω̄) −→ 0, and they have energy smaller than the energy of a single

bubble; in contrast with the solutions of the first theorem, where the energy

of the solutions is greater than the one of the bubbles, and the solutions

blow-up as ε −→ 0.

Acknowledgement This paper was completed during the year that the

second author spent at the Mathematics Department of Rutgers Univer-

sity: the author wishes to express his gratitude for the hospitality and he is

grateful to the Nonlinear Analysis Center for its support.

2 Preliminaries and first estimates

Let us start by defining the following functions:

U (ξ,λ) (x) =

(
λ

λ2 + |x− ξ|2

)n−4
2

,

where λ > 0 and ξ ∈ Ω. For u ∈ D2 (Ω) , we will write Pu for the projection

of u on H2 (Ω) ∩H1
0 (Ω) , defined as the unique solution of the problem ∆2v = u on Ω

v = ∆v = 0 on ∂Ω
,

5



We also recall that the Green’s function of ∆2 for a set Ω, with Navier

boundary conditions is defined as the solution of ∆2
xG (x, y) = δy on Ω

G (x, y) = ∆xG (x, y) = 0 on ∂Ω
.

This function can be written as

G (x, y) =
an

|x− y|n−4 −H(x, y), ∀x, y ∈ Ω and x 6= y,

where an is a positive constant depending on n and H the positive smooth

solution to ∆2
xH (x, y) = 0 on Ω

H (x, y) = 1
|x−y|n−4 , ∆H (x, y) = ∆ 1

|x−y|n−4 on ∂Ω
.

Now let ξ1, ξ2 be two points in Ω, and λ1, λ2 > 0, we will write U i = U (ξi,λi)

and Ui = PU i. Then one has Ui = U i − θi and

θi(x) = H(x, ξi)λ
n−4
2

i

∫
Rn
U
p
(y)dy + o(λ

n−4
2

i ).

Away from x = ξ, we have

Ui(x) = G(x, ξi)λ
n−4
2

i

∫
Rn
U
p
(y)dy + o(λ

n−4
2

i ).

For more details about these estimates we refer to the Appendix.

Let us set now J to be the functional defined by

J(u) =
1

2

∫
Ω
|∆u|2 − 1

p+ 1

∫
Ω
|u|p ,

and let us find an expansion of

J(U1 + U2) =
1

2

∫
Ω
|∆ (U1 + U2)|2 − 1

p+ 1

∫
Ω

(U1 + U2)p
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For that we define the set

Oδ (Ω) = {(ξ1, ξ2) ∈ Ω× Ω; |ξ1 − ξ2| > δ, d(ξi, ∂Ω) > δ} ,

where δ > 0 is a small fixed number and we put

Cn =
1

2

∫
Ω

∣∣∆U ∣∣2 − 1

p+ 1

∫
Ω
U
p
.

Then we have the following:

Lemma 2.1. For (ξ1, ξ2) in Oδ (Ω) we have

J(U1 + U2) = 2Cn +
1

2

(∫
Rn
U
p
)(

H (ξ1, ξ1)λn−4
1 +H (ξ2, ξ2)λn−4

2 − 2λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2)

)
+o
(
max(λ1, λ2)n−4

)
.

Proof. The proof follows from the following estimates (see the Appendix):∫
Ω
|∆Ui|2 =

∫
Rn

∣∣∆U ∣∣2 − (∫
Rn
U
p
)2

H (ξi, ξi)λ
n−4
i + o(λn−4

i )

and∫
Ω

∆U1∆U2 =

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2) + o
(
max(λ1, λ2)n−4

)
,

1

p+ 1

∫
Ω
Up+1
i =

1

p+ 1

∫
Ω
U
p+1 −

(∫
Rn
U
p
)2

H (ξi, ξi)λ
n−4
i + o(λn−4

i ),

1

p+ 1

∫
Ω

(U1 + U2)p+1−Up+1
1 −Up+1

2 = 2

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2)+o
(
max(λ1, λ2)n−4

)
.

Therefore one has

J(U1 + U2) =
1

2

∫
Ω
|∆ (U1 + U2)|2 − 1

p+ 1

∫
Ω

(U1 + U2)p

=
∑(

1

2

∫
Ω
|∆Ui|2 −

1

p+ 1
Up+1
i

)
+

∫
Ω

∆U1∆U2−
1

p+ 1

∫
Ω

(U1 + U2)p+1−Up+1
1 −Up+1

2

=
∑ 1

2

(∫
Rn

∣∣∆U ∣∣2 − (∫
Rn
U
p
)2

H (ξi, ξi)λ
n−4
i

)
− 1

p+ 1

∫
Ω
U
p+1

+
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+
∑(∫

Rn
U
p
)2

H (ξi, ξi)λ
n−4
i +

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2)−

−2

(∫
Rn
U
p
)2

λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2) + o
(
max(λ1, λ2)n−4

)
= 2Cn+

1

2

(∫
Rn
U
p
)2(

H (ξ1, ξ1)λn−4
1 +H (ξ2, ξ2)λn−4

2 − 2λ
n−4
2

1 λ
n−4
2

2 G (ξ1, ξ2)

)
+

+o
(
max(λ1, λ2)n−4

)
.

Now, we set Ωε = ε−
2

n−4 Ω, and we put:

v(x′) = εu(ε
2

n−4x′)

Then every solution u of (Pε) corresponds to a solution v, by means of the

previous rescaling, of the following problem: ∆2v = |v|p−1 v + εp+1f̃ on Ωε

v = ∆v = 0 on ∂Ωε

where f̃ (x′) = f(ε
2

n−4x′). Hence we define the following perturbed energy

functional:

Jε (u) =
1

2

∫
Ωε

|∆u|2 − 1

p+ 1

∫
Ωε

|u|p − εp+1

∫
Ωε

f̃u.

We consider the function w defined by ∆2w = f on Ω

w = ∆w = 0 on ∂Ω
, (3)

and we obtain the following proposition. Set Λ = (Λ1,Λ2) and λ2
i =(

a−1
n Λi

) 2
n−4 ,
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Proposition 2.2. Let V be the sum of U1, U2 rescaled on Ωε, then for

(ξ1, ξ2) ∈ Oδ (Ω) , one has

Jε (V ) = 2Cn + ε2Ψ (ξ,Λ) + o(ε2),

where

Ψ (ξ,Λ) =
1

2

(
2∑
i=1

Λ2
iH (ξi, ξi)− 2Λ1Λ2G (ξ1, ξ2)

)
+

2∑
i=1

Λiw (ξi) .

Proof. The only term we need to estimate is∫
Ω
f (U1 + U2) =

∫
Ω

(
∆2w

)
(U1 + U2)

=

2∑
i=1

∫
Ω

(
∆2w

)(
G(x, ξi)λ

n−4
2

i

∫
Rn
U
p
(y)dy

)
+ o(λ

n−4
2

i )

=

2∑
i=1

w (ξi)λ
n−4
2

i

∫
Rn
U
p
(y)dy + o(λ

n−4
2

i ).

The conclusion follows.

3 Reduction process

From now on let Ωε = ε−
2

n−4 Ω. We will consider points ξ′i ∈ Ωε and numbers

Λi > 0, for i = 1, 2, such that |ξ′1 − ξ′2| > δε−
2

n−4 , d(ξ′i, ∂Ωε) > δε−
2

n−4 and

δ < Λi < δ−1. Here we will adopt the same notations as in [14], that is

V i(x) = U ξ′i,Λ∗i for Λ∗i =
(
cnΛ2

i

) 1
n−4 ; the related projections on H2 (Ωε) ∩

H1
0 (Ωε) will be denoted by Vi. Consider the functions

Zij =
∂V i

∂ξij
, i = 1, ..., n and Zin+1 =

∂V i

∂Λ∗i
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and their projections Zij = PZij . Let V = V1 + V2 and V = V 1 + V 2.

For a given smooth function h, we want to solve the following linear problem:
∆2ϕ− pV p−1ϕ = h+

∑
i,j cijV

p−1
i Zij on Ωε

ϕ = ∆ϕ = 0 on ∂Ωε〈
V p−1
i Zij , ϕ

〉
:=

∫
Ωε
V p−1
i Zijϕ = 0 for i = 1, 2 ; j = 1, ..., n+ 1

(4)

We define the following weighted L∞ norms : for a function u defined on Ωε

‖u‖∗ =
∥∥∥(w1 + w2)−βu

∥∥∥
L∞

+
∥∥∥(w1 + w2)−β−

1
n−4∇u

∥∥∥
L∞

where wi =

(
1

1+|x−ξ′i|
2

)n−4
2

, β = 4
n−4 , and

‖u‖∗∗ =
∥∥(w1 + w2)−γu

∥∥
L∞

where γ = 8
n−4 . We define also the set

O′δ (Ωε) =
{

(ξ1, ξ2) ∈ Ωε × Ωε; |ξ1 − ξ2| > δε−
2

n−4 , d(ξi, ∂Ω) > δε−
2

n−4

}
.

We refer to [22] for the proof of the following :

Proposition 3.1. There exist ε0 > 0 and C > 0 such that for all 0 < ε < ε0

and all h ∈ Cα(Ωε), the problem (4) admits a unique solution ϕ = Lε(h).

Moreover we have

‖Lε(h)‖∗ ≤ C ‖h‖∗∗ , |cij | ≤ C ‖h‖∗∗ ,

and ∥∥∇(ξ′,Λ)Lε(h)
∥∥
∗ ≤ C ‖h‖∗∗ .

To split the difficulties, we start by finding a solution of
∆2(V + η)− (V + η)p+ − εp+1f̃ =

∑
i,j cijV

p−1
i Zij on Ωε

η = ∆η = 0 on ∂Ωε〈
V p−1
i Zij , η

〉
= −

〈
V p−1
i Zij , ϕ

〉
for i = 1, 2 ; j = 1, ..., n+ 1

,
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where ϕ is the solution of ∆2ϕ = εp+1f̃ on Ωε

ϕ = ∆ϕ = 0 on ∂Ωε

.

If we take η = η + ϕ, then the equation on η reads as follows:

∆2η − pV p−1η = Nε(η)−Rε +
∑
i,j

cijV
p−1
i Zij (5)

with

Nε(η) = |V + η + ϕ|p−1 (V + η + ϕ)+ − pV
p−1 (η + ϕ)− V p,

and

Rε = V p − Up1 − U
p
2 − p |V |

p−2 ϕ.

Therefore, taking ψ = −Lε (Rε) and η = ψ + v, we get an equation on v of

the following form :

∆2v − pV p−1v = Nε(η) +
∑
i,j

cijV
p−1
i Zij .

Lemma 3.2. There exists C > 0 such that for ε > 0 small enough and

‖v‖∗ ≤
1
4 , we have

‖Nε(ψ + v)‖∗∗ ≤

 C
(
‖v‖2∗ + ε ‖v‖∗ + εp+1

)
if n ≤ 12

C
(
ε2β−1 ‖v‖2∗ + ε2β ‖v‖∗ + ε3p

)
if n > 12

Proof. First, we recall that ‖ψ‖∗ ≤ Cε2 and since |ϕ| ≤ Cεp+1, we have

|ϕ|V −β ≤ Cεp+1V
−β ≤ Cε2

hence ‖ϕ‖∗ ≤ Cε2 and we can choose ε small enough so that

‖η‖∗ ≤ ‖ψ‖∗ + ‖v‖∗ < 1.
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Now, we have

Nε (η) =
p (p− 1)

2
(V + t (η + ϕ))p−2 (η + ϕ)2 ,

for a certain t ∈ (0, 1) and hence if n ≤ 12 we have∣∣∣V − 8
n−4Nε (η)

∣∣∣ ≤ CV
2β− 8

n−4V
p−2 ‖η + ϕ‖2∗

≤ C ‖η + ϕ‖2∗

If n > 12 we have to distinguish two cases. First consider δ > 0 and take

the region d(y, ∂Ωε) > δε−
n+2
n−4 , then one has the existence of Cδ > 0 such

that V > CδV and therefore we get∣∣∣Nε (η)V
− 8
n−4

∣∣∣ ≤ CV
2β− 8

n−4
+p−2 ‖η + ϕ‖2∗

≤ Cεp−2 ‖η + ϕ‖2∗

If d(y, ∂Ωε) ≤ δε−
n+2
n−4 we have, by using Hopf lemma, that for δ sufficiently

small V (y) ∼ ∂V
∂ν d(y, ∂Ωε), (recall that |∇V | =

∣∣∇V ∣∣ + o (1)) and |∇V | ≥

Cε
n−3
n−4 , for ε small enough. Thus V (y) ≥ Cε2n−3

n−4d(y, ∂Ωε), therefore∣∣∣Nε (η)V
− 8
n−4

∣∣∣ ≤ CV
− 8
n−4

(
ε2n−3

n−4d(y, ∂Ωε)
)p−2

(η + ϕ)2

≤ CV
− 8
n−4

(
ε2n−3

n−4d(y, ∂Ωε)
)p−2

(η + ϕ)2

≤ C
(
ε2n−3

n−4
−n+2
n−4

)p−2
‖η + ϕ‖2∗

≤ Cε2β−1 ‖η + ϕ‖2∗ .

Finally

‖Nε(ψ + v)‖∗∗ ≤

 C
(
‖ψ + v + ϕ‖2∗ ,

)
if n ≤ 12

C
(
ε2β−1 ‖ψ + v + ϕ‖2∗

)
if n > 12

Which finishes the proof.
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Now we want to find a solution to (5). The problem can be seen as a fixed

point problem if we write it in the following way

v = −Lε (Nε (ψ + v)) = Aε (v) . (6)

We have the following:

Proposition 3.3. There exists C > 0 such that for ε > 0 small enough, the

problem (6) has a unique solution v, with ‖v‖∗ < Cε2. Moreover, the map

(ξ′,Λ) −→ v is C1 with respect to the norm ‖·‖∗ , and
∥∥∇(ξ′,Λ)v

∥∥
∗ ≤ Cε

2.

Proof. Let

F =
{
u ∈ H2 (Ω) ∩H1

0 (Ω) , ‖u‖∗ < ε2
}
,

and then consider Aε : F −→ H2 (Ω)∩H1
0 (Ω). By using the previous lemma

and proposition (3.1) we get

‖Aε (u)‖∗ ≤ C ‖Nε(u+ ψ)‖∗∗

≤

 C
(
‖u‖2∗ + ε ‖u‖∗ + εp+1

)
if n ≤ 12

C
(
ε2β−1 ‖u‖2∗ + ε2β ‖u‖∗ + ε3p

)
if n > 12

≤

 Cε3 if n ≤ 12

Cε2β+3 if n > 12
,

so for ε > 0 small enough, we have that Aε maps F into itself. Now we

estimate ‖Aε (a)−Aε (b)‖∗ for a, b ∈ F. Since

‖Aε (a)−Aε (b)‖∗ ≤ C ‖Nε(a+ ψ)−Nε(b+ ψ)‖∗∗ ,

it suffices to show that Nε is a contraction to finish the proof of the propo-

sition. Note that by construction we have

DuNε(u+ ψ) = p |V + u+ ψ + ϕ|p−2 (V + u+ ψ + ϕ)− pV p−1.
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Then arguing as in [22], we obtain that Nε is a contraction. Hence the

existence and uniqueness of v follows. Next we prove that the map is C1.

We will apply the implicit function theorem to the map K defined by

K
(
ξ′,Λ, v

)
= v −Aε(v).

We recall that

Dξ′Nε(u) = p
[
|V + u+ ϕ|p−2 (V + u+ ϕ)− (p− 1)V p−2 (u+ ϕ)− V p−1

]
Dξ′V

Also,

DuK
(
ξ′,Λ, u

)
h = h+ Lε(DuNε(u+ ψ)h) = h+M(h).

Now

‖M(h)‖∗ ≤ C ‖DuNε(u+ ψ)h‖∗∗

≤ C
∥∥∥V − 8

n−4
+β
DuNε(u+ ψ)

∥∥∥
∞
‖h‖∗

and since ∣∣∣V − 8
n−4

+β
DuNε(u+ ψ)

∣∣∣ ≤ CV 2β−1 ‖u+ ψ‖∗ ,

we get ∥∥∥V − 8
n−4

+β
DuNε(u+ ψ)

∥∥∥
∞
≤ C

 ε2 if n ≤ 12

ε2β+1 if n > 12
,

hence

‖M(h)‖∗ ≤ Cε
min(2,2β+1) ‖h‖∗

Therefore by using the implicit function theorem, we have that ϕ depends

continuously on the parameter (ξ′,Λ) . On the other hand if we differentiate

with respect to ξ′ we get

Dξ′K
(
ξ′,Λ, u

)
= Dξ′u+Dξ′Lε(Nε(u+ ψ))
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From proposition (3.1) we get that

∥∥Dξ′Lε(h)
∥∥
∗ ≤ C ‖h‖∗∗

Thus we need to compute

Dξ′ψ = (Dξ′Lε)(Rε) + Lε(Dξ′Rε),

but

Dξ′1
Rε = pV p−1Dξ′1

V − pUp−1
1 Dξ′1

U1 − p (p− 2) |V |p−3Dξ′1
V ϕ

which depends continuously on the parameters, and this is enough to prove

that v is C1 with respect to the parameters (ξ′,Λ) . Moreover we have

Dξ′v = −
(
DvK

(
ξ′,Λ, v

))−1 [
(Dξ′Lε) (Nε (v + ψ)) +

+Lε
(
Dξ′(Nε (v + ψ))

)
+ Lε

(
Dv(Nε) (v + ψ)Dξ′ψ

)]
,

hence

∥∥Dξ′v
∥∥
∗ ≤ C

(
‖Nε (v + ψ)‖∗∗ +

∥∥Dξ′(Nε (v + ψ))
∥∥
∗∗ +

∥∥Dv(Nε) (v + ψ)Dξ′ψ
∥∥
∗∗
)
.

Now, from Lemma (3.2), we know that

‖Nε(v + ψ)‖∗∗ ≤

 Cε3 if n ≤ 12

Cε2β+3 if n > 12

and also

∣∣Dξ′(Nε (u))
∣∣ = p

[
|V + u+ ϕ|p−2 (V + u+ ϕ)− (p− 1)V p−2 (u+ ϕ)− V p−1

]
Dξ′V

≤ CV p−2
∣∣Dξ′V

∣∣ |u| ≤ CV p−2+n−3
n−4

+β ‖u‖∗ .

We get

V
− 8
n−4

∣∣Dξ′(Nε (u))
∣∣ ≤ CV n−3

n−4
+β−1 ‖u‖∗ ,
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therefore ∥∥Dξ′(Nε (v + ψ))
∥∥
∗∗ ≤ Cε

2

A similar estimate gives∥∥Dv(Nε) (v + ψ)Dξ′ψ
∥∥
∗∗ ≤ Cε

2.

Since there is no difference in the case of the differentiation with respect to

Λ, we omit it.

4 Reduction of the functional

Here we want to go back to our original set Ω, therefore we will denote

ξ′i = ε−
2

n−4 ξi where ξi ∈ Ω and we remark that if we take ξi and Λ so that

cij = 0, then we obtain a solution of our original problem. Let Iε be the

functional defined by

Iε(u) =
1

2

∫
Ω
|∆u|2 − 1

p+ 1

∫
Ω
|u|p+1 − ε

∫
Ω
fu

so that u = V + v+ϕ+ψ is a solution for our problem if and only if it is a

critical point for this functional. Let us consider the functions defined on Ω

by

v̂(ξ,Λ) (x) = ε−1v
(
ε−

2
n−4 ξ,Λ

)(
ε−

2
n−4x

)
,

ψ̂ (x) = ε−1ψ
(
ε−

2
n−4x

)
,

ϕ̂ (x) = ε−1ϕ
(
ε−

2
n−4x

)
and

Ûi(x) = ε−1Vi

(
ε−

2
n−4x

)
Therefore if we set Û(x) = Û2(x) + Û1(x), and

I (ξ,Λ) = Iε
(
Û + ψ̂ + v̂(ξ,Λ) + ϕ̂

)
16



then

I (ξ,Λ) = Jε (V + ψ + v + ϕ) .

Next we state the following result and we refer to [22] for the proof.

Lemma 4.1. u = Û + ψ̂ + v̂(ξ,Λ) + ϕ̂ is a solution of the problem (P ) if

and only if (ξ,Λ) is a critical point of I.

Now we define

σf =

∫
Ω
fw,

and we obtain

Proposition 4.2. We have the following expansion:

I(ξ,Λ) = 2Cn + ε2 (Ψ (ξ,Λ) + σf ) + o(ε2),

where o(ε2) −→ 0 as ε −→ 0 in the C1 sense, uniformly in Oδ (Ω)×
(
δ, δ−1

)2
.

Proof. Let us show first that

I(ξ,Λ)− Iε
(
Û + ψ̂ + ϕ̂

)
= o(ε2),

and

∇(ξ,Λ)

(
I(ξ,Λ)− Iε

(
Û + ψ̂ + ϕ̂

))
= o(ε2).

Indeed, using a Taylor expansion we have

Jε

(
Û + ψ̂ + v̂(ξ,Λ) + ϕ̂

)
−Jε

(
Û + ψ̂ + ϕ̂

)
=

∫ 1

0
tD2Jε

(
Û + ψ̂ + ϕ̂+ tv̂

)
[v̂, v̂] dt

and this holds since DJε

(
Û + ψ̂ + ϕ̂+ v̂

)
= 0. Therefore, we have∫ 1

0
tD2Jε

(
Û + ψ̂ + ϕ̂+ tv̂

)
[ϕ̂, ϕ̂] dt =

∫ 1

0
t

[∫
Ωε

|∇v|2 − p (V + ψ + ϕ+ tv)p−1 v2

]
dt

=

∫ 1

0
t

∫
Ωε

p
[
V p−1 − (V + ψ + ϕ+ tv)p−1

]
v2 +Nε (v + ψ) vdt.

17



We have ‖v‖∗ + ‖ϕ‖∗ + ‖ψ‖∗ = O
(
ε2
)
, and by using Lemma (3.2), we get∫

Ωε

Nε (v + ψ) v ≤
∫

Ωε

V
p−1+β ‖Nε (v + ψ)‖∗∗ ‖v‖∗ ≤ Cε

3

∫
Ωε

V
p−1+β ≤ Cε3.

Now, the remaining part can be estimated as follows∫
Ωε

[
V p−1 − (V + ψ + ϕ+ tv)p−1

]
v2 ≤ Cε4

∫
Ωε

V
2β
[
V p−1 − (V + ψ + tϕ)p−1

]
≤ Cε4,

Same estimates hold if we differentiate with respect to ξ. In fact we have

Dξ

(
Jε

(
Û + ψ̂ + v̂(ξ,Λ) + ϕ̂

)
− Jε

(
Û + ψ̂ + ϕ̂

))
=

ε−
2

n−4

∫ 1

0
t

∫
Ωε

pDξ′

([
V p−1 − (V + ψ + ϕ+ tv)p−1

]
v2
)

+Dξ′ (Nε (v + ψ) v) dt,

and the conclusion follows again from Lemma (3.2). Next step is to prove

that

Iε
(
Û + ψ̂ + ϕ̂

)
− Iε

(
Û + ϕ̂

)
= o

(
ε2
)

and

Dξ

(
Iε
(
Û + ψ̂ + ϕ̂

)
− Iε

(
Û + ϕ̂

))
= o

(
ε2
)
,

So we start by writing

Iε(Û + ψ̂ + ϕ̂)− Iε(Û + ϕ̂) = Iε(U + ψ + ϕ)− Iε(U + ϕ)

=

∫ 1

0
(1− t)

([
p

∫
Ωε

(V + ϕ+ tψ)p−1 ψ2 −
∫

Ωε

|∆ψ|2
]
−

−
∫

Ωε

(
|V |p − |V + ϕ|p + p |V |p−1 ϕ

)
ψ +

∫
Ωε

Rεψ

)
.

Also

Dξ

(
Iε
(
Û + ψ̂ + ϕ̂

)
− Iε

(
Û + ϕ̂

))
= ε−

2
n−4

[∫ 1

0
(1− t)

(
Dξ′

[
p

∫
Ωε

(V + ϕ+ tψ)p−1 ψ2−

18



−
∫

Ωε

|∆ψ|2
]
dt−Dξ′

∫
Ωε

(
|V |p − |V + ϕ|p + p |V |p−1 ϕ

)
ψ +Dξ′

∫
Ωε

Rεψ

)]
Again, by using the fact that ‖ψ‖∗+ ‖Rε‖∗∗+

∥∥∇(ξ,Λ)ψ
∥∥
∗+
∥∥∇(ξ,Λ)R

ε
∥∥
∗∗ ≤

Cε2, with ‖ϕ‖∗ ≤ Cεp if n ≤ 12 and ‖ϕ‖∗ ≤ Cε2 if n > 12 , we get the

desired result. The final steps, namely showing

Iε
(
Û + ϕ̂

)
− Iε

(
Û
)

= ε2σf + o
(
ε2
)
,

and

Dξ

(
Iε
(
Û + ϕ̂

)
− Iε

(
Û
))

= o
(
ε2
)
,

are also obtained by using the same kind of estimates.

5 Analysis of the exterior domain

Let us consider here Ω = D − B(0, µ) for µ > 0 small enough. Also for

E = Rn −B(0, 1) define the set

V =

{
(x, y) ∈ Rn × Rn;GE(x, y)−H

1
2
E(x, x)H

1
2
E(y, y) < 0

}
∩
(
µ−1Ω

)
,

where GE and HE are the Green’s function and its regular part on the set

E.

Let us take f = 1 and Fa = {x ∈ Rn; 1 < |x| < a, a > 1} , then the solu-

tion of  ∆2wa = f on Fa

wa = ∆wa = 0 on ∂Fa
,

is given by

wa (x) = − 1

8n (n+ 2)

(
a4 − 1

a4−n − 1
|x|4−n − |x|4 + a4−n (1− an)

a4−n − 1

)
,

It is easy to see that it has a maximum for

|xa| =

(
4
(
1− a4−n)

(n− 4) (a4 − 1)

)−1
n

,
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and |xa| −→ ∞ as a −→ ∞. Now we consider the function ϕFa defined, on

the set Fa by

ϕFa (x, y) =
1

2

HFa (x, x)wa (y)2 +HFa (y, y)wa (x)2 + 2GFa (x, y)wa (y)wa (x)

−HFa (x, x)HFa (y, y) +G2
Fa(x, y)

,

we will extend it to the full exterior domain E = {x ∈ Rn; 1 < |x|} , for that

we just extend wa by zero for |x| > a. Hence knowing that

HE (x, y) =
an

||y| (x− y)|n−4

where y = y

|y|2 , and since wa is radially symmetric, we get that ϕE has a

critical point (x, y) if and only if sin(θ) = 0 where θ is the angle between x

and y. Now we set x = se and y = −te, where e is a unit vector and s and

t are real number greater than 1. we write

ϕ̃E (s, t) = ϕE (se,−te) .

Explicitly :

2anϕ̃E (s, t) =

(
w̃a (t)2

(s2 − 1)n−4 +
w̃a (s)2

(t2 − 1)n−4 + 2w̃a (t) w̃a (s)

(
1

(s+ t)n−4 −
1

(st+ 1)n−4

))
((

1

(s+ t)n−4 −
1

(st+ 1)n−4

)2

−
(

1

(t2 − 1)n−4 (t2 − 1)n−4

))−1

.

We recall now (see [22] ) that the function defined by

ρ̃ (s, t) = an

(
− 1

(t2 − 1)
n−4
2 (s2 − 1)

n−4
2

− 1

(1 + st)n−4 +
1

(s+ t)n−4

)
,

has a unique maximum point of the form (K,K), for s, t > 1 and a unique

k satisfying ρ̃ (k, k) = 0. we can choose a0 > 0, big enough, such that for

a > a0, we have k < K < |xa| . Hence we can get the following :

Lemma 5.1. The function ϕ̃E admits a unique minimum, of the form

(τa, τa) . Moreover τa ∈ (k,K) .
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Next we will work on the domain Ω = D − B (0, µ). We set m, (resp

M) the radius of the largest (resp smallest) ball contained (resp containing)

D, and set α = minΩ f, and β = maxΩ f . Thus, by using the maximum

principle, we have zm ≤ w ≤ zM for µ < |x| < m, with w as defined in (3),

zm (x) = αµ4wa1
(
µ−1x

)
,

and

zM (x) = βµ4wa2
(
µ−1x

)
,

here a1 = µ−1m and a1 = µ−1M. we obtain the following

Lemma 5.2. For µ > 0 small enough the function ϕE has a relative min-

imum in a point (x̃µ, ỹµ) , with |x̃µ| and |ỹµ| belonging to
(
k, k̃
)
, and k̃

independent of µ.

The proof of this lemma follows if we show that there exist k̃ ≥ K

satisfying

ϕ̃Fa1

(
k̃, k̃
)

ϕ̃Fa2 (K,K)
≥ 1,

the conclusion will follow from the fact that ϕFa1 ≤ ϕE ≤ ϕFa2 and ϕFa has

a unique minimum point for a big enough.

Let us Define the set

X =
{

(x, y) ∈ V, such that k < |x| , |y| < k̃
}
,

and call cµ = ϕE (x̃µ, ỹµ) . Now we choose δµ > cµ in such way that the set

{(x, y) ∈ X , ϕE = δµ} is a closed curve on which ∇ϕE 6= 0. Observe then

that if we call

J = {(x, y) ∈ X , such that ϕE ≤ δµ} ,
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two situation might happen on ∂J : either there exist a tangential direction

τ such that ∇ϕE · τ 6= 0, or x and y point in two different directions and

∇ϕE (x, y) 6= 0 points in the normal direction to ∂J .

Now if we look at Eµ = Rn − B (0, µ), then we can easily see that GEµ

and HEµ , are defined by

GEµ (x, y) = µ4−nGE
(
µ−1x, µ−1y

)
and

HEµ (x, y) = µ4−nHE

(
µ−1x, µ−1y

)
.

Note that Sµ = µJ , corresponds exactly to the set
{
ϕE
(
µ−1x, µ−1y

)
≤ δµ

}
.

Also

G (x, y) = GEµ (x, y) +O(1)

on the set µX . Therefore, it follows that:

ϕΩ (x, y) = µn+4ϕE
(
µ−1x, µ−1y

)
+ o(1)

where

ϕΩ (x, y) =
1

2

HΩ (x, x)w (y)2 +HΩ (y, y)w (x)2 + 2GΩ (x, y)w (y)w (x)

G2
Ω(x, y)−HΩ (x, x)HΩ (y, y)

and o(1) −→ 0 as µ −→ 0 in the C1 sense.

6 Proof of Theorem 1.1

Since the function Ψ defined in section 2 is singular on the diagonal of

Ω × Ω, we replace the terms G (ξ1, ξ2) by GM (ξ1, ξ2) = min (G (ξ1, ξ2) ,M)

for a constant M > 0 to be fixed later. Hence Ψ is well defined on Sµ ×R2
+

.
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We remark that in that set, we have ρ (x, y) = H (x, x)
1
2 H (y, y)

1
2 −

G(x, y) < 0, therefore the principal part of Ψ which is a quadratic form, has

a negative direction. We will set e (ξ1, ξ2) the vector defining the negative

direction :

We have

e (ξ1, ξ2) =

(
H (ξ1, ξ1)

1
2

H (ξ2, ξ2)
1
2 ρ (ξ1, ξ2)

,
H (ξ2, ξ2)

1
2

H (ξ1, ξ1)
1
2 ρ (ξ1, ξ2)

)
,

Now we are going to consider the vector ẽ such that, for each (ξ1, ξ2),

ẽ (ξ1, ξ2) is the critical point of Ψ ((ξ1, ξ2) , ·). This vector can be written

explicitly in the following form

ẽ (ξ1, ξ2) =

(
H (ξ2, ξ2)w (ξ1) +G (ξ1, ξ2))w (ξ2))w (ξ1))

G2(ξ1, ξ2)−H (ξ2, ξ2)H (ξ1ξ2=1)
,

H (ξ1, ξ1)w (ξ2) +G (ξ1, ξ2))w (ξ2))w (ξ1))

G2(ξ1, ξ2)−H (ξ2, ξ2)H (ξ1ξ2=1)

)
.

Therefore we can check that Ψ ((ξ1, ξ2) , ẽ (ξ1, ξ2)) = ϕΩ (ξ1, ξ2) .

Now we can set the min-max scheme, in a similar way as in [1], [14] and

[22]. Let us define

Kµ = {(x, y) ∈ X , (|x| , |y|) = µ (|x̃µ| , |ỹµ|)} ,

We consider the family of curves R, satisfying the following properties, γ :

K2
µ ×

[
s, s−1

]
× [0, 1] −→ Aµ × R2

+ such that :

i) for (ξ1, ξ2) ∈ K2
µ, t ∈ [0, 1] it holds

γ (ξ1, ξ2, s, t) = (ξ1, ξ2, sẽ (ξ1, ξ2)) ,

and

γ
(
ξ1, ξ2, s

−1, t
)

=
(
ξ1, ξ2, s

−1ẽ (ξ1, ξ2)
)
.

ii)γ (ξ1, ξ2, t, 0) = (ξ1, ξ2, tẽ (ξ1, ξ2)) , for all (ξ1, ξ2, t) ∈ K2
µ ×

[
s, s−1

]
.
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Now arguing as in [22], the min-max value defined by

C (Ω) = inf
γ∈R

sup
(ξ1,ξ2,t)∈K2

µ×[s,s−1]

Ψ (γ (ξ1, ξ2, t, 1)) ,

is a critical value of Ψ.

Then the proof of theorem 1.1 follows as in ([15]).

7 Vanishing Solutions

In this section we will prove a multiplicity result concerning problem (Pf ).

Let us start by introducing a slightly different notation from the previous

part. We set

U (z,a) = cn

(
a

1 + a2 |x− z|2

)n−4
2

,

for every z ∈ Ω (it corresponds to a = 1
λ in the first part of the paper). Also,

we set:

Z(z,a),i =
∂

∂zi
U (z,a),

for i = 1, · · · , n, and

Z(z,a),n+1 =
∂

∂a
U (z,a)

Now we consider the functional I defined on H2 (Ω) ∩H1
0 (Ω) by

I(u) =
1

2

∫
Ω
|∆u|2 − 1

p+ 1

∫
Ω

∣∣u+
∣∣p+1

,

We know that critical points of this functional are positive solutions to the

problem  ∆2u = up on Ω

u = ∆u = 0 on ∂Ω
,

and, if Ω = Rn then the solutions for ∆2u = up on Rn

u > 0 and u in D2,2 (Rn)
,
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are of the form U (z,a). We define the set

S =

{
u ∈ H2 (Ω) ∩H1

0 (Ω)− {0} ;

∫
Ω
|∆u|2 =

∫
Ω

∣∣u+
∣∣p+1

}
,

It is easy to show that for every u ∈ S, we have I(u) > Cn
n . Now we take

0 < d0 < 1 small enough so that, if d(x, ∂Ω) < d0, then there exists a unique

y ∈ ∂Ω such that |x− y| = d(x, ∂Ω). We put d(x) = min(d0, d(x, ∂Ω)), for

every x in Ω. Next we set

O (r) = {(x, a) ∈ Ω× (1,∞) ; d(x)a = r}

and

O (r) = {(x, a) ∈ Ω× (1,∞) ; d(x)a ≥ r} .

If we consider the eigenvalue problem

∆2v = γpU
p
(z,a)v on D2 (Rn) ,

then obviously U (z,a) is an eigenfunction corresponding to γ1 = 1
p . We take

T(z,a) = span
{
Z(z,a),i, i = 1, . . . , n+ 1

}
,

and by using the classification in [21], we have that T(z,a) is exactly the

eigenspace corresponding to the eigenvalue 1. We set T0 the eigenspace

corresponding to the eigenvalue γ1 and

T+
(z,a) =

(
T0 ⊕ T(z,a)

)⊥
,

where orthogonality here is with respect to the scalar product (u, v) =∫
Ω ∆u∆v, for every u, v ∈ D2 (Ω) . Now by means of the sterographic projec-

tion from Rn to the sphere, we obtain a linear eigenvalue problem on a com-

pact manifold, with operator (Paneitz) having compact resolvent. Therefore

we have the following:
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Lemma 7.1. There exists γ > 0 such that for every (z, a) ∈ Ω× (1,∞) , v ∈

T+
(z,a), we have 〈

v,∆2v − pUp(z,a)v
〉
≥ γ

∫
Ω
pU

p
(z,a)v

2.

We are going to find a particular solution to the problem (Pf ):

Lemma 7.2. There exist ε0 > 0 and C0 > 0 such that if ‖f‖C(Ω̄) < ε0, the

problem (Pf ) has a unique solution u0 ∈ H2 (Ω) ∩H1
0 (Ω), satisfying

‖u0‖C1 ≤ C0 ‖f‖C(Ω̄) .

Moreover:
1

2

∫
Ω

(∆u0)2 − 1

p+ 1

∫
Ω
up+1

0 −
∫

Ω
u0f <

Cn
2n
.

Proof. Let λ1 be the first eigenvalue of the operator ∆2. For a fixed 0 < λ <

λ1, consider the function

h(t) =

 |t+|
p

if t < t0

λ |t| if t ≥ t0

where t0 is chosen such that h is continuous. Hence, since h has a linear

growth at infinity and it is non-resonant, we can always find a solution to

the problem  ∆2u = h(u) + f on Ω

u = ∆u = 0 on ∂Ω

Moreover, using Schauder estimates we get that ‖u0‖C1 ≤ C0 ‖f‖C(Ω̄) . Thus

by taking ε0 > 0 small enough, we have the desired result.

Let us consider f ≥ 0 in C
(
Ω
)

with f 6= 0. We get, by using Hopf’s lemma,

that there exists c1 > 0 such that

c1

2
< −∂u0

∂ν
< c1, ∀x ∈ ∂Ω.
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Therefore, there exists c2 > 0 such that

u0(x) ≥ c2d(x), ∀x ∈ ∂Ω.

Next we want to find solutions of the form u0 + v. We define on H2 (Ω) ∩

H1
0 (Ω) the functional

J(u) =
1

2

∫
Ω

(∆u)2 − 1

p+ 1

∫
Ω

(
(u0 + u)+)p+1 − (p+ 1)up0v − u

p+1
0 .

We note that v is a critical point of J if and only if u0 + v is a positive

solution to (Pf ).

Lemma 7.3. There exists ε1 > 0 such that for ‖f‖C(Ω̄) < ε1, and v ∈

H2 (Ω) ∩H1
0 (Ω), v+ 6= 0, there exists a unique tv > t1 > 0 such that J(tv)

is increasing on (t1.tv], decreasing on (tv,∞), and J(tvv) = maxt>0 J(tv).

Proof. We give a sketch of the proof: since we can pick ε1 small enough, it

suffices to prove the result for u0 = 0 and then argue by continuity. The

functional J is now equal to I. Let us consider then

I(tv) = t2a1 − tp+1a2

where a1 = 1
2

∫
Ω (∆v)2 and a2 = 1

p+1

∫
Ω (v+)

p+1
. This is just a polynomial

equation to study. The result follows.

Now we define the Nehari manifold

S =
{
tvv; v ∈ H2 (Ω) ∩H1

0 (Ω)− {0}
}

We have that for v in S, J(v) > 0, and 〈∇J(v), v〉 = 0 if and only if

v ∈ S∪{0} . Therefore the critical points of J are in S.

Lemma 7.4. The functional J satisfies the Palais-Smale condition on
(
0, Cnn

)
.
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Proof. Let {uj} be a (P-S) sequence at the level 0 < d < Cn
n . Then we

know by using the concentration compactness lemma, that there exists u,

z1, ..., zk ∈ Ω, a1, .., ak ∈ R∗+ such that

uj = u+

k∑
i=1

U (zi,ai) + o(1)

in the weak sense. After localization of the blow-up points, namely by

testing against a function with support around the zi, we get that the energy

J (uj) ≥ kCnn . This happens if and only if k = 0 since d < Cn
n , therefore the

convergence holds.

We will need the following estimates.

Lemma 7.5. There exists r0 > 2, such that for every (z, a) ∈ O(r0)∫
Ω
u0U

p
(z,a) ≥ O(d(z)a−

n−4
2 ),

∥∥U(z,a)

∥∥
L

n
n−4
≤ O(a−

n
2 |ln(a)|),

and ∫
Ω
u

n
n−4

0 U
n
n−4

(z,a) ≤ O(d(z)
n
n−4a−

n
2 |ln(a)|).

Proof. We have (see Appendix):∫
Ω
u0U

p
(z,a) ≥ c

∫
Ω
d(x)

(
U
p
(z,a) − pθ(z,a)U

p−1
(z,a)

)
,

and ∫
Ω
d(x)U

p
(z,a) ≥

d (z)

2

∫
2d(z)>d(x)>

d(z)
2

U
p
(z,a)

≥ d (z)

2

∫ d(z)

0
rn−1

(
a

1 + a2r2

)n+4
2

dr

≥ C
d (z)

2
a
n−4
2
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Moreover: ∫
Ω
θ(z,a)U

p−1
(z,a) = o

(
a−

n−4
2

)
Then the first inequality is proved. For the second one, we get:∥∥U(z,a)

∥∥ n
n−4

L
n
n−4

≤
∥∥U (z,a)

∥∥ n
n−4

L
n
n−4

≤
∥∥U (0,a)

∥∥ n
n−4

L
n
n−4 (B(0,C)

≤ Ca−
n
2 |ln(a)| ,

Finally, for the last inequality we have:∫
Ω
u

n
n−4

0 U
n
n−4

(z,a) ≤
∫

Ω
u

n
n−4

0 U
n
n−4

(z,a),

and by using the fact that there exists c > 0 such that u0(x) ≤ cd(z)

whenever |x− z| ≤ d(z), we get the desired result.

Now we define the following sets :

M =
{
U(z,a); (z, a) ∈ Ω× (1,∞)

}
,

N =

{
λU(z,a); (z, a) ∈ Ω× (1,∞) , λ ∈

(
1

2
, 2

)}
and we call T̄(z,a) the tangent space to N at U(z,a). We also set F−(z,a) ={
λU(z,a);λ ∈ R

}
and F+

(z,a) = T̄⊥(z,a). Finally, let F(z,a) = F+
(z,a) ⊕ F

−
(z,a) and

K be the linear operator defined by

Ku = u1 − u2,

for any u = u1 + u2, with u1 ∈ F+
(z,a) and u2 ∈ F−(z,a). We have the following

Lemma 7.6. There exist positive constants ε2, r1, δ and C1 such that for

f ∈ C(Ω) with |f |C(Ω) < ε2, (z, a) ∈ O(r1) and w ∈ Bδ
(
U(z,a)

)
, it holds:〈

∆2v − p (w + u0)p+ v,Kv
〉
≥ C1

∫
Ω

(∆v)2 , (7)

for every v ∈ F(z,a).
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Proof. Again it is enough to show this inequality for u0 = 0 and then argue

by continuity. So let us take u0 = 0 and by contradiction, let us assume that

the inequality does not hold. Then there exists a sequence (zk, ak) ∈ O(r0),

vk ∈ F(zk,ak) with ‖vk‖ = 1, d(zk)ak = rk −→∞, and wk ∈ H2 (Ω)∩H1
0 (Ω)

such that
∥∥wk − U(zk,ak)

∥∥ −→ 0 as k −→∞, verifying

lim sup
〈
∆2vk − p (wk)

p
+ vk,Kvk

〉
≤ 0.

We can always write vk = vk,1 + vk,2 according to the splitting of F(zk,ak).

Since rk −→∞, we have
∥∥U (zk,ak) − U(zk,ak)

∥∥ −→ 0 . Therefore it is easy to

see that

dist(F(zk,ak), span
{
T(zk,ak), U(zk,ak)

}
) −→ 0.

Thus,

lim
k−→∞

dist
(
vk,1, F

+
(zk,ak)

)
= 0

and by using Lemma (7.1.) we have for k big enough〈
vk,1,∆

2vk,1 − p
(
w+
k

)p−1
vk,1

〉
≥ γ

2

∫
Ω
p
(
w+
k

)p−1
v2
k,1.

Now let us assume for instance that ‖vk,1‖ > c, for k big enough. Then

there exists c̃ > 0, such that
〈
vk,1,∆

2vk,1 − p
(
w+
k

)p−1
vk,1

〉
> c̃, and hence

lim sup
〈
vk,1,∆

2vk,1 − p
(
w+
k

)p−1
vk,1

〉
> c̃.

By definition of vk,2 we have〈
vk,2,∆

2vk,2 − p
(
w+
k

)p−1
vk,2

〉
≤ ‖vk,2‖ (1− p) .

Therefore, knowing also that

lim
k−→∞

dist
(
vk,2, F

−
(zk,ak)

)
= 0

30



we get that either ‖vk,1‖ = ‖vk,2‖ = 0, that is ‖vk‖ = 0, or

lim sup
〈
∆2vk − p (wk)

p
+ vk,Kvk

〉
> 0

which is a contradiction. Then the lemma holds.

Proposition 7.7. There exist r2 > 0 and C2 > 0 satisfying: for every

f ∈ C
(
Ω
)
, |f |C(Ω̄) < ε2, and each (z, a) ∈ O (r2), there exists w(a,z) ∈

S ∩B δ
2

(
U(z,a)

)
such that

∥∥w(a,z) − U(z,a)

∥∥ ≤ C2

∥∥∇J (U(z,a)

)∥∥ (8)

and

J
(
w(a,z)

)
= min

u∈F+
(z,a)
∩B δ

2
(0)

max
v∈F−

(z,a)
∩B δ

2
(0)
J(U(z,a) + u+ v),

that is

J
(
w(a,z) + v

)
≤ J

(
w(a,z)

)
≤ J(w(a,z) + u),

for every u ∈ F+
(z,a) ∩Bδ (0) and v ∈ F−(z,a) ∩Bδ (0) .

Proof. The existence of w(a,z) follows from the fact that
∥∥∇J (U(z,a)

)∥∥ −→ 0

as d(z)a −→ ∞ and (7): by Taylor expansion we see that the functional is

convex in the direction of F+
(z,a) and concave in the direction of F−(z,a). We

have a saddle point, therefore w (a, z) exists as in [2] and it is in F(z,a). Now

we want to prove that

∥∥w(a,z) − U(z,a)

∥∥ ≤ C2

∥∥∇J (U(z,a)

)∥∥
We note first that since w(a,z) is a saddle point, we have 〈∇J (w (a, z)) , w (a, z)〉 =

0, then w (a, z) ∈ S. Using again a Taylor expansion we have

〈
∇J

(
w(z,a)

)
,K
(
w(z,a) − U(z,a)

)〉
=
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=
〈
∇J

(
U(z,a)

)
+ J ′′

(
U(z,a)

) (
w(z,a) − U(z,a)

)
,K
(
w(z,a) − U(z,a)

)〉
+o
(∥∥w(a,z) − U(z,a)

∥∥2
)

By noticing that

J ′′
(
U(z,a)

)
h = ∆2h− p

∣∣U(z,a)

∣∣p−1
h,

and by using (7), we get

〈
∇J

(
w(z,a)

)
,K
(
w(z,a) − U(z,a)

)〉
≥
〈
∇J

(
U(z,a)

)
,K
(
w(z,a) − U(z,a)

)〉
+

+C1

∥∥w(a,z) − U(z,a)

∥∥2
+ o

(∥∥w(a,z) − U(z,a)

∥∥2
)

But
〈
∇J

(
w(z,a)

)
,K
(
w(z,a) − U(z,a)

)〉
= 0 by construction of w(z,a), there-

fore we obtain the desired result by a simple application of Cauchy-Schwartz

inequality.

Lemma 7.8. Let f = 0. There exists r2 > 0 such that for every r > r2,

there exists cr >
Cn
n verifying

J(w(z,a)) > cr,

for every (z, a) ∈ O (r) .

Proof. By using the expansion of
∥∥U(z,a)

∥∥2
(see Appendix), we have the

existence of m > 0, such that
∥∥U(z,a)

∥∥ > m for (z, a) ∈ O(r2). Let now

r ≥ r2. Since f = 0 and w(z,a) ∈ S, then J(w(z,a)) >
Cn
n for all (z, a) ∈ O(r).

So let us assume by contradiction that

inf
(z,a)∈O(r)

J(w(z,a)) =
Cn
n
.

Then there exists a sequence (zk, ak) ∈ O (r) , such that∥∥∥w(zk,ak) − U(z′k,a
′
k)

∥∥∥ −→ 0
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where (z′k, a
′
k) ∈ Ω× (1,∞) is such that d (z′k) a

′
k −→∞. Thus∥∥∥w(zk,ak) − U(z′k,a

′
k)

∥∥∥ −→ 0.

Using (8), we have
∥∥w(zk,ak) − U(zk,ak)

∥∥ < m
4 , since (zk, ak) ∈ O (r2). This

leads to
∥∥∥U(zk,ak) − U(z′k,a

′
k)

∥∥∥ ≤ m
4 . But we know that d (z′k) a

′
k −→ ∞ and

d (zk) ak = r, therefore

lim
k−→∞

∥∥∥U(zk,ak) − U(z′k,a
′
k)

∥∥∥ ≥ 2m

which is a contradiction.

Lemma 7.9. Let f ∈ C
(
Ω
)
, such that |f |C(Ω) < ε2, then there exist r3 > 0,

C3, C4 > 0 such that

J(w(z,a)) ≤
Cn
n

+ C3 (d(z)a)−(n−4) − C4d(z)a
n−4
2

for every (z, a) ∈ O (r3) .

Proof. For (z, a) ∈ O (r2) , we take Ũ(z,a) = tU(z,a)
U(z,a) as in [19]. So we

have J
(
Ũ(z,a)

)
= maxt≥0

(
tU(z,a)

)
. Hence by construction of w(z,a), we have

J(w(z,a)) ≤ J
(
Ũ(z,a)

)
.

We see that in fact, t1 < tU(z,a)
< t2 for every (z, a) ∈ O (r2) with t1 and t2

two fixed real numbers. Now

J
(
Ũ(z,a)

)
≤ max

t≥0

{
1

2

∫
Ω
t2
(
∆U(z,a)

)2 − 1

p+ 1

∫
Ω
tp+1Up+1

(z,a)

}
−

− min
t1≤t≤t2

{
1

p+ 1

∫
Ω

((
u0 + tU(z,a)

)+)p+1
− tp+1Up+1

(z,a) − (p+ 1)tup0U(z,a) − u
p+1
0

}
,

after studying the polynomial equation

1

2

∫
Ω
t2
(
∆U(z,a)

)2 − 1

p+ 1

∫
Ω
tp+1Up+1

(z,a),
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and using the estimate in the Appendix, one can see that

max
t≥0

{
1

2

∫
Ω
t2
(
∆U(z,a)

)2 − 1

p+ 1

∫
Ω
tp+1Up+1

(z,a)

}
=
Cn
n

+O(a−(n−4)) ≤ c+O((ad(z))−(n−4))

By using a Taylor expansion near zero and at infinity, we find that

1

p+ 1

∫
Ω

((
u0 + tU(z,a)

)+)p+1
−tp+1Up+1

(z,a)−(p+1)tup0U(z,a)−u
p+1
0 ≥

∫
Ω
u0t

pUp(z,a)−

−C
∫

Ω
t

n
n−4u

n
n−4

0 U
n
n−4

(z,a)

Therefore

− min
t1≤t≤t2

{
1

p+ 1

∫
Ω

((
u0 + tU(z,a)

)+)p+1
− tp+1Up+1

(z,a)−

−(p+ 1)tup0U(z,a) − u
p+1
0

}
≤ C

∫
Ω
t

n
n−4

2 u
n
n−4

0 U
n
n−4

(z,a) −
∫

Ω
u0t

p
1U

p
(z,a)

By using the estimates in Lemma (7.5), we get

C

∫
Ω
t

n
n−4

2 u
n
n−4

0 U
n
n−4

(z,a)−
∫

Ω
u0t

p
1U

p
(z,a) ≤ O(d(z)

n
n−4a−

n
2 |ln(a)|)−O(d(z)a−

n−4
2 ),

therefore

J
(
Ũ(z,a)

)
≤ Cn

n
+O((ad(z))−(n−4)) +O(d(z)

n
n−4a−

n
2 |ln(a)|)−O(d(z)a−

n−4
2 )

≤ Cn
n

+O (ad(z))−(n−4) +Ad(z)
n
n−4a−

n
2 |ln(a)| −Bd(z)a−

n−4
2

for A and B two positive constants. The conclusion follows.

Now we define the set:

R =
{

(z, a) ∈ O(r3); C3 (d(z)a)−(n−4) < C4d(z)a
n−4
2

}
.

In this set we have J
(
w(z,a)

)
< Cn

n and thus Palais-Smale holds.
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Proof. of Theorem (1.3.)

Now the proof of the theorem follows straightforward. In fact, using a

minmax argument on the homology classes of R, we obtain critical points of

(z, a) 7−→ J
(
w(z,a)

)
, namely for each [α] ∈ H∗ (R) ∼= H∗ (Ω) , we have that

the values cα defined by

cα = min
α∈[α]

max
(z,a)∈α

J
(
w(z,a)

)
are critical values of the function defined before. Moreover, these critical

values corresponds to critical points belonging to the inside of the set O(r3),

by Lemma (7.8). Now we use a transversality theorem (see Appendix) on

the map defined by

Ψ (u, f) = ∆2u− |u|p−1 u− f,

to show that these critical points are non-degenerate. This ends the proof.

8 Appendix

Here we will give a list of estimates that we used in some of the proofs.

Here the O is for di
λi
−→∞ and ε12 −→ 0. Let U (ξ,λ) (x) =

(
λ

1+λ2|x−ξ|2

)n−4
2

,

and for i = 1, 2, we will set U i = U (ξi,λi). By using the same notation as in

section 1, we set Ui = PU i, ε12 = 1
λ2
λ1

+
λ1
λ2

+λ1λ2|ξ1−ξ2|2
and di = dist(ξi, ∂Ω) .

Lemma 8.1. Let θ1 = U1 − U1, then :

i)0 ≤ θ1 ≤ U1,

ii)θ1 (x) = H (ξ1, x)λ
n−4
2

1 + f1 (x)

iii)f1 (x) = O

(
λ
n
2
1

dn−2
1

)
, ∂
∂λ1

f1 (x) = O

(
λ
n
2 +1

1

dn−2
1

)
iv) ∂

∂ξ1
f1 (x) = O

(
λ
n
2
1

dn−1
1

)
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Lemma 8.2. It holds:

i) ‖U1‖2 = 〈U1, U1〉 = Cn − c1H (ξ1, ξ1)λn−4
1 +O

(
λn−2
1

dn−2
1

)
ii) 〈U2, U1〉 = c1

(
ε12 −H (ξ1, ξ2)λ

n−4
2

1 λ
n−4
2

2

)
+O

(
ε
n−2
n−4

12 +
λn−2
1

dn−2
1

+
λn−2
2

dn−2
2

)
iii)
∫

Ω U
2n
n−4

1 = Cn − 2n
n−4H (ξ1, ξ1)λn−4

1 +O
(
λn−2
1

dn−2
1

)
iv)
∫

Ω U
n+4
n−4

1 U2 = 〈U2, U1〉+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

.

Lemma 8.3. We have the following estimates on ∂
∂λU1.

i)
〈
U1,

1
λ1

∂
∂λU1

〉
= n−4

2 c1H (ξ1, ξ1)λn−4
1 +O

(
λn−2
1

dn−2
1

)
ii)
∫

Ω U
n+4
n−4

1
1
λ1

∂
∂λU1 = 2

〈
U1,

1
λ1

∂
∂λU1

〉
+O

(
λn−2
1

dn−2
1

)
iii)
〈
U2,

1
λ1

∂
∂λU1

〉
= c1

(
1
λ1

∂
∂λ1

ε12 + n−4
2 H (ξ1, ξ2)λ

n−4
2

1 λ
n−4
2

2

)
+O

(
ε
n−2
n−4

12 +
λn−2
1

dn−2
1

+
λn−2
2

dn−2
2

)

iv)
∫

Ω U
n+4
n−4

2
1
λ1

∂
∂λU1 =

〈
U2,

1
λ1

∂
∂λU1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

v)
∫

Ω U2
1
λ1

(
∂
∂λU1

)n+4
n−4 =

〈
U2,

1
λ1

∂
∂λU1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

Lemma 8.4. We have the following estimates on ∂
∂ξU1

i)
〈
U1,

1
λ1

∂
∂ξ1
U1

〉
= −1

2c1H (ξ1, ξ1)λn−3
1 +O

(
λn−2
1

dn−2
1

)
ii)
∫

Ω U
n+4
n−4

1
1
λ1

∂
∂ξ1
U1 = 2

〈
U1,

1
λ1

∂
∂ξ1
U1

〉
+O

(
λn−2
1

dn−2
1

)
iii)
〈
U2,

1
λ1

∂
∂ξ1
U1

〉
= c1

(
1
λ1

∂
∂ξ1
ε12 − ∂

∂ξ1
H (ξ1, ξ2)λ

n−4
2

1 λ
n−4
2

2

)
+O

(
ε
n−1
n−4

12
|ξ1−ξ2|
λ2

+
λn−2
1

dn−2
1

+
λn−2
2

dn−2
2

)

iv)
∫

Ω U
n+4
n−4

2
1
λ1

∂
∂ξ1
U1 =

〈
U2,

1
λ1

∂
∂ξ1
U1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7

v)
∫

Ω U2
1
λ1

(
∂
∂ξ1
U1

)n+4
n−4

=
〈
U2,

1
λ1

∂
∂ξ1
U1

〉
+


O
(
ε

n
n−4

12 ln
(
ε−1

12

)
+

λn1
dn1

ln
(
d1
λ1

))
if n ≥ 8

O

(
ε12 ln

(
ε−1

12

)n−4
n λn−4

1

dn−4
1

)
if n ≤ 7
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The proof of these estimates are similar to the ones in [3]. For more details

we refer also to [7], [8] and [17].

Next we state a Transversality Theorem: see [] for the proof.

Theorem 8.5. Let X,Y and Z be three Banach spaces, and Ψ : X×Y −→ Z

be a C1 map satisfying the following conditions: given z ∈ Z

i) for every (x, y) ∈ Ψ−1 (z) , the map Dx Ψ (x, y) : X −→ Z is a

Fredholm operator of index 0.

ii)for every (x, y) ∈ Ψ−1 (z) , the map D Ψ (x, y) : X × Y −→ Z is

surjective.

Then the set of y ∈ Y, satisfying that z is a regular value of Ψ (·, y), is a

residual set in Y.
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