Existence and Multiplicity Results for a non-Homogeneous Fourth Order Equation

Ali Maalaoui ${ }^{(1)}$ \& Vittorio Martino ${ }^{(2)}$

Abstract

In this paper we investigate the problem of existence and multiplicity of solutions for a non-homogeneous fourth order Yamabe type equation. We exhibit a family of solutions concentrating at two points, provided the domain contains one hole and we give a multiplicity result if the domain has multiple holes. Also we prove a multiplicity result for vanishing positive solutions in a general domain.

1 Introduction and statements of the main results

In this paper we will study the existence and the multiplicity of positive solutions for a non-homogeneous problem of the form:

$$
\left\{\begin{array}{ccccc}
\Delta^{2} u & = & |u|^{p-1} u+f & & \text { on } \tag{P}\\
u & \Omega \\
u=\Delta u & = & 0 & & \text { on }
\end{array} \quad \partial \Omega\right.
$$

[^0]where Ω is a smooth bounded set of \mathbb{R}^{n} and $p=\frac{n+4}{n-4}$ is the so-called critical exponent. These kind of problems were deeply studied in the case of the Laplacian (see for instance [1],[11], [19]). Let us recall that problem (P) was studied by Selmi [26] and Ben Ayed - Selmi [9] where the authors prove the existence of a one-bubble solution to the problem under assumptions on f. Here we will show that we can get two-bubble solutions if the domain contains small holes, and vanishing type solutions for a small generic perturbation f in the C^{0} sense.

We recall that for $f=0$, this problem has a deep geometrical meaning, in fact if (M, g) is an n-dimensional compact closed riemannian manifold with $n \geq 5$, we can define the Q-curvature

$$
Q:=\frac{n^{3}-4 n^{2}+16 n-16}{8(n-2)^{2}(n-1)^{2}} R^{2}-\frac{2}{(n-2)^{2}}|R i c|^{2}+\frac{1}{2(n-1)} \Delta R,
$$

where R is the scalar curvature and Ric is the Ricci curvature. After a conformal change of the metric one gets for $\widetilde{g}=u^{\frac{4}{n-4}} g$,

$$
\begin{equation*}
Q_{\widetilde{g}} u^{\frac{n+4}{n-4}}=P_{g} u \tag{1}
\end{equation*}
$$

where P_{g} is the Paneitz operator, defined by

$$
P_{g} u:=\Delta_{g}^{2} u-\operatorname{div}\left(\left(\frac{(n-2)^{2}+4}{2(n-2)(n-1)} R g-\frac{4}{n-2} R i c\right) d u\right)+\frac{n-4}{2} Q u
$$

This gives rise to the problem of prescribing the Q-curvature, as the analogous problem on the scalar curvature (see [12], [13] and [23]). We remark that in the flat case, for instance if we consider an open set of \mathbb{R}^{n}, the problem of prescribing constant Q-curvature coincides with (P) with $f=0$, namely

$$
\begin{equation*}
\Delta^{2} u=|u|^{p-1} u \tag{2}
\end{equation*}
$$

The variational formulation of (2) under Navier boundary conditions in a bounded set was deeply studied, especially with the methods of critical points at infinity theory, introduced by Bahri [3] (see [13], [18] and [17]). We also remark the fact that this problem is not compact, namely, for the case $f=0$ it corresponds exactly to the limiting case of the Sobolev embedding $H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \hookrightarrow L^{\frac{2 n}{n-4}}$, (see [27]), and thus we loose the compact embedding, so the variational setting in the classical spaces fails to show existence of solutions: in fact as in the case of the Laplacian, if the domain is star shaped we know that it has no positive solutions ([27], [28]). Finally we recall that in the recent paper [22], we studied the same Yamabe type problem, with a slightly super-critical exponent.

This work contains two main parts. In the first one we deal with a perturbation of the form εf, that is

$$
\left\{\begin{array}{cccc}
\Delta^{2} u & = & |u|^{p-1} u+\varepsilon f & \text { on } \\
& \Omega \\
u=\Delta u & = & 0 & \text { on }
\end{array} \partial \Omega\right.
$$

where f is a positive function in $C^{\alpha}(\Omega), 0<\alpha<1$, and $\Omega=\mathcal{D}-\overline{B(P, \mu)}$, for a given domain \mathcal{D} and $P \in \mathcal{D}$. In this setting we have the following result:

Theorem 1.1. There exists a constant $\mu_{0}=\mu_{0}(\mathcal{D}, f)>0$ such that for each $0<\mu<\mu_{0}$ fixed, there exist $\varepsilon_{0}>0$ and a family of solutions u_{ε} of $\left(P_{\varepsilon}\right)$ for $0<\varepsilon<\varepsilon_{0}$, having exactly two concentration points, namely:
$u_{\varepsilon}(x)=c_{n}\left(\frac{\varepsilon^{\frac{2}{n-4}} \lambda_{1, \varepsilon}}{\varepsilon^{\frac{4}{n-4}} \lambda_{1, \varepsilon}^{2}+\left|x-\xi_{1}^{\varepsilon}\right|^{2}}\right)^{\frac{n-4}{2}}+c_{n}\left(\frac{\varepsilon^{\frac{2}{n-4}} \lambda_{2, \varepsilon}}{\varepsilon^{\frac{4}{n-4}} \lambda_{2, \varepsilon}^{2}+\left|x-\xi_{2}^{\varepsilon}\right|^{2}}\right)^{\frac{n-4}{2}}+\theta_{\varepsilon}(x)$ and $\quad \theta_{\varepsilon}(x) \longrightarrow 0$ as $\varepsilon \longrightarrow 0$ uniformly.

Indeed one gets more information about the solutions along the proof, for instance we will see that $\theta_{\varepsilon}(x)=\varepsilon w+o(\varepsilon)$, where w is the solution of:

$$
\left\{\begin{array}{ccccc}
\Delta^{2} w & = & f & \text { on } & \Omega \\
w=\Delta w & = & 0 & \text { on } & \partial \Omega
\end{array} .\right.
$$

And within the proof we have that the point $\left(\left(\xi_{1}^{\varepsilon}, \xi_{2}^{\varepsilon}\right),\left(a_{n}\left(\lambda_{1}^{\varepsilon}\right)^{n-4}, a_{n}\left(\lambda_{2}^{\varepsilon}\right)\right)^{n-4}\right)$ is a critical point of the function Ψ defined by :

$$
\Psi(\xi, \Lambda)=\frac{1}{2}\left(\sum_{i=1}^{2} \Lambda_{i}^{2} H\left(\xi_{i}, \xi_{i}\right)-2 \Lambda_{1} \Lambda_{2} G\left(\xi_{1}, \xi_{2}\right)\right)+\sum_{i=1}^{2} \Lambda_{i} w\left(\xi_{i}\right)
$$

where G is the Green's function of the Ω and H its regular part.
Moreover if we consider a domain with multiple holes we obtain a multiplicity result. In fact, if $\Omega=\mathcal{D}-\cup_{1 \leq i \leq k} \bar{B}\left(P_{i}, \mu\right)$ with $P_{1}, \ldots, P_{k} \in \Omega$, the previous result can be generalized as in [14] and [22] to the following:

Theorem 1.2. Let $1 \leq m \leq k$. There exists a constant $\mu_{0}=\mu_{0}(\mathcal{D}, f)>0$ such that for each $0<\mu<\mu_{0}$ fixed, there exist $\varepsilon_{0}>0$ and a family of solutions u_{ε} of (P_{ε}) for $0<\varepsilon<\varepsilon_{0}$, of the following form

$$
u_{\varepsilon}(x)=c_{n} \sum_{i=1}^{k} \sum_{j=1}^{2}\left(\frac{\varepsilon^{\frac{2}{n-4}} \lambda_{i, j, \varepsilon}}{\varepsilon^{\frac{4}{n-4}} \lambda_{i, j, \varepsilon}^{2}+\left|x-\xi_{i, j}^{\varepsilon}\right|^{2}}\right)^{\frac{n-4}{2}}+\theta_{\varepsilon}(x)
$$

and $\theta_{\varepsilon}(x) \longrightarrow 0$ as $\varepsilon \longrightarrow 0$ uniformly.
In particular for a domain with k holes we have at least $2^{k}-1$ two-bubble solutions.

In the second part of the paper we deal with the problem

$$
\left\{\begin{array}{cccc}
\Delta^{2} u & = & |u|^{p-1} u+f & \text { on } \tag{f}\\
u & \Omega \\
u=\Delta u & = & 0 & \text { on }
\end{array} \partial \Omega,\right.
$$

with no topological constraint on the domain Ω and $f \geq 0$ non identically zero. We prove the following:

Theorem 1.3. There exist a residual subset $D \subset C^{2}(\bar{\Omega})$ and $\varepsilon>0$, such that if $f \in D$ and $|f|_{C(\bar{\Omega})}<\varepsilon$, the problem $\left(P_{f}\right)$ has at least $\sum_{i=0}^{\infty} \operatorname{dim} H_{i}(\Omega)+1$ positive solutions.

Here $H_{*}(\Omega)$ denotes the singular homology of Ω. We have additional information for these solutions as well. In fact we will see that they vanish when $|f|_{C(\bar{\Omega})} \longrightarrow 0$, and they have energy smaller than the energy of a single bubble; in contrast with the solutions of the first theorem, where the energy of the solutions is greater than the one of the bubbles, and the solutions blow-up as $\varepsilon \longrightarrow 0$.

Acknowledgement This paper was completed during the year that the second author spent at the Mathematics Department of Rutgers University: the author wishes to express his gratitude for the hospitality and he is grateful to the Nonlinear Analysis Center for its support.

2 Preliminaries and first estimates

Let us start by defining the following functions:

$$
\bar{U}_{(\xi, \lambda)}(x)=\left(\frac{\lambda}{\lambda^{2}+|x-\xi|^{2}}\right)^{\frac{n-4}{2}}
$$

where $\lambda>0$ and $\xi \in \Omega$. For $u \in D^{2}(\Omega)$, we will write $P u$ for the projection of u on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, defined as the unique solution of the problem

$$
\left\{\begin{array}{cccc}
\Delta^{2} v & = & u & \text { on } \\
& \Omega \\
v=\Delta v & = & 0 & \text { on }
\end{array} \quad \partial \Omega,\right.
$$

We also recall that the Green's function of Δ^{2} for a set Ω, with Navier boundary conditions is defined as the solution of

$$
\left\{\begin{array}{ccccc}
\Delta_{x}^{2} G(x, y) & = & \delta_{y} & \text { on } & \Omega \\
G(x, y)=\Delta_{x} G(x, y) & = & 0 & \text { on } & \partial \Omega
\end{array} .\right.
$$

This function can be written as

$$
G(x, y)=\frac{a_{n}}{|x-y|^{n-4}}-H(x, y), \forall x, y \in \Omega \text { and } x \neq y
$$

where a_{n} is a positive constant depending on n and H the positive smooth solution to

$$
\left\{\begin{array}{ccc}
\Delta_{x}^{2} H(x, y) & = & 0 \\
H(x, y) & =\frac{1}{|x-y|^{n-4}}, & \Delta H(x, y)=\Delta \frac{1}{|x-y|^{n-4}}
\end{array} \text { on } \quad \partial \Omega .\right.
$$

Now let ξ_{1}, ξ_{2} be two points in Ω, and $\lambda_{1}, \lambda_{2}>0$, we will write $\bar{U}_{i}=\bar{U}_{\left(\xi_{i}, \lambda_{i}\right)}$ and $U_{i}=P \bar{U}_{i}$. Then one has $U_{i}=\bar{U}_{i}-\theta_{i}$ and

$$
\theta_{i}(x)=H\left(x, \xi_{i}\right) \lambda_{i}^{\frac{n-4}{2}} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y+o\left(\lambda_{i}^{\frac{n-4}{2}}\right)
$$

Away from $x=\xi$, we have

$$
U_{i}(x)=G\left(x, \xi_{i}\right) \lambda_{i}^{\frac{n-4}{2}} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y+o\left(\lambda_{i}^{\frac{n-4}{2}}\right)
$$

For more details about these estimates we refer to the Appendix.
Let us set now J to be the functional defined by

$$
J(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega}|u|^{p},
$$

and let us find an expansion of

$$
J\left(U_{1}+U_{2}\right)=\frac{1}{2} \int_{\Omega}\left|\Delta\left(U_{1}+U_{2}\right)\right|^{2}-\frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p}
$$

For that we define the set

$$
O_{\delta}(\Omega)=\left\{\left(\xi_{1}, \xi_{2}\right) \in \Omega \times \Omega ;\left|\xi_{1}-\xi_{2}\right|>\delta, \quad d\left(\xi_{i}, \partial \Omega\right)>\delta\right\}
$$

where $\delta>0$ is a small fixed number and we put

$$
C_{n}=\frac{1}{2} \int_{\Omega}|\Delta \bar{U}|^{2}-\frac{1}{p+1} \int_{\Omega} \bar{U}^{p}
$$

Then we have the following:

Lemma 2.1. For $\left(\xi_{1}, \xi_{2}\right)$ in $O_{\delta}(\Omega)$ we have

$$
\begin{aligned}
J\left(U_{1}+U_{2}\right)= & 2 C_{n}+\frac{1}{2}\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)\left(H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+H\left(\xi_{2}, \xi_{2}\right) \lambda_{2}^{n-4}-2 \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}} G\left(\xi_{1}, \xi_{2}\right)\right) \\
& +o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right)
\end{aligned}
$$

Proof. The proof follows from the following estimates (see the Appendix):

$$
\int_{\Omega}\left|\Delta U_{i}\right|^{2}=\int_{\mathbb{R}^{n}}|\Delta \bar{U}|^{2}-\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4}+o\left(\lambda_{i}^{n-4}\right)
$$

and

$$
\begin{aligned}
& \int_{\Omega} \Delta U_{1} \Delta U_{2}=\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}} G\left(\xi_{1}, \xi_{2}\right)+o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right), \\
& \frac{1}{p+1} \int_{\Omega} U_{i}^{p+1}=\frac{1}{p+1} \int_{\Omega} \bar{U}^{p+1}-\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4}+o\left(\lambda_{i}^{n-4}\right), \\
& \frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p+1}-U_{1}^{p+1}-U_{2}^{p+1}=2\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}} G\left(\xi_{1}, \xi_{2}\right)+o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right) .
\end{aligned}
$$

Therefore one has

$$
\begin{gathered}
J\left(U_{1}+U_{2}\right)=\frac{1}{2} \int_{\Omega}\left|\Delta\left(U_{1}+U_{2}\right)\right|^{2}-\frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p} \\
=\sum\left(\frac{1}{2} \int_{\Omega}\left|\Delta U_{i}\right|^{2}-\frac{1}{p+1} U_{i}^{p+1}\right)+\int_{\Omega} \Delta U_{1} \Delta U_{2}-\frac{1}{p+1} \int_{\Omega}\left(U_{1}+U_{2}\right)^{p+1}-U_{1}^{p+1}-U_{2}^{p+1} \\
=\sum \frac{1}{2}\left(\int_{\mathbb{R}^{n}}|\Delta \bar{U}|^{2}-\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4}\right)-\frac{1}{p+1} \int_{\Omega} \bar{U}^{p+1}+
\end{gathered}
$$

$$
\begin{aligned}
& \quad+\sum\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} H\left(\xi_{i}, \xi_{i}\right) \lambda_{i}^{n-4}+\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}} G\left(\xi_{1}, \xi_{2}\right)- \\
& -2\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2} \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}} G\left(\xi_{1}, \xi_{2}\right)+o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right) \\
& =2 C_{n}+\frac{1}{2}\left(\int_{\mathbb{R}^{n}} \bar{U}^{p}\right)^{2}\left(H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+H\left(\xi_{2}, \xi_{2}\right) \lambda_{2}^{n-4}-2 \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}} G\left(\xi_{1}, \xi_{2}\right)\right)+ \\
& +o\left(\max \left(\lambda_{1}, \lambda_{2}\right)^{n-4}\right) .
\end{aligned}
$$

Now, we set $\Omega_{\varepsilon}=\varepsilon^{-\frac{2}{n-4}} \Omega$, and we put:

$$
v\left(x^{\prime}\right)=\varepsilon u\left(\varepsilon^{\frac{2}{n-4}} x^{\prime}\right)
$$

Then every solution u of $\left(P_{\varepsilon}\right)$ corresponds to a solution v, by means of the previous rescaling, of the following problem:

$$
\left\{\begin{array}{ccccc}
\Delta^{2} v & =|v|^{p-1} v+\varepsilon^{p+1} \widetilde{f} & \text { on } & \Omega_{\varepsilon} \\
v=\Delta v & = & 0 & \text { on } & \partial \Omega_{\varepsilon}
\end{array}\right.
$$

where $\widetilde{f}\left(x^{\prime}\right)=f\left(\varepsilon^{\frac{2}{n-4}} x^{\prime}\right)$. Hence we define the following perturbed energy functional:

$$
J_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega_{\varepsilon}}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega_{\varepsilon}}|u|^{p}-\varepsilon^{p+1} \int_{\Omega_{\varepsilon}} \widetilde{f} u .
$$

We consider the function w defined by

$$
\left\{\begin{array}{cccc}
\Delta^{2} w & = & f & \text { on } \tag{3}\\
\Omega \\
w=\Delta w & = & 0 & \text { on }
\end{array} \partial \Omega,\right.
$$

and we obtain the following proposition. Set $\Lambda=\left(\Lambda_{1}, \Lambda_{2}\right)$ and $\lambda_{i}^{2}=$ $\left(a_{n}^{-1} \Lambda_{i}\right)^{\frac{2}{n-4}}$,

Proposition 2.2. Let V be the sum of U_{1}, U_{2} rescaled on Ω_{ε}, then for $\left(\xi_{1}, \xi_{2}\right) \in O_{\delta}(\Omega)$, one has

$$
J_{\varepsilon}(V)=2 C_{n}+\varepsilon^{2} \Psi(\xi, \Lambda)+o\left(\varepsilon^{2}\right)
$$

where

$$
\Psi(\xi, \Lambda)=\frac{1}{2}\left(\sum_{i=1}^{2} \Lambda_{i}^{2} H\left(\xi_{i}, \xi_{i}\right)-2 \Lambda_{1} \Lambda_{2} G\left(\xi_{1}, \xi_{2}\right)\right)+\sum_{i=1}^{2} \Lambda_{i} w\left(\xi_{i}\right)
$$

Proof. The only term we need to estimate is

$$
\begin{aligned}
\int_{\Omega} f\left(U_{1}+U_{2}\right) & =\int_{\Omega}\left(\Delta^{2} w\right)\left(U_{1}+U_{2}\right) \\
& =\sum_{i=1}^{2} \int_{\Omega}\left(\Delta^{2} w\right)\left(G\left(x, \xi_{i}\right) \lambda_{i}^{\frac{n-4}{2}} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y\right)+o\left(\lambda_{i}^{\frac{n-4}{2}}\right) \\
& =\sum_{i=1}^{2} w\left(\xi_{i}\right) \lambda_{i}^{\frac{n-4}{2}} \int_{\mathbb{R}^{n}} \bar{U}^{p}(y) d y+o\left(\lambda_{i}^{\frac{n-4}{2}}\right)
\end{aligned}
$$

The conclusion follows.

3 Reduction process

From now on let $\Omega_{\varepsilon}=\varepsilon^{-\frac{2}{n-4}} \Omega$. We will consider points $\xi_{i}^{\prime} \in \Omega_{\varepsilon}$ and numbers $\Lambda_{i}>0$, for $i=1,2$, such that $\left|\xi_{1}^{\prime}-\xi_{2}^{\prime}\right|>\delta \varepsilon^{-\frac{2}{n-4}}, d\left(\xi_{i}^{\prime}, \partial \Omega_{\varepsilon}\right)>\delta \varepsilon^{-\frac{2}{n-4}}$ and $\delta<\Lambda_{i}<\delta^{-1}$. Here we will adopt the same notations as in [14], that is $\bar{V}_{i}(x)=\bar{U}_{\xi_{i}^{\prime}, \Lambda_{i}^{*}}$ for $\Lambda_{i}^{*}=\left(c_{n} \Lambda_{i}^{2}\right)^{\frac{1}{n-4}}$; the related projections on $H^{2}\left(\Omega_{\varepsilon}\right) \cap$ $H_{0}^{1}\left(\Omega_{\varepsilon}\right)$ will be denoted by V_{i}. Consider the functions

$$
\bar{Z}_{i j}=\frac{\partial \bar{V}_{i}}{\partial \xi_{i j}}, i=1, \ldots, n \text { and } \bar{Z}_{i n+1}=\frac{\partial \bar{V}_{i}}{\partial \Lambda_{i}^{*}}
$$

and their projections $Z_{i j}=P \bar{Z}_{i j}$. Let $V=V_{1}+V_{2}$ and $\bar{V}=\bar{V}_{1}+\bar{V}_{2}$.
For a given smooth function h, we want to solve the following linear problem:

$$
\left\{\begin{array}{ccccc}
\Delta^{2} \varphi-p V^{p-1} \varphi & = & h+\sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j} & \text { on } & \Omega_{\varepsilon} \tag{4}\\
\varphi=\Delta \varphi & = & 0 & \text { on } & \partial \Omega_{\varepsilon} \\
\left\langle V_{i}^{p-1} Z_{i j}, \varphi\right\rangle & := & \int_{\Omega_{\varepsilon}} V_{i}^{p-1} Z_{i j} \varphi=0 & \text { for } & i=1,2 ; j=1, \ldots, n+1
\end{array}\right.
$$

We define the following weighted L^{∞} norms : for a function u defined on Ω_{ε}

$$
\|u\|_{*}=\left\|\left(w_{1}+w_{2}\right)^{-\beta} u\right\|_{L^{\infty}}+\left\|\left(w_{1}+w_{2}\right)^{-\beta-\frac{1}{n-4}} \nabla u\right\|_{L^{\infty}}
$$

where $w_{i}=\left(\frac{1}{1+\left|x-\xi_{i}^{\prime}\right|^{2}}\right)^{\frac{n-4}{2}}, \beta=\frac{4}{n-4}$, and

$$
\|u\|_{* *}=\left\|\left(w_{1}+w_{2}\right)^{-\gamma} u\right\|_{L^{\infty}}
$$

where $\gamma=\frac{8}{n-4}$. We define also the set

$$
O_{\delta}^{\prime}\left(\Omega_{\varepsilon}\right)=\left\{\left(\xi_{1}, \xi_{2}\right) \in \Omega_{\varepsilon} \times \Omega_{\varepsilon} ;\left|\xi_{1}-\xi_{2}\right|>\delta \varepsilon^{-\frac{2}{n-4}}, \quad d\left(\xi_{i}, \partial \Omega\right)>\delta \varepsilon^{-\frac{2}{n-4}}\right\} .
$$

We refer to [22] for the proof of the following :
Proposition 3.1. There exist $\varepsilon_{0}>0$ and $C>0$ such that for all $0<\varepsilon<\varepsilon_{0}$ and all $h \in C^{\alpha}\left(\Omega_{\varepsilon}\right)$, the problem (4) admits a unique solution $\varphi=L_{\varepsilon}(h)$. Moreover we have

$$
\left\|L_{\varepsilon}(h)\right\|_{*} \leq C\|h\|_{* *}, \quad\left|c_{i j}\right| \leq C\|h\|_{* *},
$$

and

$$
\left\|\nabla_{\left(\xi^{\prime}, \Lambda\right)} L_{\varepsilon}(h)\right\|_{*} \leq C\|h\|_{* *} .
$$

To split the difficulties, we start by finding a solution of

$$
\left\{\begin{array}{ccccc}
\Delta^{2}(V+\eta)-(V+\eta)_{+}^{p}-\varepsilon^{p+1} \widetilde{f} & = & \sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j} & \text { on } & \Omega_{\varepsilon} \\
\eta=\Delta \eta & = & 0 & \text { on } & \partial \Omega_{\varepsilon} \\
\left\langle V_{i}^{p-1} Z_{i j}, \eta\right\rangle & & -\left\langle V_{i}^{p-1} Z_{i j}, \varphi\right\rangle & \text { for } & i=1,2 ; j=1, \ldots, n+1
\end{array}\right.
$$

where φ is the solution of

$$
\left\{\begin{array}{ccccc}
\Delta^{2} \varphi & = & \varepsilon^{p+1} \widetilde{f} & \text { on } & \Omega_{\varepsilon} \\
\varphi=\Delta \varphi & = & 0 & \text { on } & \partial \Omega_{\varepsilon}
\end{array} .\right.
$$

If we take $\eta=\bar{\eta}+\varphi$, then the equation on $\bar{\eta}$ reads as follows:

$$
\begin{equation*}
\Delta^{2} \bar{\eta}-p V^{p-1} \bar{\eta}=N_{\varepsilon}(\bar{\eta})-R_{\varepsilon}+\sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j} \tag{5}
\end{equation*}
$$

with

$$
N_{\varepsilon}(\bar{\eta})=|V+\bar{\eta}+\varphi|^{p-1}(V+\bar{\eta}+\varphi)_{+}-p V^{p-1}(\bar{\eta}+\varphi)-V^{p}
$$

and

$$
R_{\varepsilon}=V^{p}-\bar{U}_{1}^{p}-\bar{U}_{2}^{p}-p|V|^{p-2} \varphi
$$

Therefore, taking $\psi=-L_{\varepsilon}\left(R_{\varepsilon}\right)$ and $\bar{\eta}=\psi+v$, we get an equation on v of the following form :

$$
\Delta^{2} v-p V^{p-1} v=N_{\varepsilon}(\bar{\eta})+\sum_{i, j} c_{i j} V_{i}^{p-1} Z_{i j}
$$

Lemma 3.2. There exists $C>0$ such that for $\varepsilon>0$ small enough and $\|v\|_{*} \leq \frac{1}{4}$, we have

$$
\left\|N_{\varepsilon}(\psi+v)\right\|_{* *} \leq\left\{\begin{array}{c}
C\left(\|v\|_{*}^{2}+\varepsilon\|v\|_{*}+\varepsilon^{p+1}\right) \text { if } n \leq 12 \\
C\left(\varepsilon^{2 \beta-1}\|v\|_{*}^{2}+\varepsilon^{2 \beta}\|v\|_{*}+\varepsilon^{3 p}\right) \text { if } n>12
\end{array}\right.
$$

Proof. First, we recall that $\|\psi\|_{*} \leq C \varepsilon^{2}$ and since $|\varphi| \leq C \varepsilon^{p+1}$, we have

$$
|\varphi| \bar{V}^{-\beta} \leq C \varepsilon^{p+1} \bar{V}^{-\beta} \leq C \varepsilon^{2}
$$

hence $\|\varphi\|_{*} \leq C \varepsilon^{2}$ and we can choose ε small enough so that

$$
\|\bar{\eta}\|_{*} \leq\|\psi\|_{*}+\|v\|_{*}<1
$$

Now, we have

$$
N_{\varepsilon}(\bar{\eta})=\frac{p(p-1)}{2}(V+t(\bar{\eta}+\varphi))^{p-2}(\bar{\eta}+\varphi)^{2},
$$

for a certain $t \in(0,1)$ and hence if $n \leq 12$ we have

$$
\begin{aligned}
\left|\bar{V}^{-\frac{8}{n-4}} N_{\varepsilon}(\bar{\eta})\right| & \leq C \bar{V}^{2 \beta-\frac{8}{n-4}} \bar{V}^{p-2}\|\bar{\eta}+\varphi\|_{*}^{2} \\
& \leq C\|\bar{\eta}+\varphi\|_{*}^{2}
\end{aligned}
$$

If $n>12$ we have to distinguish two cases. First consider $\delta>0$ and take the region $d\left(y, \partial \Omega_{\varepsilon}\right)>\delta \varepsilon^{-\frac{n+2}{n-4}}$, then one has the existence of $C_{\delta}>0$ such that $V>C_{\delta} \bar{V}$ and therefore we get

$$
\begin{aligned}
\left|N_{\varepsilon}(\bar{\eta}) \bar{V}^{-\frac{8}{n-4}}\right| & \leq C \bar{V}^{2 \beta-\frac{8}{n-4}+p-2}\|\bar{\eta}+\varphi\|_{*}^{2} \\
& \leq C \varepsilon^{p-2}\|\bar{\eta}+\varphi\|_{*}^{2}
\end{aligned}
$$

If $d\left(y, \partial \Omega_{\varepsilon}\right) \leq \delta \varepsilon^{-\frac{n+2}{n-4}}$ we have, by using Hopf lemma, that for δ sufficiently small $V(y) \sim \frac{\partial V}{\partial \nu} d\left(y, \partial \Omega_{\varepsilon}\right)$, (recall that $\left.|\nabla V|=|\nabla \bar{V}|+o(1)\right)$ and $|\nabla V| \geq$ $C \varepsilon^{\frac{n-3}{n-4}}$, for ε small enough. Thus $V(y) \geq C \varepsilon^{2 \frac{n-3}{n-4}} d\left(y, \partial \Omega_{\varepsilon}\right)$, therefore

$$
\begin{aligned}
\left|N_{\varepsilon}(\bar{\eta}) \bar{V}^{-\frac{8}{n-4}}\right| & \leq C \bar{V}^{-\frac{8}{n-4}}\left(\varepsilon^{2 \frac{n-3}{n-4}} d\left(y, \partial \Omega_{\varepsilon}\right)\right)^{p-2}(\bar{\eta}+\varphi)^{2} \\
& \leq C \bar{V}^{-\frac{8}{n-4}}\left(\varepsilon^{2 \frac{n-3}{n-4}} d\left(y, \partial \Omega_{\varepsilon}\right)\right)^{p-2}(\bar{\eta}+\varphi)^{2} \\
& \leq C\left(\varepsilon^{2 \frac{n-3}{n-4}-\frac{n+2}{n-4}}\right)^{p-2}\|\bar{\eta}+\varphi\|_{*}^{2} \\
& \leq C \varepsilon^{2 \beta-1}\|\bar{\eta}+\varphi\|_{*}^{2} .
\end{aligned}
$$

Finally

$$
\left\|N_{\varepsilon}(\psi+v)\right\|_{* *} \leq\left\{\begin{array}{c}
C\left(\|\psi+v+\varphi\|_{*}^{2}\right) \text { if } n \leq 12 \\
C\left(\varepsilon^{2 \beta-1}\|\psi+v+\varphi\|_{*}^{2}\right) \text { if } n>12
\end{array}\right.
$$

Which finishes the proof.

Now we want to find a solution to (5). The problem can be seen as a fixed point problem if we write it in the following way

$$
\begin{equation*}
v=-L_{\varepsilon}\left(N_{\varepsilon}(\psi+v)\right)=A_{\varepsilon}(v) \tag{6}
\end{equation*}
$$

We have the following:

Proposition 3.3. There exists $C>0$ such that for $\varepsilon>0$ small enough, the problem (6) has a unique solution v, with $\|v\|_{*}<C \varepsilon^{2}$. Moreover, the map $\left(\xi^{\prime}, \Lambda\right) \longrightarrow v$ is C^{1} with respect to the norm $\|\cdot\|_{*}$, and $\left\|\nabla_{\left(\xi^{\prime}, \Lambda\right)} v\right\|_{*} \leq C \varepsilon^{2}$.

Proof. Let

$$
F=\left\{u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega),\|u\|_{*}<\varepsilon^{2}\right\}
$$

and then consider $A_{\varepsilon}: F \longrightarrow H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. By using the previous lemma and proposition (3.1) we get

$$
\begin{aligned}
\left\|A_{\varepsilon}(u)\right\|_{*} & \leq C\left\|N_{\varepsilon}(u+\psi)\right\|_{* *} \\
& \leq\left\{\begin{array}{c}
C\left(\|u\|_{*}^{2}+\varepsilon\|u\|_{*}+\varepsilon^{p+1}\right) \text { if } n \leq 12 \\
C\left(\varepsilon^{2 \beta-1}\|u\|_{*}^{2}+\varepsilon^{2 \beta}\|u\|_{*}+\varepsilon^{3 p}\right) \text { if } n>12
\end{array}\right. \\
& \leq\left\{\begin{array}{c}
C \varepsilon^{3} \text { if } n \leq 12 \\
C \varepsilon^{2 \beta+3} \text { if } n>12
\end{array}\right.
\end{aligned}
$$

so for $\varepsilon>0$ small enough, we have that A_{ε} maps F into itself. Now we estimate $\left\|A_{\varepsilon}(a)-A_{\varepsilon}(b)\right\|_{*}$ for $a, b \in F$. Since

$$
\left\|A_{\varepsilon}(a)-A_{\varepsilon}(b)\right\|_{*} \leq C\left\|N_{\varepsilon}(a+\psi)-N_{\varepsilon}(b+\psi)\right\|_{* *},
$$

it suffices to show that N_{ε} is a contraction to finish the proof of the proposition. Note that by construction we have

$$
D_{u} N_{\varepsilon}(u+\psi)=p|V+u+\psi+\varphi|^{p-2}(V+u+\psi+\varphi)-p V^{p-1}
$$

Then arguing as in [22], we obtain that N_{ε} is a contraction. Hence the existence and uniqueness of v follows. Next we prove that the map is C^{1}. We will apply the implicit function theorem to the map K defined by

$$
K\left(\xi^{\prime}, \Lambda, v\right)=v-A_{\varepsilon}(v) .
$$

We recall that
$D_{\xi^{\prime}} N_{\varepsilon}(u)=p\left[|V+u+\varphi|^{p-2}(V+u+\varphi)-(p-1) V^{p-2}(u+\varphi)-V^{p-1}\right] D_{\xi^{\prime}} V$
Also,

$$
D_{u} K\left(\xi^{\prime}, \Lambda, u\right) h=h+L_{\varepsilon}\left(D_{u} N_{\varepsilon}(u+\psi) h\right)=h+M(h) .
$$

Now

$$
\begin{aligned}
\|M(h)\|_{*} & \leq C\left\|D_{u} N_{\varepsilon}(u+\psi) h\right\|_{* *} \\
& \leq C\left\|\bar{V}^{-\frac{8}{n-4}+\beta} D_{u} N_{\varepsilon}(u+\psi)\right\|_{\infty}\|h\|_{*}
\end{aligned}
$$

and since

$$
\left|\bar{V}^{-\frac{8}{n-4}+\beta} D_{u} N_{\varepsilon}(u+\psi)\right| \leq C \bar{V}^{2 \beta-1}\|u+\psi\|_{*},
$$

we get

$$
\left\|\bar{V}^{-\frac{8}{n-4}+\beta} D_{u} N_{\varepsilon}(u+\psi)\right\|_{\infty} \leq C\left\{\begin{array}{c}
\varepsilon^{2} \text { if } n \leq 12 \\
\varepsilon^{2 \beta+1} \text { if } n>12
\end{array}\right.
$$

hence

$$
\|M(h)\|_{*} \leq C \varepsilon^{\min (2,2 \beta+1)}\|h\|_{*}
$$

Therefore by using the implicit function theorem, we have that φ depends continuously on the parameter $\left(\xi^{\prime}, \Lambda\right)$. On the other hand if we differentiate with respect to ξ^{\prime} we get

$$
D_{\xi^{\prime}} K\left(\xi^{\prime}, \Lambda, u\right)=D_{\xi^{\prime}} u+D_{\xi^{\prime}} L_{\varepsilon}\left(N_{\varepsilon}(u+\psi)\right)
$$

From proposition (3.1) we get that

$$
\left\|D_{\xi^{\prime}} L_{\varepsilon}(h)\right\|_{*} \leq C\|h\|_{* *}
$$

Thus we need to compute

$$
D_{\xi^{\prime}} \psi=\left(D_{\xi^{\prime}} L_{\varepsilon}\right)\left(R_{\varepsilon}\right)+L_{\varepsilon}\left(D_{\xi^{\prime}} R_{\varepsilon}\right),
$$

but

$$
D_{\xi_{1}^{\prime}} R_{\varepsilon}=p V^{p-1} D_{\xi_{1}^{\prime}} V-p \bar{U}_{1}^{p-1} D_{\xi_{1}^{\prime}} \bar{U}_{1}-p(p-2)|V|^{p-3} D_{\xi_{1}^{\prime}} V \varphi
$$

which depends continuously on the parameters, and this is enough to prove that v is C^{1} with respect to the parameters $\left(\xi^{\prime}, \Lambda\right)$. Moreover we have

$$
\begin{aligned}
& D_{\xi^{\prime}} v=-\left(D_{v} K\left(\xi^{\prime}, \Lambda, v\right)\right)^{-1}\left[\left(D_{\xi^{\prime}} L_{\varepsilon}\right)\left(N_{\varepsilon}(v+\psi)\right)+\right. \\
& \left.+L_{\varepsilon}\left(D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi)\right)\right)+L_{\varepsilon}\left(D_{v}\left(N_{\varepsilon}\right)(v+\psi) D_{\xi^{\prime}} \psi\right)\right],
\end{aligned}
$$

hence

$$
\left\|D_{\xi^{\prime}} v\right\|_{*} \leq C\left(\left\|N_{\varepsilon}(v+\psi)\right\|_{* *}+\left\|D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi)\right)\right\|_{* *}+\left\|D_{v}\left(N_{\varepsilon}\right)(v+\psi) D_{\xi^{\prime}} \psi\right\|_{* *}\right) .
$$

Now, from Lemma (3.2), we know that

$$
\left\|N_{\varepsilon}(v+\psi)\right\|_{* *} \leq\left\{\begin{array}{c}
C \varepsilon^{3} \text { if } n \leq 12 \\
C \varepsilon^{2 \beta+3} \text { if } n>12
\end{array}\right.
$$

and also

$$
\begin{aligned}
\left|D_{\xi^{\prime}}\left(N_{\varepsilon}(u)\right)\right| & =p\left[|V+u+\varphi|^{p-2}(V+u+\varphi)-(p-1) V^{p-2}(u+\varphi)-V^{p-1}\right] D_{\xi^{\prime}} V \\
& \leq C V^{p-2}\left|D_{\xi^{\prime}} V\right||u| \leq C \bar{V}^{p-2+\frac{n-3}{n-4}+\beta}\|u\|_{*} .
\end{aligned}
$$

We get

$$
\bar{V}^{-\frac{8}{n-4}}\left|D_{\xi^{\prime}}\left(N_{\varepsilon}(u)\right)\right| \leq C \bar{V}^{\frac{n-3}{n-4}+\beta-1}\|u\|_{*},
$$

therefore

$$
\left\|D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi)\right)\right\|_{* *} \leq C \varepsilon^{2}
$$

A similar estimate gives

$$
\left\|D_{v}\left(N_{\varepsilon}\right)(v+\psi) D_{\xi^{\prime}} \psi\right\|_{* *} \leq C \varepsilon^{2} .
$$

Since there is no difference in the case of the differentiation with respect to Λ, we omit it.

4 Reduction of the functional

Here we want to go back to our original set Ω, therefore we will denote $\xi_{i}^{\prime}=\varepsilon^{-\frac{2}{n-4}} \xi_{i}$ where $\xi_{i} \in \Omega$ and we remark that if we take ξ_{i} and Λ so that $c_{i j}=0$, then we obtain a solution of our original problem. Let $\mathcal{I}_{\varepsilon}$ be the functional defined by

$$
\mathcal{I}_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega}|u|^{p+1}-\varepsilon \int_{\Omega} f u
$$

so that $u=V+v+\varphi+\psi$ is a solution for our problem if and only if it is a critical point for this functional. Let us consider the functions defined on Ω by

$$
\begin{gathered}
\widehat{v}(\xi, \Lambda)(x)=\varepsilon^{-1} v\left(\varepsilon^{-\frac{2}{n-4}} \xi, \Lambda\right)\left(\varepsilon^{-\frac{2}{n-4} x}\right) \\
\widehat{\psi}(x)=\varepsilon^{-1} \psi\left(\varepsilon^{\left.-\frac{2}{n-4} x\right)}\right. \\
\widehat{\varphi}(x)=\varepsilon^{-1} \varphi\left(\varepsilon^{-\frac{2}{n-4}} x\right)
\end{gathered}
$$

and

$$
\widehat{U}_{i}(x)=\varepsilon^{-1} V_{i}\left(\varepsilon^{-\frac{2}{n-4} x}\right)
$$

Therefore if we set $\widehat{U}(x)=\widehat{U}_{2}(x)+\widehat{U}_{1}(x)$, and

$$
I(\xi, \Lambda)=\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi})
$$

then

$$
I(\xi, \Lambda)=J_{\varepsilon}(V+\psi+v+\varphi) .
$$

Next we state the following result and we refer to [22] for the proof.
Lemma 4.1. $u=\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi}$ is a solution of the problem (P) if and only if (ξ, Λ) is a critical point of I.

Now we define

$$
\sigma_{f}=\int_{\Omega} f w,
$$

and we obtain
Proposition 4.2. We have the following expansion:

$$
I(\xi, \Lambda)=2 C_{n}+\varepsilon^{2}\left(\Psi(\xi, \Lambda)+\sigma_{f}\right)+o\left(\varepsilon^{2}\right)
$$

where $o\left(\varepsilon^{2}\right) \longrightarrow 0$ as $\varepsilon \longrightarrow 0$ in the C^{1} sense, uniformly in $O_{\delta}(\Omega) \times\left(\delta, \delta^{-1}\right)^{2}$.
Proof. Let us show first that

$$
I(\xi, \Lambda)-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})=o\left(\varepsilon^{2}\right)
$$

and

$$
\nabla_{(\xi, \Lambda)}\left(I(\xi, \Lambda)-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})\right)=o\left(\varepsilon^{2}\right) .
$$

Indeed, using a Taylor expansion we have
$J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi})-J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})=\int_{0}^{1} t D^{2} J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi}+t \widehat{v})[\widehat{v}, \widehat{v}] d t$ and this holds since $D J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi}+\widehat{v})=0$. Therefore, we have

$$
\begin{gathered}
\int_{0}^{1} t D^{2} J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi}+t \widehat{v})[\widehat{\varphi}, \widehat{\varphi}] d t=\int_{0}^{1} t\left[\int_{\Omega_{\varepsilon}}|\nabla v|^{2}-p(V+\psi+\varphi+t v)^{p-1} v^{2}\right] d t \\
=\int_{0}^{1} t \int_{\Omega_{\varepsilon}} p\left[V^{p-1}-(V+\psi+\varphi+t v)^{p-1}\right] v^{2}+N_{\varepsilon}(v+\psi) v d t .
\end{gathered}
$$

We have $\|v\|_{*}+\|\varphi\|_{*}+\|\psi\|_{*}=O\left(\varepsilon^{2}\right)$, and by using Lemma (3.2), we get $\int_{\Omega_{\varepsilon}} N_{\varepsilon}(v+\psi) v \leq \int_{\Omega_{\varepsilon}} \bar{V}^{p-1+\beta}\left\|N_{\varepsilon}(v+\psi)\right\|_{* *}\|v\|_{*} \leq C \varepsilon^{3} \int_{\Omega_{\varepsilon}} \bar{V}^{p-1+\beta} \leq C \varepsilon^{3}$.

Now, the remaining part can be estimated as follows

$$
\begin{aligned}
\int_{\Omega_{\varepsilon}}\left[V^{p-1}-(V+\psi+\varphi+t v)^{p-1}\right] v^{2} & \leq C \varepsilon^{4} \int_{\Omega_{\varepsilon}} \bar{V}^{2 \beta}\left[V^{p-1}-(V+\psi+t \varphi)^{p-1}\right] \\
& \leq C \varepsilon^{4}
\end{aligned}
$$

Same estimates hold if we differentiate with respect to ξ. In fact we have

$$
\begin{gathered}
D_{\xi}\left(J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{v}(\xi, \Lambda)+\widehat{\varphi})-J_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})\right)= \\
\varepsilon^{-\frac{2}{n-4}} \int_{0}^{1} t \int_{\Omega_{\varepsilon}} p D_{\xi^{\prime}}\left(\left[V^{p-1}-(V+\psi+\varphi+t v)^{p-1}\right] v^{2}\right)+D_{\xi^{\prime}}\left(N_{\varepsilon}(v+\psi) v\right) d t
\end{gathered}
$$

and the conclusion follows again from Lemma (3.2). Next step is to prove that

$$
\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})=o\left(\varepsilon^{2}\right)
$$

and

$$
D_{\xi}\left(\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})\right)=o\left(\varepsilon^{2}\right)
$$

So we start by writing

$$
\begin{aligned}
& \mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})=I_{\varepsilon}(U+\psi+\varphi)-I_{\varepsilon}(U+\varphi) \\
& =\int_{0}^{1}(1-t)\left(\left[p \int_{\Omega_{\varepsilon}}(V+\varphi+t \psi)^{p-1} \psi^{2}-\int_{\Omega_{\varepsilon}}|\Delta \psi|^{2}\right]-\right. \\
& \left.\quad-\int_{\Omega_{\varepsilon}}\left(|V|^{p}-|V+\varphi|^{p}+p|V|^{p-1} \varphi\right) \psi+\int_{\Omega_{\varepsilon}} R^{\varepsilon} \psi\right) .
\end{aligned}
$$

Also
$D_{\xi}\left(\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\psi}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})\right)=\varepsilon^{-\frac{2}{n-4}}\left[\int_{0}^{1}(1-t)\left(D_{\xi^{\prime}}\left[p \int_{\Omega_{\varepsilon}}(V+\varphi+t \psi)^{p-1} \psi^{2}-\right.\right.\right.$

$$
\left.\left.\left.-\int_{\Omega_{\varepsilon}}|\Delta \psi|^{2}\right] d t-D_{\xi^{\prime}} \int_{\Omega_{\varepsilon}}\left(|V|^{p}-|V+\varphi|^{p}+p|V|^{p-1} \varphi\right) \psi+D_{\xi^{\prime}} \int_{\Omega_{\varepsilon}} R^{\varepsilon} \psi\right)\right]
$$

Again, by using the fact that $\|\psi\|_{*}+\left\|R^{\varepsilon}\right\|_{* *}+\left\|\nabla_{(\xi, \Lambda)} \psi\right\|_{*}+\left\|\nabla_{(\xi, \Lambda)} R^{\varepsilon}\right\|_{* *} \leq$ $C \varepsilon^{2}$, with $\|\varphi\|_{*} \leq C \varepsilon^{p}$ if $n \leq 12$ and $\|\varphi\|_{*} \leq C \varepsilon^{2}$ if $n>12$, we get the desired result. The final steps, namely showing

$$
\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U})=\varepsilon^{2} \sigma_{f}+o\left(\varepsilon^{2}\right)
$$

and

$$
D_{\xi}\left(\mathcal{I}_{\varepsilon}(\widehat{U}+\widehat{\varphi})-\mathcal{I}_{\varepsilon}(\widehat{U})\right)=o\left(\varepsilon^{2}\right)
$$

are also obtained by using the same kind of estimates.

5 Analysis of the exterior domain

Let us consider here $\Omega=\mathcal{D}-\overline{B(0, \mu)}$ for $\mu>0$ small enough. Also for $E=\mathbb{R}^{n}-\overline{B(0,1)}$ define the set

$$
\mathcal{V}=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n} ; G_{E}(x, y)-H_{E}^{\frac{1}{2}}(x, x) H_{E}^{\frac{1}{2}}(y, y)<0\right\} \cap\left(\mu^{-1} \Omega\right)
$$

where G_{E} and H_{E} are the Green's function and its regular part on the set E.

Let us take $f=1$ and $\mathcal{F}_{a}=\left\{x \in \mathbb{R}^{n} ; 1<|x|<a, a>1\right\}$, then the solution of

$$
\left\{\begin{array}{ccc}
\Delta^{2} w_{a} & =f \quad \text { on } \quad \mathcal{F}_{a} \\
w_{a}=\Delta w_{a} & =0 \quad \text { on } \quad \partial \mathcal{F}_{a}
\end{array}\right.
$$

is given by

$$
w_{a}(x)=-\frac{1}{8 n(n+2)}\left(\frac{a^{4}-1}{a^{4-n}-1}|x|^{4-n}-|x|^{4}+a^{4-n} \frac{\left(1-a^{n}\right)}{a^{4-n}-1}\right)
$$

It is easy to see that it has a maximum for

$$
\left|x_{a}\right|=\left(\frac{4\left(1-a^{4-n}\right)}{(n-4)\left(a^{4}-1\right)}\right)^{\frac{-1}{n}}
$$

and $\left|x_{a}\right| \longrightarrow \infty$ as $a \longrightarrow \infty$. Now we consider the function $\varphi_{\mathcal{F}_{a}}$ defined, on the set \mathcal{F}_{a} by
$\varphi_{\mathcal{F}_{a}}(x, y)=\frac{1}{2} \frac{H_{\mathcal{F}_{a}}(x, x) w_{a}(y)^{2}+H_{\mathcal{F}_{a}}(y, y) w_{a}(x)^{2}+2 G_{\mathcal{F}_{a}}(x, y) w_{a}(y) w_{a}(x)}{-H_{\mathcal{F}_{a}}(x, x) H_{\mathcal{F}_{a}}(y, y)+G_{\mathcal{F}_{a}}^{2}(x, y)}$, we will extend it to the full exterior domain $E=\left\{x \in \mathbb{R}^{n} ; 1<|x|\right\}$, for that we just extend w_{a} by zero for $|x|>a$. Hence knowing that

$$
H_{E}(x, y)=\frac{a_{n}}{\| y|(x-\bar{y})|^{n-4}}
$$

where $\bar{y}=\frac{y}{|y|^{2}}$, and since w_{a} is radially symmetric, we get that φ_{E} has a critical point (x, y) if and only if $\sin (\theta)=0$ where θ is the angle between x and y. Now we set $x=s e$ and $y=-t e$, where e is a unit vector and s and t are real number greater than 1 . we write

$$
\widetilde{\varphi}_{E}(s, t)=\varphi_{E}(s e,-t e) .
$$

Explicitly :

$$
\begin{gathered}
2 a_{n} \widetilde{\varphi}_{E}(s, t)=\left(\frac{\widetilde{w}_{a}(t)^{2}}{\left(s^{2}-1\right)^{n-4}}+\frac{\widetilde{w}_{a}(s)^{2}}{\left(t^{2}-1\right)^{n-4}}+2 \widetilde{w}_{a}(t) \widetilde{w}_{a}(s)\left(\frac{1}{(s+t)^{n-4}}-\frac{1}{(s t+1)^{n-4}}\right)\right) \\
\left(\left(\frac{1}{(s+t)^{n-4}}-\frac{1}{(s t+1)^{n-4}}\right)^{2}-\left(\frac{1}{\left(t^{2}-1\right)^{n-4}\left(t^{2}-1\right)^{n-4}}\right)\right)^{-1} .
\end{gathered}
$$

We recall now (see [22]) that the function defined by

$$
\widetilde{\rho}(s, t)=a_{n}\left(-\frac{1}{\left(t^{2}-1\right)^{\frac{n-4}{2}}\left(s^{2}-1\right)^{\frac{n-4}{2}}}-\frac{1}{(1+s t)^{n-4}}+\frac{1}{(s+t)^{n-4}}\right),
$$

has a unique maximum point of the form (K, K), for $s, t>1$ and a unique k satisfying $\widetilde{\rho}(k, k)=0$. we can choose $a_{0}>0$, big enough, such that for $a>a_{0}$, we have $k<K<\left|x_{a}\right|$. Hence we can get the following :

Lemma 5.1. The function $\widetilde{\varphi}_{E}$ admits a unique minimum, of the form $\left(\tau_{a}, \tau_{a}\right)$. Moreover $\tau_{a} \in(k, K)$.

Next we will work on the domain $\Omega=D-\overline{B(0, \mu)}$. We set m, (resp $M)$ the radius of the largest (resp smallest) ball contained (resp containing) D, and set $\alpha=\min _{\Omega} f$, and $\beta=\max _{\Omega} f$. Thus, by using the maximum principle, we have $z_{m} \leq w \leq z_{M}$ for $\mu<|x|<m$, with w as defined in (3),

$$
z_{m}(x)=\alpha \mu^{4} w_{a_{1}}\left(\mu^{-1} x\right)
$$

and

$$
z_{M}(x)=\beta \mu^{4} w_{a_{2}}\left(\mu^{-1} x\right)
$$

here $a_{1}=\mu^{-1} m$ and $a_{1}=\mu^{-1} M$. we obtain the following

Lemma 5.2. For $\mu>0$ small enough the function φ_{E} has a relative minimum in a point $\left(\widetilde{x}_{\mu}, \widetilde{y}_{\mu}\right)$, with $\left|\widetilde{x}_{\mu}\right|$ and $\left|\widetilde{y}_{\mu}\right|$ belonging to (k, \widetilde{k}), and \widetilde{k} independent of μ.

The proof of this lemma follows if we show that there exist $\widetilde{k} \geq K$ satisfying

$$
\frac{\widetilde{\varphi}_{\mathcal{F}_{a_{1}}}(\widetilde{k}, \widetilde{k})}{\widetilde{\varphi}_{\mathcal{F}_{a_{2}}}(K, K)} \geq 1
$$

the conclusion will follow from the fact that $\varphi_{\mathcal{F}_{a_{1}}} \leq \varphi_{E} \leq \varphi_{\mathcal{F}_{a_{2}}}$ and $\varphi_{\mathcal{F}_{a}}$ has a unique minimum point for a big enough.

Let us Define the set

$$
\mathcal{X}=\{(x, y) \in \mathcal{V}, \text { such that } k<|x|,|y|<\widetilde{k}\}
$$

and call $c_{\mu}=\varphi_{E}\left(\widetilde{x}_{\mu}, \widetilde{y}_{\mu}\right)$. Now we choose $\delta_{\mu}>c_{\mu}$ in such way that the set $\left\{(x, y) \in \mathcal{X}, \varphi_{E}=\delta_{\mu}\right\}$ is a closed curve on which $\nabla \varphi_{E} \neq 0$. Observe then that if we call

$$
\mathcal{J}=\left\{(x, y) \in \mathcal{X}, \text { such that } \varphi_{E} \leq \delta_{\mu}\right\}
$$

two situation might happen on $\partial \mathcal{J}$: either there exist a tangential direction τ such that $\nabla \varphi_{E} \cdot \tau \neq 0$, or x and y point in two different directions and $\nabla \varphi_{E}(x, y) \neq 0$ points in the normal direction to $\partial \mathcal{J}$.

Now if we look at $E_{\mu}=\mathbb{R}^{n}-\overline{B(0, \mu)}$, then we can easily see that $G_{E_{\mu}}$ and $H_{E_{\mu}}$, are defined by

$$
G_{E_{\mu}}(x, y)=\mu^{4-n} G_{E}\left(\mu^{-1} x, \mu^{-1} y\right)
$$

and

$$
H_{E_{\mu}}(x, y)=\mu^{4-n} H_{E}\left(\mu^{-1} x, \mu^{-1} y\right) .
$$

Note that $S_{\mu}=\mu \mathcal{J}$, corresponds exactly to the set $\left\{\varphi_{E}\left(\mu^{-1} x, \mu^{-1} y\right) \leq \delta_{\mu}\right\}$.
Also

$$
G(x, y)=G_{E_{\mu}}(x, y)+O(1)
$$

on the set $\mu \mathcal{X}$. Therefore, it follows that:

$$
\varphi_{\Omega}(x, y)=\mu^{n+4} \varphi_{E}\left(\mu^{-1} x, \mu^{-1} y\right)+o(1)
$$

where

$$
\varphi_{\Omega}(x, y)=\frac{1}{2} \frac{H_{\Omega}(x, x) w(y)^{2}+H_{\Omega}(y, y) w(x)^{2}+2 G_{\Omega}(x, y) w(y) w(x)}{G_{\Omega}^{2}(x, y)-H_{\Omega}(x, x) H_{\Omega}(y, y)}
$$

and $o(1) \longrightarrow 0$ as $\mu \longrightarrow 0$ in the C^{1} sense.

6 Proof of Theorem 1.1

Since the function Ψ defined in section 2 is singular on the diagonal of $\Omega \times \Omega$, we replace the terms $G\left(\xi_{1}, \xi_{2}\right)$ by $G_{M}\left(\xi_{1}, \xi_{2}\right)=\min \left(G\left(\xi_{1}, \xi_{2}\right), M\right)$ for a constant $M>0$ to be fixed later. Hence Ψ is well defined on $S_{\mu} \times \mathbb{R}_{+}^{2}$

We remark that in that set, we have $\rho(x, y)=H(x, x)^{\frac{1}{2}} H(y, y)^{\frac{1}{2}}-$ $G(x, y)<0$, therefore the principal part of Ψ which is a quadratic form, has a negative direction. We will set $\mathbf{e}\left(\xi_{1}, \xi_{2}\right)$ the vector defining the negative direction :

We have

$$
\mathbf{e}\left(\xi_{1}, \xi_{2}\right)=\left(\frac{H\left(\xi_{1}, \xi_{1}\right)^{\frac{1}{2}}}{H\left(\xi_{2}, \xi_{2}\right)^{\frac{1}{2}} \rho\left(\xi_{1}, \xi_{2}\right)}, \frac{H\left(\xi_{2}, \xi_{2}\right)^{\frac{1}{2}}}{H\left(\xi_{1}, \xi_{1}\right)^{\frac{1}{2}} \rho\left(\xi_{1}, \xi_{2}\right)}\right),
$$

Now we are going to consider the vector $\widetilde{\mathbf{e}}$ such that, for each $\left(\xi_{1}, \xi_{2}\right)$, $\widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)$ is the critical point of $\Psi\left(\left(\xi_{1}, \xi_{2}\right), \cdot\right)$. This vector can be written explicitly in the following form

$$
\begin{gathered}
\widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)=\left(\frac{\left.\left.\left.H\left(\xi_{2}, \xi_{2}\right) w\left(\xi_{1}\right)+G\left(\xi_{1}, \xi_{2}\right)\right) w\left(\xi_{2}\right)\right) w\left(\xi_{1}\right)\right)}{G^{2}\left(\xi_{1}, \xi_{2}\right)-H\left(\xi_{2}, \xi_{2}\right) H\left(\xi_{1} \xi_{2=1}\right)},\right. \\
\left.\frac{\left.\left.\left.H\left(\xi_{1}, \xi_{1}\right) w\left(\xi_{2}\right)+G\left(\xi_{1}, \xi_{2}\right)\right) w\left(\xi_{2}\right)\right) w\left(\xi_{1}\right)\right)}{G^{2}\left(\xi_{1}, \xi_{2}\right)-H\left(\xi_{2}, \xi_{2}\right) H\left(\xi_{1} \xi_{2=1}\right)}\right)
\end{gathered}
$$

Therefore we can check that $\Psi\left(\left(\xi_{1}, \xi_{2}\right), \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right)=\varphi_{\Omega}\left(\xi_{1}, \xi_{2}\right)$.
Now we can set the min-max scheme, in a similar way as in [1], [14] and [22]. Let us define

$$
K_{\mu}=\left\{(x, y) \in \mathcal{X},(|x|,|y|)=\mu\left(\left|\widetilde{x}_{\mu}\right|,\left|\widetilde{y}_{\mu}\right|\right)\right\},
$$

We consider the family of curves \mathcal{R}, satisfying the following properties, γ : $K_{\mu}^{2} \times\left[s, s^{-1}\right] \times[0,1] \longrightarrow A_{\mu} \times \mathbb{R}_{+}^{2}$ such that:
i) for $\left(\xi_{1}, \xi_{2}\right) \in K_{\mu}^{2}, t \in[0,1]$ it holds

$$
\gamma\left(\xi_{1}, \xi_{2}, s, t\right)=\left(\xi_{1}, \xi_{2}, \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right),
$$

and

$$
\begin{gathered}
\gamma\left(\xi_{1}, \xi_{2}, s^{-1}, t\right)=\left(\xi_{1}, \xi_{2}, s^{-1} \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right) . \\
\text { ii) } \gamma\left(\xi_{1}, \xi_{2}, t, 0\right)=\left(\xi_{1}, \xi_{2}, t \widetilde{\mathbf{e}}\left(\xi_{1}, \xi_{2}\right)\right), \text { for all }\left(\xi_{1}, \xi_{2}, t\right) \in K_{\mu}^{2} \times\left[s, s^{-1}\right] .
\end{gathered}
$$

Now arguing as in [22], the min-max value defined by

$$
C(\Omega)=\inf _{\gamma \in \mathcal{R}} \sup _{\left(\xi_{1}, \xi_{2}, t\right) \in K_{\mu}^{2} \times\left[s, s^{-1}\right]} \Psi\left(\gamma\left(\xi_{1}, \xi_{2}, t, 1\right)\right),
$$

is a critical value of Ψ.
Then the proof of theorem 1.1 follows as in ([15]).

7 Vanishing Solutions

In this section we will prove a multiplicity result concerning problem $\left(P_{f}\right)$. Let us start by introducing a slightly different notation from the previous part. We set

$$
\bar{U}_{(z, a)}=c_{n}\left(\frac{a}{1+a^{2}|x-z|^{2}}\right)^{\frac{n-4}{2}}
$$

for every $z \in \Omega$ (it corresponds to $a=\frac{1}{\lambda}$ in the first part of the paper). Also, we set:

$$
\bar{Z}_{(z, a), i}=\frac{\partial}{\partial z_{i}} \bar{U}_{(z, a)}
$$

for $i=1, \cdots, n$, and

$$
\bar{Z}_{(z, a), n+1}=\frac{\partial}{\partial a} \bar{U}_{(z, a)}
$$

Now we consider the functional I defined on $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ by

$$
I(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{1}{p+1} \int_{\Omega}\left|u^{+}\right|^{p+1}
$$

We know that critical points of this functional are positive solutions to the problem

$$
\left\{\begin{array}{cccc}
\Delta^{2} u & =u^{p} \quad \text { on } & \Omega \\
u=\Delta u=0 & \text { on } & \partial \Omega
\end{array}\right.
$$

and, if $\Omega=\mathbb{R}^{n}$ then the solutions for

$$
\left\{\begin{array}{ccccc}
\Delta^{2} u & = & u^{p} & \text { on } & \mathbb{R}^{n} \\
u>0 & \text { and } & u & \text { in } & D^{2,2}\left(\mathbb{R}^{n}\right)
\end{array}\right.
$$

are of the form $\bar{U}_{(z, a)}$. We define the set

$$
S=\left\{u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)-\{0\} ; \int_{\Omega}|\Delta u|^{2}=\int_{\Omega}\left|u^{+}\right|^{p+1}\right\}
$$

It is easy to show that for every $u \in S$, we have $I(u)>\frac{C_{n}}{n}$. Now we take $0<d_{0}<1$ small enough so that, if $d(x, \partial \Omega)<d_{0}$, then there exists a unique $y \in \partial \Omega$ such that $|x-y|=d(x, \partial \Omega)$. We put $d(x)=\min \left(d_{0}, d(x, \partial \Omega)\right)$, for every x in Ω. Next we set

$$
\mathcal{O}(r)=\{(x, a) \in \Omega \times(1, \infty) ; d(x) a=r\}
$$

and

$$
\overline{\mathcal{O}}(r)=\{(x, a) \in \Omega \times(1, \infty) ; d(x) a \geq r\}
$$

If we consider the eigenvalue problem

$$
\Delta^{2} v=\gamma p \bar{U}_{(z, a)}^{p} v \text { on } D^{2}\left(\mathbb{R}^{n}\right)
$$

then obviously $\bar{U}_{(z, a)}$ is an eigenfunction corresponding to $\gamma_{1}=\frac{1}{p}$. We take

$$
T_{(z, a)}=\operatorname{span}\left\{\bar{Z}_{(z, a), i}, i=1, \ldots, n+1\right\},
$$

and by using the classification in [21], we have that $T_{(z, a)}$ is exactly the eigenspace corresponding to the eigenvalue 1 . We set T_{0} the eigenspace corresponding to the eigenvalue γ_{1} and

$$
T_{(z, a)}^{+}=\left(T_{0} \oplus T_{(z, a)}\right)^{\perp},
$$

where orthogonality here is with respect to the scalar product $(u, v)=$ $\int_{\Omega} \Delta u \Delta v$, for every $u, v \in D^{2}(\Omega)$. Now by means of the sterographic projection from \mathbb{R}^{n} to the sphere, we obtain a linear eigenvalue problem on a compact manifold, with operator (Paneitz) having compact resolvent. Therefore we have the following:

Lemma 7.1. There exists $\gamma>0$ such that for every $(z, a) \in \Omega \times(1, \infty), v \in$ $T_{(z, a)}^{+}$, we have

$$
\left\langle v, \Delta^{2} v-p \bar{U}_{(z, a)}^{p} v\right\rangle \geq \gamma \int_{\Omega} p \bar{U}_{(z, a)}^{p} v^{2}
$$

We are going to find a particular solution to the problem $\left(P_{f}\right)$:
Lemma 7.2. There exist $\varepsilon_{0}>0$ and $C_{0}>0$ such that if $\|f\|_{C(\bar{\Omega})}<\varepsilon_{0}$, the problem $\left(P_{f}\right)$ has a unique solution $u_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, satisfying

$$
\left\|u_{0}\right\|_{C^{1}} \leq C_{0}\|f\|_{C(\bar{\Omega})}
$$

Moreover:

$$
\frac{1}{2} \int_{\Omega}\left(\Delta u_{0}\right)^{2}-\frac{1}{p+1} \int_{\Omega} u_{0}^{p+1}-\int_{\Omega} u_{0} f<\frac{C_{n}}{2 n}
$$

Proof. Let λ_{1} be the first eigenvalue of the operator Δ^{2}. For a fixed $0<\lambda<$ λ_{1}, consider the function

$$
h(t)=\left\{\begin{array}{l}
\left|t^{+}\right|^{p} \text { if } t<t_{0} \\
\lambda|t| \text { if } t \geq t_{0}
\end{array}\right.
$$

where t_{0} is chosen such that h is continuous. Hence, since h has a linear growth at infinity and it is non-resonant, we can always find a solution to the problem

$$
\left\{\begin{array}{ccccc}
\Delta^{2} u & = & h(u)+f & \text { on } & \Omega \\
u=\Delta u & = & 0 & \text { on } & \partial \Omega
\end{array}\right.
$$

Moreover, using Schauder estimates we get that $\left\|u_{0}\right\|_{C^{1}} \leq C_{0}\|f\|_{C(\bar{\Omega})}$. Thus by taking $\varepsilon_{0}>0$ small enough, we have the desired result.

Let us consider $f \geq 0$ in $C(\bar{\Omega})$ with $f \neq 0$. We get, by using Hopf's lemma, that there exists $c_{1}>0$ such that

$$
\frac{c_{1}}{2}<-\frac{\partial u_{0}}{\partial \nu}<c_{1}, \forall x \in \partial \Omega
$$

Therefore, there exists $c_{2}>0$ such that

$$
u_{0}(x) \geq c_{2} d(x), \forall x \in \partial \Omega
$$

Next we want to find solutions of the form $u_{0}+v$. We define on $H^{2}(\Omega) \cap$ $H_{0}^{1}(\Omega)$ the functional

$$
J(u)=\frac{1}{2} \int_{\Omega}(\Delta u)^{2}-\frac{1}{p+1} \int_{\Omega}\left(\left(u_{0}+u\right)^{+}\right)^{p+1}-(p+1) u_{0}^{p} v-u_{0}^{p+1}
$$

We note that v is a critical point of J if and only if $u_{0}+v$ is a positive solution to $\left(P_{f}\right)$.

Lemma 7.3. There exists $\varepsilon_{1}>0$ such that for $\|f\|_{C(\bar{\Omega})}<\varepsilon_{1}$, and $v \in$ $H^{2}(\Omega) \cap H_{0}^{1}(\Omega), v^{+} \neq 0$, there exists a unique $t_{v}>t_{1}>0$ such that $J(t v)$ is increasing on $\left(t_{1} \cdot t_{v}\right]$, decreasing on $\left(t_{v}, \infty\right)$, and $J\left(t_{v} v\right)=\max _{t>0} J(t v)$.

Proof. We give a sketch of the proof: since we can pick ε_{1} small enough, it suffices to prove the result for $u_{0}=0$ and then argue by continuity. The functional J is now equal to I. Let us consider then

$$
I(t v)=t^{2} a_{1}-t^{p+1} a_{2}
$$

where $a_{1}=\frac{1}{2} \int_{\Omega}(\Delta v)^{2}$ and $a_{2}=\frac{1}{p+1} \int_{\Omega}\left(v^{+}\right)^{p+1}$. This is just a polynomial equation to study. The result follows.

Now we define the Nehari manifold

$$
\mathcal{S}=\left\{t_{v} v ; v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)-\{0\}\right\}
$$

We have that for v in $S, J(v)>0$, and $\langle\nabla J(v), v\rangle=0$ if and only if $v \in \mathcal{S} \cup\{0\}$. Therefore the critical points of J are in \mathcal{S}.

Lemma 7.4. The functional J satisfies the Palais-Smale condition on ($0, \frac{C_{n}}{n}$).

Proof. Let $\left\{u_{j}\right\}$ be a (P-S) sequence at the level $0<d<\frac{C_{n}}{n}$. Then we know by using the concentration compactness lemma, that there exists \bar{u}, $z_{1}, \ldots, z_{k} \in \Omega, a_{1}, . ., a_{k} \in \mathbb{R}_{+}^{*}$ such that

$$
u_{j}=\bar{u}+\sum_{i=1}^{k} \bar{U}_{\left(z_{i}, a_{i}\right)}+o(1)
$$

in the weak sense. After localization of the blow-up points, namely by testing against a function with support around the z_{i}, we get that the energy $J\left(u_{j}\right) \geq k \frac{C_{n}}{n}$. This happens if and only if $k=0$ since $d<\frac{C_{n}}{n}$, therefore the convergence holds.

We will need the following estimates.
Lemma 7.5. There exists $r_{0}>2$, such that for every $(z, a) \in \overline{\mathcal{O}}\left(r_{0}\right)$

$$
\begin{aligned}
\int_{\Omega} u_{0} U_{(z, a)}^{p} & \geq O\left(d(z) a^{-\frac{n-4}{2}}\right) \\
\left\|U_{(z, a)}\right\|_{L^{n-4}} & \leq O\left(a^{-\frac{n}{2}}|\ln (a)|\right),
\end{aligned}
$$

and

$$
\int_{\Omega} u_{0}^{\frac{n}{n-4}} U_{(z, a)}^{\frac{n}{n-4}} \leq O\left(d(z)^{\frac{n}{n-4}} a^{-\frac{n}{2}}|\ln (a)|\right)
$$

Proof. We have (see Appendix):

$$
\int_{\Omega} u_{0} U_{(z, a)}^{p} \geq c \int_{\Omega} d(x)\left(\bar{U}_{(z, a)}^{p}-p \theta_{(z, a)} \bar{U}_{(z, a)}^{p-1}\right)
$$

and

$$
\begin{aligned}
\int_{\Omega} d(x) \bar{U}_{(z, a)}^{p} & \geq \frac{d(z)}{2} \int_{2 d(z)>d(x)>\frac{d(z)}{2}} \bar{U}_{(z, a)}^{p} \\
& \geq \frac{d(z)}{2} \int_{0}^{d(z)} r^{n-1}\left(\frac{a}{1+a^{2} r^{2}}\right)^{\frac{n+4}{2}} d r \\
& \geq C \frac{d(z)}{2} a^{\frac{n-4}{2}}
\end{aligned}
$$

Moreover:

$$
\int_{\Omega} \theta_{(z, a)} \bar{U}_{(z, a)}^{p-1}=o\left(a^{-\frac{n-4}{2}}\right)
$$

Then the first inequality is proved. For the second one, we get:

$$
\begin{aligned}
\left\|U_{(z, a)}\right\|_{L^{\frac{n}{n-4}}}^{\frac{n}{n-4}} & \leq\left\|\bar{U}_{(z, a)}\right\|_{L^{\frac{n}{n-4}}}^{\frac{n}{n-4}} \\
& \leq\left\|\bar{U}_{(0, a)}\right\|_{L^{\frac{n}{n-4}}(B(0, C)}^{\frac{n}{n-4}} \\
& \leq C a^{-\frac{n}{2}}|\ln (a)|
\end{aligned}
$$

Finally, for the last inequality we have:

$$
\int_{\Omega} u_{0}^{\frac{n}{n-4}} U_{(z, a)}^{\frac{n}{n-4}} \leq \int_{\Omega} u_{0}^{\frac{n}{n-4}} \bar{U}_{(z, a)}^{\frac{n}{n-4}}
$$

and by using the fact that there exists $c>0$ such that $u_{0}(x) \leq c d(z)$ whenever $|x-z| \leq d(z)$, we get the desired result.

Now we define the following sets :

$$
\begin{gathered}
\mathcal{M}=\left\{U_{(z, a)} ;(z, a) \in \Omega \times(1, \infty)\right\} \\
\mathcal{N}=\left\{\lambda U_{(z, a)} ;(z, a) \in \Omega \times(1, \infty), \lambda \in\left(\frac{1}{2}, 2\right)\right\}
\end{gathered}
$$

and we call $\bar{T}_{(z, a)}$ the tangent space to \mathcal{N} at $U_{(z, a)}$. We also set $F_{(z, a)}^{-}=$ $\left\{\lambda U_{(z, a)} ; \lambda \in \mathbb{R}\right\}$ and $F_{(z, a)}^{+}=\bar{T}_{(z, a)}^{\perp}$. Finally, let $F_{(z, a)}=F_{(z, a)}^{+} \oplus F_{(z, a)}^{-}$and K be the linear operator defined by

$$
K u=u_{1}-u_{2}
$$

for any $u=u_{1}+u_{2}$, with $u_{1} \in F_{(z, a)}^{+}$and $u_{2} \in F_{(z, a)}^{-}$. We have the following
Lemma 7.6. There exist positive constants $\varepsilon_{2}, r_{1}, \delta$ and C_{1} such that for $f \in C(\bar{\Omega})$ with $|f|_{C(\bar{\Omega})}<\varepsilon_{2},(z, a) \in \overline{\mathcal{O}}\left(r_{1}\right)$ and $w \in B_{\delta}\left(U_{(z, a)}\right)$, it holds:

$$
\begin{equation*}
\left\langle\Delta^{2} v-p\left(w+u_{0}\right)_{+}^{p} v, K v\right\rangle \geq C_{1} \int_{\Omega}(\Delta v)^{2} \tag{7}
\end{equation*}
$$

for every $v \in F_{(z, a)}$.

Proof. Again it is enough to show this inequality for $u_{0}=0$ and then argue by continuity. So let us take $u_{0}=0$ and by contradiction, let us assume that the inequality does not hold. Then there exists a sequence $\left(z_{k}, a_{k}\right) \in \overline{\mathcal{O}}\left(r_{0}\right)$, $v_{k} \in F_{\left(z_{k}, a_{k}\right)}$ with $\left\|v_{k}\right\|=1, d\left(z_{k}\right) a_{k}=r_{k} \longrightarrow \infty$, and $w_{k} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ such that $\left\|w_{k}-U_{\left(z_{k}, a_{k}\right)}\right\| \longrightarrow 0$ as $k \longrightarrow \infty$, verifying

$$
\limsup \left\langle\Delta^{2} v_{k}-p\left(w_{k}\right)_{+}^{p} v_{k}, K v_{k}\right\rangle \leq 0
$$

We can always write $v_{k}=v_{k, 1}+v_{k, 2}$ according to the splitting of $F_{\left(z_{k}, a_{k}\right)}$. Since $r_{k} \longrightarrow \infty$, we have $\left\|\bar{U}_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}, a_{k}\right)}\right\| \longrightarrow 0$. Therefore it is easy to see that

$$
\operatorname{dist}\left(F_{\left(z_{k}, a_{k}\right)}, \operatorname{span}\left\{T_{\left(z_{k}, a_{k}\right)}, U_{\left(z_{k}, a_{k}\right)}\right\}\right) \longrightarrow 0
$$

Thus,

$$
\lim _{k \longrightarrow \infty} \operatorname{dist}\left(v_{k, 1}, F_{\left(z_{k}, a_{k}\right)}^{+}\right)=0
$$

and by using Lemma (7.1.) we have for k big enough

$$
\left\langle v_{k, 1}, \Delta^{2} v_{k, 1}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}\right\rangle \geq \frac{\gamma}{2} \int_{\Omega} p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}^{2} .
$$

Now let us assume for instance that $\left\|v_{k, 1}\right\|>c$, for k big enough. Then there exists $\widetilde{c}>0$, such that $\left\langle v_{k, 1}, \Delta^{2} v_{k, 1}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}\right\rangle>\widetilde{c}$, and hence

$$
\limsup \left\langle v_{k, 1}, \Delta^{2} v_{k, 1}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 1}\right\rangle>\widetilde{c}
$$

By definition of $v_{k, 2}$ we have

$$
\left\langle v_{k, 2}, \Delta^{2} v_{k, 2}-p\left(w_{k}^{+}\right)^{p-1} v_{k, 2}\right\rangle \leq\left\|v_{k, 2}\right\|(1-p)
$$

Therefore, knowing also that

$$
\lim _{k \longrightarrow \infty} \operatorname{dist}\left(v_{k, 2}, F_{\left(z_{k}, a_{k}\right)}^{-}\right)=0
$$

we get that either $\left\|v_{k, 1}\right\|=\left\|v_{k, 2}\right\|=0$, that is $\left\|v_{k}\right\|=0$, or

$$
\lim \sup \left\langle\Delta^{2} v_{k}-p\left(w_{k}\right)_{+}^{p} v_{k}, K v_{k}\right\rangle>0
$$

which is a contradiction. Then the lemma holds.
Proposition 7.7. There exist $r_{2}>0$ and $C_{2}>0$ satisfying: for every $f \in C(\bar{\Omega}),|f|_{C(\bar{\Omega})}<\varepsilon_{2}$, and each $(z, a) \in O\left(r_{2}\right)$, there exists $w_{(a, z)} \in$ $S \cap B_{\frac{\delta}{2}}\left(U_{(z, a)}\right)$ such that

$$
\begin{equation*}
\left\|w_{(a, z)}-U_{(z, a)}\right\| \leq C_{2}\left\|\nabla J\left(U_{(z, a)}\right)\right\| \tag{8}
\end{equation*}
$$

and

$$
J\left(w_{(a, z)}\right)=\min _{u \in F_{(z, a)}^{+} \cap B_{\frac{\delta}{2}}(0)} \max _{v \in F_{(\bar{z}, a)} \cap B_{\frac{\delta}{2}}(0)} J\left(U_{(z, a)}+u+v\right),
$$

that is

$$
J\left(w_{(a, z)}+v\right) \leq J\left(w_{(a, z)}\right) \leq J\left(w_{(a, z)}+u\right),
$$

for every $u \in F_{(z, a)}^{+} \cap B_{\delta}(0)$ and $v \in F_{(z, a)}^{-} \cap B_{\delta}(0)$.
Proof. The existence of $w_{(a, z)}$ follows from the fact that $\left\|\nabla J\left(U_{(z, a)}\right)\right\| \longrightarrow 0$ as $d(z) a \longrightarrow \infty$ and (7): by Taylor expansion we see that the functional is convex in the direction of $F_{(z, a)}^{+}$and concave in the direction of $F_{(z, a)}^{-}$. We have a saddle point, therefore $w(a, z)$ exists as in [2] and it is in $F_{(z, a)}$. Now we want to prove that

$$
\left\|w_{(a, z)}-U_{(z, a)}\right\| \leq C_{2}\left\|\nabla J\left(U_{(z, a)}\right)\right\|
$$

We note first that since $w_{(a, z)}$ is a saddle point, we have $\langle\nabla J(w(a, z)), w(a, z)\rangle=$ 0 , then $w(a, z) \in S$. Using again a Taylor expansion we have

$$
\left\langle\nabla J\left(w_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle=
$$

$$
=\left\langle\nabla J\left(U_{(z, a)}\right)+J^{\prime \prime}\left(U_{(z, a)}\right)\left(w_{(z, a)}-U_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle+o\left(\left\|w_{(a, z)}-U_{(z, a)}\right\|^{2}\right)
$$

By noticing that

$$
J^{\prime \prime}\left(U_{(z, a)}\right) h=\Delta^{2} h-p\left|U_{(z, a)}\right|^{p-1} h
$$

and by using (7), we get

$$
\begin{gathered}
\left\langle\nabla J\left(w_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle \geq\left\langle\nabla J\left(U_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle+ \\
+C_{1}\left\|w_{(a, z)}-U_{(z, a)}\right\|^{2}+o\left(\left\|w_{(a, z)}-U_{(z, a)}\right\|^{2}\right)
\end{gathered}
$$

$\operatorname{But}\left\langle\nabla J\left(w_{(z, a)}\right), K\left(w_{(z, a)}-U_{(z, a)}\right)\right\rangle=0$ by construction of $w_{(z, a)}$, therefore we obtain the desired result by a simple application of Cauchy-Schwartz inequality.

Lemma 7.8. Let $f=0$. There exists $r_{2}>0$ such that for every $r>r_{2}$, there exists $c_{r}>\frac{C_{n}}{n}$ verifying

$$
J\left(w_{(z, a)}\right)>c_{r}
$$

for every $(z, a) \in \mathcal{O}(r)$.
Proof. By using the expansion of $\left\|U_{(z, a)}\right\|^{2}$ (see Appendix), we have the existence of $m>0$, such that $\left\|U_{(z, a)}\right\|>m$ for $(z, a) \in \bar{O}\left(r_{2}\right)$. Let now $r \geq r_{2}$. Since $f=0$ and $w_{(z, a)} \in S$, then $J\left(w_{(z, a)}\right)>\frac{C_{n}}{n}$ for all $(z, a) \in O(r)$.
So let us assume by contradiction that

$$
\inf _{(z, a) \in O(r)} J\left(w_{(z, a)}\right)=\frac{C_{n}}{n} .
$$

Then there exists a sequence $\left(z_{k}, a_{k}\right) \in O(r)$, such that

$$
\left\|w_{\left(z_{k}, a_{k}\right)}-\bar{U}_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right\| \longrightarrow 0
$$

where $\left(z_{k}^{\prime}, a_{k}^{\prime}\right) \in \Omega \times(1, \infty)$ is such that $d\left(z_{k}^{\prime}\right) a_{k}^{\prime} \longrightarrow \infty$. Thus

$$
\left\|w_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right\| \longrightarrow 0
$$

Using (8), we have $\left\|w_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}, a_{k}\right)}\right\|<\frac{m}{4}$, since $\left(z_{k}, a_{k}\right) \in \bar{O}\left(r_{2}\right)$. This leads to $\left\|U_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right\| \leq \frac{m}{4}$. But we know that $d\left(z_{k}^{\prime}\right) a_{k}^{\prime} \longrightarrow \infty$ and $d\left(z_{k}\right) a_{k}=r$, therefore

$$
\lim _{k \longrightarrow \infty}\left\|U_{\left(z_{k}, a_{k}\right)}-U_{\left(z_{k}^{\prime}, a_{k}^{\prime}\right)}\right\| \geq 2 m
$$

which is a contradiction.

Lemma 7.9. Let $f \in C(\bar{\Omega})$, such that $|f|_{C(\bar{\Omega})}<\varepsilon_{2}$, then there exist $r_{3}>0$, $C_{3}, C_{4}>0$ such that

$$
J\left(w_{(z, a)}\right) \leq \frac{C_{n}}{n}+C_{3}(d(z) a)^{-(n-4)}-C_{4} d(z) a^{\frac{n-4}{2}}
$$

for $\operatorname{every}(z, a) \in \overline{\mathcal{O}}\left(r_{3}\right)$.
Proof. For $(z, a) \in \overline{\mathcal{O}}\left(r_{2}\right)$, we take $\widetilde{U}_{(z, a)}=t_{U_{(z, a)}} U_{(z, a)}$ as in [19]. So we have $J\left(\widetilde{U}_{(z, a)}\right)=\max _{t \geq 0}\left(t U_{(z, a)}\right)$. Hence by construction of $w_{(z, a)}$, we have

$$
J\left(w_{(z, a)}\right) \leq J\left(\widetilde{U}_{(z, a)}\right)
$$

We see that in fact, $t_{1}<t_{U_{(z, a)}}<t_{2}$ for every $(z, a) \in \bar{O}\left(r_{2}\right)$ with t_{1} and t_{2} two fixed real numbers. Now

$$
\begin{gathered}
J\left(\widetilde{U}_{(z, a)}\right) \leq \max _{t \geq 0}\left\{\frac{1}{2} \int_{\Omega} t^{2}\left(\Delta U_{(z, a)}\right)^{2}-\frac{1}{p+1} \int_{\Omega} t^{p+1} U_{(z, a)}^{p+1}\right\}- \\
-\min _{t_{1} \leq t \leq t_{2}}\left\{\frac{1}{p+1} \int_{\Omega}\left(\left(u_{0}+t U_{(z, a)}\right)^{+}\right)^{p+1}-t^{p+1} U_{(z, a)}^{p+1}-(p+1) t u_{0}^{p} U_{(z, a)}-u_{0}^{p+1}\right\}
\end{gathered}
$$

after studying the polynomial equation

$$
\frac{1}{2} \int_{\Omega} t^{2}\left(\Delta U_{(z, a)}\right)^{2}-\frac{1}{p+1} \int_{\Omega} t^{p+1} U_{(z, a)}^{p+1}
$$

and using the estimate in the Appendix, one can see that

$$
\max _{t \geq 0}\left\{\frac{1}{2} \int_{\Omega} t^{2}\left(\Delta U_{(z, a)}\right)^{2}-\frac{1}{p+1} \int_{\Omega} t^{p+1} U_{(z, a)}^{p+1}\right\}=\frac{C_{n}}{n}+O\left(a^{-(n-4)}\right) \leq c+O\left((a d(z))^{-(n-4)}\right)
$$

By using a Taylor expansion near zero and at infinity, we find that

$$
\begin{gathered}
\frac{1}{p+1} \int_{\Omega}\left(\left(u_{0}+t U_{(z, a)}\right)^{+}\right)^{p+1}-t^{p+1} U_{(z, a)}^{p+1}-(p+1) t u_{0}^{p} U_{(z, a)}-u_{0}^{p+1} \geq \int_{\Omega} u_{0} t^{p} U_{(z, a)}^{p}- \\
-C \int_{\Omega} t^{\frac{n}{n-4}} u_{0}^{\frac{n}{n-4}} U_{(z, a)}^{\frac{n}{n-4}}
\end{gathered}
$$

Therefore

$$
\begin{gathered}
-\min _{t_{1} \leq t \leq t_{2}}\left\{\frac{1}{p+1} \int_{\Omega}\left(\left(u_{0}+t U_{(z, a)}\right)^{+}\right)^{p+1}-t^{p+1} U_{(z, a)}^{p+1}-\right. \\
\left.-(p+1) t u_{0}^{p} U_{(z, a)}-u_{0}^{p+1}\right\} \leq C \int_{\Omega} t_{2}^{\frac{n}{n-4}} u_{0}^{\frac{n}{n-4}} U_{(z, a)}^{\frac{n}{n-4}}-\int_{\Omega} u_{0} t_{1}^{p} U_{(z, a)}^{p}
\end{gathered}
$$

By using the estimates in Lemma (7.5), we get

$$
C \int_{\Omega} t_{2}^{\frac{n}{n-4}} u_{0}^{\frac{n}{n-4}} U_{(z, a)}^{\frac{n}{n-4}}-\int_{\Omega} u_{0} t_{1}^{p} U_{(z, a)}^{p} \leq O\left(d(z)^{\frac{n}{n-4}} a^{-\frac{n}{2}}|\ln (a)|\right)-O\left(d(z) a^{-\frac{n-4}{2}}\right),
$$

therefore

$$
\begin{aligned}
J\left(\widetilde{U}_{(z, a)}\right) & \leq \frac{C_{n}}{n}+O\left((a d(z))^{-(n-4)}\right)+O\left(d(z)^{\frac{n}{n-4}} a^{-\frac{n}{2}}|\ln (a)|\right)-O\left(d(z) a^{-\frac{n-4}{2}}\right) \\
& \leq \frac{C_{n}}{n}+O(\operatorname{ad}(z))^{-(n-4)}+A d(z)^{\frac{n}{n-4}} a^{-\frac{n}{2}}|\ln (a)|-B d(z) a^{-\frac{n-4}{2}}
\end{aligned}
$$

for A and B two positive constants. The conclusion follows.
Now we define the set:

$$
\mathcal{R}=\left\{(z, a) \in \overline{\mathcal{O}}\left(r_{3}\right) ; C_{3}(d(z) a)^{-(n-4)}<C_{4} d(z) a^{\frac{n-4}{2}}\right\} .
$$

In this set we have $J\left(w_{(z, a)}\right)<\frac{C_{n}}{n}$ and thus Palais-Smale holds.

Proof. of Theorem (1.3.)
Now the proof of the theorem follows straightforward. In fact, using a minmax argument on the homology classes of \mathcal{R}, we obtain critical points of $(z, a) \longmapsto J\left(w_{(z, a)}\right)$, namely for each $[\alpha] \in H_{*}(\mathcal{R}) \cong H_{*}(\Omega)$, we have that the values c_{α} defined by

$$
c_{\alpha}=\min _{\alpha \in[\alpha]} \max _{(z, a) \in \alpha} J\left(w_{(z, a)}\right)
$$

are critical values of the function defined before. Moreover, these critical values corresponds to critical points belonging to the inside of the set $\overline{\mathcal{O}}\left(r_{3}\right)$, by Lemma (7.8). Now we use a transversality theorem (see Appendix) on the map defined by

$$
\Psi(u, f)=\Delta^{2} u-|u|^{p-1} u-f
$$

to show that these critical points are non-degenerate. This ends the proof.

8 Appendix

Here we will give a list of estimates that we used in some of the proofs. Here the O is for $\frac{d_{i}}{\lambda_{i}} \longrightarrow \infty$ and $\varepsilon_{12} \longrightarrow 0$. Let $\bar{U}_{(\xi, \lambda)}(x)=\left(\frac{\lambda}{1+\lambda^{2}|x-\xi|^{2}}\right)^{\frac{n-4}{2}}$, and for $i=1,2$, we will set $\bar{U}_{i}=\bar{U}_{\left(\xi_{i}, \lambda_{i}\right)}$. By using the same notation as in section 1, we set $U_{i}=P \bar{U}_{i}, \varepsilon_{12}=\frac{1}{\frac{\lambda_{2}}{\lambda_{1}}+\frac{\lambda_{1}}{\lambda_{2}}+\lambda_{1} \lambda_{2}\left|\xi_{1}-\xi_{2}\right|^{2}}$ and $d_{i}=\operatorname{dist}\left(\xi_{i}, \partial \Omega\right)$.

Lemma 8.1. Let $\theta_{1}=\bar{U}_{1}-U_{1}$, then :

$$
\begin{aligned}
& \text { i) } 0 \leq \theta_{1} \leq \bar{U}_{1} \\
& \text { ii) } \theta_{1}(x)=H\left(\xi_{1}, x\right) \lambda_{1}^{\frac{n-4}{2}}+f_{1}(x) \\
& \text { iii) } f_{1}(x)=O\left(\frac{\lambda_{1}^{\frac{n}{2}}}{d_{1}^{n-2}}\right), \frac{\partial}{\partial \lambda_{1}} f_{1}(x)=O\left(\frac{\lambda_{1}^{\frac{n}{2}+1}}{d_{1}^{n-2}}\right) \\
& \text { iv) } \frac{\partial}{\partial \xi_{1}} f_{1}(x)=O\left(\frac{\lambda_{1}^{\frac{n}{2}}}{d_{1}^{n-1}}\right)
\end{aligned}
$$

Lemma 8.2. It holds:
i) $\left\|U_{1}\right\|^{2}=\left\langle U_{1}, U_{1}\right\rangle=C_{n}-c_{1} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$
ii) $\left\langle U_{2}, U_{1}\right\rangle=c_{1}\left(\varepsilon_{12}-H\left(\xi_{1}, \xi_{2}\right) \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}}\right)+O\left(\varepsilon_{12}^{\frac{n-2}{n-4}}+\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}+\frac{\lambda_{2}^{n-2}}{d_{2}^{n-2}}\right)$
iii) $\int_{\Omega} U_{1}^{\frac{2 n}{n-4}}=C_{n}-\frac{2 n}{n-4} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$
iv) $\int_{\Omega} U_{1}^{\frac{n+4}{n-4}} U_{2}=\left\langle U_{2}, U_{1}\right\rangle+\left\{\begin{array}{c}O\left(\varepsilon_{12}^{\frac{n}{n-4}} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{\frac{n-4}{n}} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) \text { if } n \leq 7\end{array}\right.$.

Lemma 8.3. We have the following estimates on $\frac{\partial}{\partial \lambda} U_{1}$.
i) $\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle=\frac{n-4}{2} c_{1} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-4}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$
ii) $\int_{\Omega} U_{1}^{\frac{n+4}{n-4}} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}=2\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right)$
iii) $\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle=c_{1}\left(\frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda_{1}} \varepsilon_{12}+\frac{n-4}{2} H\left(\xi_{1}, \xi_{2}\right) \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}}\right)+O\left(\varepsilon_{12}^{\frac{n-2}{n-4}}+\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}+\frac{\lambda_{2}^{n-2}}{d_{2}^{n-2}}\right)$
iv) $\int_{\Omega} U_{2}^{\frac{n+4}{n-4}} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle+\left\{\begin{array}{c}O\left(\varepsilon_{12}^{\frac{n}{n-4}} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{\frac{n-4}{n}} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) \text { if } n \leq 7\end{array}\right.$
v) $\int_{\Omega} U_{2} \frac{1}{\lambda_{1}}\left(\frac{\partial}{\partial \lambda} U_{1}\right)^{\frac{n+4}{n-4}}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \lambda} U_{1}\right\rangle+\left\{\begin{array}{c}O\left(\varepsilon_{12}^{\frac{n}{n-4}} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) \text { if } n \geq 8 \\ O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{\frac{n-4}{n}} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) \text { if } n \leq 7\end{array}\right.$

Lemma 8.4. We have the following estimates on $\frac{\partial}{\partial \xi} U_{1}$

$$
\begin{aligned}
& \text { i) }\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle=-\frac{1}{2} c_{1} H\left(\xi_{1}, \xi_{1}\right) \lambda_{1}^{n-3}+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right) \\
& \text { ii) } \int_{\Omega} U_{1}^{\frac{n+4}{n-4}} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}=2\left\langle U_{1}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle+O\left(\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}\right) \\
& \text { iii) }\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle=c_{1}\left(\frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} \varepsilon_{12}-\frac{\partial}{\partial \xi_{1}} H\left(\xi_{1}, \xi_{2}\right) \lambda_{1}^{\frac{n-4}{2}} \lambda_{2}^{\frac{n-4}{2}}\right)+O\left(\varepsilon_{12}^{\frac{n-1}{n-4}} \frac{\left|\xi_{1}-\xi_{2}\right|}{\lambda_{2}}+\frac{\lambda_{1}^{n-2}}{d_{1}^{n-2}}+\frac{\lambda_{2}^{n-2}}{d_{2}^{n-2}}\right) \\
& \text { iv) } \int_{\Omega} U_{2}^{\frac{n+4}{n-4}} \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle+\left\{\begin{array}{c}
O\left(\varepsilon_{12}^{\frac{n}{n-4}} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) \text { if } n \geq 8 \\
O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{\frac{n-4}{n}} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) \text { if } n \leq 7
\end{array}\right. \\
& \text { v) } \int_{\Omega} U_{2} \frac{1}{\lambda_{1}}\left(\frac{\partial}{\partial \xi_{1}} U_{1}\right)^{\frac{n+4}{n-4}}=\left\langle U_{2}, \frac{1}{\lambda_{1}} \frac{\partial}{\partial \xi_{1}} U_{1}\right\rangle+\left\{\begin{array}{c}
O\left(\varepsilon_{12}^{\frac{n}{n-4}} \ln \left(\varepsilon_{12}^{-1}\right)+\frac{\lambda_{1}^{n}}{d_{1}^{n}} \ln \left(\frac{d_{1}}{\lambda_{1}}\right)\right) \text { if } n \geq 8 \\
O\left(\varepsilon_{12} \ln \left(\varepsilon_{12}^{-1}\right)^{\frac{n-4}{n}} \frac{\lambda_{1}^{n-4}}{d_{1}^{n-4}}\right) \text { if } n \leq 7
\end{array}\right.
\end{aligned}
$$

The proof of these estimates are similar to the ones in [3]. For more details we refer also to [7], [8] and [17].

Next we state a Transversality Theorem: see [] for the proof.
Theorem 8.5. Let X, Y and Z be three Banach spaces, and $\Psi: X \times Y \longrightarrow Z$ be a C^{1} map satisfying the following conditions: given $z \in Z$
i) for every $(x, y) \in \Psi^{-1}(z)$, the $\operatorname{map} D_{x} \Psi(x, y): X \longrightarrow Z$ is a Fredholm operator of index 0.
ii)for every $(x, y) \in \Psi^{-1}(z)$, the map $D \Psi(x, y): X \times Y \longrightarrow Z$ is surjective.

Then the set of $y \in Y$, satisfying that z is a regular value of $\Psi(\cdot, y)$, is a residual set in Y.

References

[1] S. Alarcon, Double-spike solutions for a critical inhomogeneous elliptic problem in domains with small holes, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 671-692.
[2] H. Amann and E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980), 539603.
[3] A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, Vol. 182, Longman, New York, 1989.
[4] A. Bahri, J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 255-294.
[5] A. Bahri, Y. Li, O. Rey, On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 (1995), 67-93.
[6] M. Ben Ayed, K. El Mehdi, "The Paneitz curvature problem on lowerdimensional spheres", Ann. Global Anal. Geom. 31:1 (2007), 1-36.
[7] M. Ben Ayed, K. El Mehdi, On a biharmonic equation involving nearly critical exponent. NoDEA Nonlinear Differential Equations Appl. 13 (2006), no. 4, 485-509.
[8] M. Ben Ayed, K. El Mehdi, M. Hammami, "Some existence results fora Paneitz type problem via the theory of critical points at infinity", J. Math. Pures Appl. .9/ 84:2 (2005), 247-278.
[9] M. Ben Ayed; A. Selmi, Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a five-dimensional domain. Commun. Pure Appl. Anal. 9 (2010), no. 6. 17051722.
[10] H. Brezis, Elliptic equations with limiting Sobolev exponent $\}$ the impact of topology, in Proceedings 50th Anniv. Courant Inst, Comm. Pure Appl. Math. 39 (1986), S17S39.
[11] D. Cao and J. Chabrowski, Multiple solutions of nonhomogeneous elliptic equation with critical nonlinearity, Differential Integral Equations 10 (1997) 797814.
[12] Z. Djadli, E. Hebey, M. Ledoux, Paneitz type operators and applications, Duke Math. J. 104 (2000) 129-169.
[13] Z. Djadli, A. Malchiodi, M. Ould Ahmedou Prescribing a fourth order conformal invariant on the standard sphere. I. A perturbation result, Commun. Contemp. Math. 4 (2002), no. 3, 375-408
[14] M. del Pino, P. Felmer, M. Musso, "Multi-peak solutions for supercritical elliptic problems in domains with small holes", J. Differential Equation, 182, 511-540 (2002)
[15] M. del Pino, P. Felmer, M. Musso, Two-bubble solutions in the supercritical Bahri-Coron's problem, Calc. Var. Partial Differential Equations 16:2 (2003), 113-145.
[16] K. El Mehdi, M. Hammami, Blowing up solutions for a biharmonic equation with critical nonlinearity. Asymptot. Anal. 45 (2005), no. 3-4, 191-225.
[17] F. Ebobissea, M. Ould Ahmedoub, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent, Nonlinear Analysis 52 (2003) 1535-1552
[18] M. Hammami, Concentration phenomena for fourth-order elliptic equations with critical exponent. Electron. J. Differential Equations 2004, No. 121, 22 pp .
[19] N. Hirano, Multiplicity of solutions for nonhomogeneous nonlinear elliptic equations with critical exponents, Topol. Methods Nonlinear Anal., 18 (2001), 269-281.
[20] C.S. Lin, A classification of solutions of a conformally invariant fourth order equation in Rn, Comment. Math. Helv. 73 (1998) 206-231.
[21] G. Lu, J. Wei, On a Sobolev Inequality with remainder terms, Proc. Of the AMS, Vol 128, No 1,75-84
[22] A. Maalaoui, V. Martino, Existence and Concentration of Positive Solutions for a Super-critical Fourth Order Equation, submitted
[23] A. Malchiodi Conformal metrics with constant Q-curvature. SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 120.
[24] A. M. Micheletti, A. Pistoia, Existence of blowing-up solutions for a slightly subcritical or a slightly supercritical non-linear elliptic equation on \mathbb{R}^{n}, Nonlinear Anal. 52:1 (2003), 173-195.
[25] M. Musso, A. Pistoia, Persistence of Coron's solutions in nearly critical problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2) (2007) 331-357.
[26] A. Selmi, Concentration phenomena in a biharmonic equation involving the critical Sobolev exponent. Adv. Nonlinear Stud. 6 (2006),no 4, 591616.
[27] R.C.A.M. Van der Vorst, Best constant for the embedding of the space $H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ into, $L^{\frac{2 n}{n-4}}(\Omega)$, Differential Integral Equations 6 (2) (1993) 259-276.
[28] R.C.A.M. Van der Vorst, Fourth-order elliptic equations with critical growth, C.R. Acad. Sci. Paris 320 (1995) 295-299.

[^0]: ${ }^{1}$ Department of Mathematics, Rutgers University - Hill Center for the Mathematical Sciences 110 Frelinghuysen Rd., Piscataway 08854-8019 NJ, USA. E-mail address: maalaoui@math.rutgers.edu
 ${ }^{2}$ Department of Mathematics, Rutgers University - Hill Center for the Mathematical Sciences 110 Frelinghuysen Rd., Piscataway 08854-8019 NJ, USA. E-mail address: martino@dm.unibo.it

