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Abstract We consider the nonhomogeneous Yamabe equation on a bounded set

of the Heisenberg group −∆Hu = |u|q∗−2u + f , where f is a small perturbation

in the C0 sense. Under suitable hypotheses, we will state a multiplicity existence

result for positive solutions with zero Dirichlet boundary conditions.

1 Introduction

Let Ω be a bounded domain in the Heisenberg group Hn. In this work we
are interested in finding multiple solutions of the following nonhomogeneous
Dirichlet problem 

−∆Hu = |u|q∗−2u+ f, in Ω,
u > 0, in Ω,
u = 0, on ∂Ω,
f ∈ C(Ω̄), f 6≡ 0 f ≥ 0

(1)

Here ∆H denotes the sub-laplacian of the group and q∗ = (2n+ 2)/2. When
f ≡ 0, problem (1) coincides with the CR-Yamabe equation on Ω which
has been intensively studied in the last years (see for instance [15], [13],
[6] and the references therein). Regarding perturbation results on bounded
domain, we recall the result obtained by Garagnani and Uguzzoni in [12]:
they consider the homogeneous equation

−∆Hu = |u|q∗−2u+ λu, in Ω
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with zero Dirichlet boundary conditions; under suitable hypotheses on the
boundary of Ω, they provide a multiplicity result for positive solutions in-
volving the Lusternik-Schnirelmann category.
In [18] the authors with A.Pistoia prove the existence of concentrating solu-
tions for the slightly sub-critical problem under a suitable assumption on ∂Ω
and that the Robin’s function of the domain has a non-degenerate critical
point.
Here for our purpose we will also need an hypothesis on ∂Ω, in particular
we will require that the boundary of Ω has no characteristic points (see def-
inition (2.1) in the next section). Then, by denoting with Hk(Ω) the k-th
homology group of Ω, we will prove the following:

Theorem 1.1. Let Ω ⊆ Hn be a bounded domain with smooth boundary and
with no characteristic points. Then there exist a residual subset D ∈ C2(Ω̄)
and ε0 > 0, such that for every f ∈ D with |f |C(Ω̄) < ε0, the problem (1)
has at least 1 + Σ∞k=0dimHk(Ω) solutions.

The condition on Ω is needed in order to overcome some technical difficulties
in proving some estimates: as consequence, if we consider H1 for instance,
we cannot take the Heisenberg ball as our domain, since its boundary has
two characteristic points; in particular any contractible domain in H1 with
smooth boundary has characteristic points. Anyway, since the multiplic-
ity result is due to the topology of the domain we are interested in do-
mains with “rich” topology: for example the standard torus in H1 defined
by {(R −

√
x2 + y2)2 + t2 − r2 < 0, R > r > 0} turns out to not have any

characteristic point.
We recall that the analogous problem for the standard Laplacian on bounded
domains in Rn was solved by Hirano in [14]. Moreover we used the same
technique also in [17] in which we first investigate the problem of existence
and multiplicity of solutions for the non-homogeneous fourth order Yamabe
type equation involving the bi-Laplacian by exhibiting a family of solutions
concentrating at two points, provided the domain contains one hole and giv-
ing a multiplicity result if the domain has multiple holes (as in [7], [8]); then
we prove a multiplicity result for vanishing positive solutions in a general
domain.
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2 Setting of the problem

Let Hn = (R2n+1, �) be the Heisenberg group. If we denote by ξ = (x, y, t) ∈
(Rn × Rn × R) then the group law is

ξ0 � ξ = (x+ x0, y + y0, t+ t0 + 2(x · y0 − x0 · y)), ∀ξ, ξ0 ∈ Hn

where · denotes the inner product in Rn. The left translations are then given
by

τξ0(ξ) := ξ0 � ξ

The dilations of the group are

δλ : Hn → Hn, δλ(ξ) = (λx, λy, λ2t)

for any λ > 0. We define the homogeneous norm

ρ(ξ) =
(
(|x|2 + |y|2)2 + t2

)1/4
,

and the distance
d(ξ, ξ0) = ρ(ξ−1

0 � ξ).

It holds
d(δλξ, δλξ0) = λ d(ξ, ξ0).

We will denote by Bd(ξ, r) the ball with respect to the distance d, of center
ξ and radius r. We have

Bd(ξ, r) = τξ(Bd(0, r)), Bd(0, r) = δr(Bd(0, 1))

The canonical left-invariant vector fields are

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n

The (intrinsic) gradient of the group is

DH = (X1, . . . , Xn, Y1, . . . , Yn)

The Kohn Laplacian (or sublaplacian) on Hn is the following second order
operator invariant with respect to the left translations and homogeneous of
degree two with respect to the dilations:

∆H =

n∑
j=1

X2
j + Y 2

j
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By a result in [9], the fundamental solution on Hn of −∆H with pole at the
origin is

Γ(ξ) =
cq

ρ(ξ)q−2

where cq is a suitable positive constant and q = 2n+ 2 is the homogeneous
dimension of the group. The fundamental solution on Hn of −∆H with pole
at the ξ will be

Γ(ξ, η) =
cq

d(ξ, η)q−2

Let now

q∗ =
2q

q − 2

then the following Sobolev-type inequality holds

‖ϕ‖2q∗ =
(∫

Hn
|ϕ|q∗

) 2
q∗ ≤ C

∫
Hn
|DHϕ|2 = C‖DHϕ‖22, ∀ϕ ∈ C∞0 (Hn)

with C a positive constant. For every domain Ω ⊆ Hn, the Folland-Stein
Sobolev space S1

0(Ω) is defined as the completion of C∞0 (Ω) with respect to
the norm

‖ϕ‖ = ‖DHϕ‖2
The exponent q∗ is called critical since the embedding

S1
0(Ω) ↪→ Lq

∗
(Ω)

is continuous but not compact for every domain Ω. Moreover, by defining
the inner product on S1

0(Ω)

〈u, v〉 =

∫
Ω
〈DHu,DHv〉

then there exists a natural orthogonal projection

P : S1
0(Hn) −→ S1

0(Ω)

Let us define the function

ω(x, y, t) =
c0(

(1 + |x|2 + |y|2)2 + t2
) q−2

4

with c0 a suitable positive constant; we recall that Jerison and Lee showed
in [16] that all the positive solutions to the problem

−∆Hu = |u|q∗−2u, u ∈ S1
0(Hn) (2)
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are in the form
ωλ,ξ = λ

q−2
2 ω ◦ δλ ◦ τξ−1

for some λ > 0 and ξ ∈ Hn. Using the variational framework, a positive
solution of the problem (2) on Ω can be found as critical point of the following
functional

JΩ : S1
0(Ω)→ R, JΩ(u) =

1

2

∫
Ω
|DHu|2 −

1

q∗

∫
Ω
|u+|q∗

where u+ = max{0, u} denotes the positive part of u. Moreover any varia-
tional solution is actually a classical solution ([10], [13]).
We will denote by c = JH(ωλ,ξ) the common critical value of the bubbles
ωλ,ξ. Finally, next is the definition of characteristic points

Definition 2.1. Let ϕ : Hn → R a smooth defining function for Ω, namely

Ω = {ξ ∈ Hn : ϕ(ξ) < 0}, ∂Ω = {ξ ∈ Hn : ϕ(ξ) = 0}

A point ξ0 ∈ ∂Ω is said to be characteristic if DHϕ(ξ0) = 0.

3 Proof of Theorem (1.1)

It is known (see [19]) that a solution of the linearized problem

−∆Hu = (q∗ − 1)|ωλ,ξ|q
∗−2u, u ∈ S1

0(Hn) (3)

belongs to the following set

Tλ,ξ = span
{∂ωλ,ξ

∂λ
,
∂ωλ,ξ
∂ξj

, j = 1, . . . , 2n+ 1
}

Now we consider the eigenvalue problem

−∆Hu = µg(ωλ,ξ)u, u ∈ S1
0(Hn) (4)

where g(t) = (q∗−1)|t+|q∗−2, and let µ− = (q∗−1)−1 be the eigenvalue with
eigenfunctions ωλ,ξ. Just by differentiating (2), we get that all the functions
in Tλ,ξ are eigenfunctions with eigenvalue µ0 = 1. We will call E−λ,ξ the

eigenspace corresponding to µ−, E0
λ,ξ the eigenspace corresponding to µ0,

and E+
λ,ξ = (E−λ,ξ ∪E

0
λ,ξ)
⊥. Then we have that there exists µ1 > 0 such that

for every (λ, ξ) ∈ (1,∞)×Hn, it holds

〈−∆Hu− g(ωλ,ξ)u, u〉 ≥ µ1

∫
Hn
g(ωλ,ξ)u

2 (5)
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for all the functions u ∈ E+
λ,ξ.

Now we need a result concerning the existence of a solution for (1). The
following lemma is the analogous of the Euclidean setting: the proof is
similar to that case and we will omit it (see [4], [14]).

Lemma 3.1. Let Ω ⊆ Hn be a bounded domain with smooth boundary and
with no characteristic points. There exist ε0 > 0 and C0 > 0 such that
if f ∈ C2(Ω̄), f ≥ 0, |f |C(Ω̄) < ε0, then there exists a unique solution

u0 ∈ S1
0(Ω) of problem (1) with

|u0|C1(Ω̄) < C0|f |C(Ω̄)

and

c0 :=
1

2

∫
Ω
|DHu0|2 −

1

q∗

∫
Ω
|u0|q

∗ −
∫

Ω
fu0 <

c

2
.

Let now consider the solution u0 obtained in Lemma (3.1) and let us define
the following functional

J(v) =
1

2

∫
Ω
|DHv|2−

1

q∗

∫
Ω
|(v+u0)+|q∗+

1

q∗

∫
Ω
|u0|q

∗
+

∫
Ω
|u0|q

∗−1v, v ∈ S1
0(Ω)

so that for every critical point v of J , then v + u0 is a critical point of the
functional JΩ

f associated to problem (1)

JΩ
f (u) =

1

2

∫
Ω
|DHu|2 −

1

q∗

∫
Ω
|u+|q∗ −

∫
Ω
fu

Arguing as in [3] we have that there exists ε1 > 0 such that for every
f ∈ C(Ω̄), f ≥ 0, f 6≡ 0, |f |C(Ω̄) < ε1 and for every v ∈ S1

0(Ω), v+ 6≡ 0, there
exists a unique positive number tv such that J(tvv) is increasing on [t1, tv)
for some t1 > 0, decreasing on (tv,+∞) and J(tvv) = max{J(tv) : t > 0}.
Now let us define the following set

S =
{
u ∈ S1

0(Ω) \ {0} s.t.
∫

Ω
|DHu|2 =

∫
Ω
|u+|q∗

}
and the Nehari type manifold

S =
{
tvv : v ∈ S1

0(Ω) \ {0}
}

Then one has that J(v) > 0 on S and every non zero critical point of J
is contained in S. Moreover, by the concentration compactness principle
in our subelliptic setting and the representation theorem for Palais-Smale
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sequences proved in [5], we get that J satisfies the Palais-Smale condition
on the interval (0, c).
We introduce now the functions Wλ,ξ := Pωλ,ξ, namely the S1

0(Ω) projec-
tions of ωλ,ξ, defined by

Wλ,ξ = ωλ,ξ − hλ,ξ
where {

−∆HWλ,ξ = −∆Hωλ,ξ = ωq
∗−1
λ,ξ , in Ω,

Wλ,ξ = 0, on ∂Ω,

and {
−∆Hhλ,ξ = 0, in Ω,
hλ,ξ = ωλ,ξ, on ∂Ω,

In the next lemma we provide some estimates on the functions Wλ,ξ and
we explicitly remark that in [14], the author does not use any projection:
indeed he considers the bubbles themselves times a cut-off function.
Let us first define the following sets, for every ρ > 0:

Π(ρ) :
{

(λ, ξ) ∈ (1,∞)× Ω : d(ξ)λ = ρ
}

Π(ρ) :
{

(λ, ξ) ∈ (1,∞)× Ω : d(ξ)λ ≥ ρ
}

where d(ξ) = min{d(∂Ω, ξ), d0} and d0 is a small positive number. Then we
have the following estimates:

Lemma 3.2. Let Ω ⊆ Hn be a bounded domain with smooth boundary and
with no characteristic points. Let ρ0 > 2, then for (λ, ξ) ∈ Π(ρ0) we have:

‖Wλ,ξ‖2 ≤ qc+O(d(ξ)λ)−(q−2) (6)

‖Wλ,ξ‖q
∗

Lq∗ (Ω)
≥ qc−O(d(ξ)λ)−(q−2) (7)∫

Ω
u0W

q∗−1
λ,ξ ≥ O(d(ξ)λ−

(q−2)
2 ) (8)∫

Ω
u
q∗/2
0 W

q∗/2
λ,ξ ≤ O(d(ξ)q

∗/2λ−q
∗/2| log λ|) (9)

Proof. First we note that since the boundary of our domain has no charac-
teristic points, then the intrinsic normal is always defined, in particular we
obtain by Lemma (3.1) and the Hopf Lemma (see [2]) that there exists a
constant ` > 0 such that

`d(η) ≤ u0(η), ∀ η ∈ Ω (10)
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We recall now that the Green’s function G and its regular part H are defined
by

G(ξ, η) = Γ(ξ, η)−H(ξ, η)

and {
−∆HH(ξ, ·) = 0, in Ω,
H(ξ, ·) = Γ(ξ, ·), on ∂Ω,

where Γ(ξ, ·) is the fundamental solution of −∆H with pole at ξ. By using
the maximum principle for ∆H we have a control on the L∞ norm of hλ,ξ,
in particular

hλ,ξ(η) =
H(ξ, η)

λ
q−2
2

∫
Hn
ωq

∗−1 + o
( 1

λ
q−2
2

)
Other useful estimates on the Green’s function and the projections can be
found in [11]; we recall also some similar estimates in the Appendix of [20]:
the only technical assumption that we will add is that ∂Ω is without char-
acteristic points.
Moreover, we explicitly note that at best of our knowledge, we don’t know
any explicit formula for the Green’s function for any bounded domain in the
Heisenberg group.
The first estimate (6) is essentially contained in [6] (Proposition 5.1.): we
only need to rewrite it, taking into account also the distance d(ξ). For the
second one we can argue in the same way. In fact for some r > 0, we consider
a ball Bd(ξ, r) contained in Ω centered at ξ. We get∫

Ω
W q∗

λ,ξ ≥
∫
Bd(ξ,r)

W q∗

λ,ξ =

∫
Bd(ξ,r)

(ωλ,ξ − hλ,ξ)q
∗ ≥

≥
∫
Bd(ξ,r)

ωq
∗

λ,ξ −
∫
Bd(ξ,r)

q∗hλ,ξω
q∗−1
λ,ξ =

=

∫
H
ωq

∗

λ,ξ −
∫
H\Bd(ξ,r)

ωq
∗

λ,ξ −
∫
Bd(ξ,r)

q∗hλ,ξω
q∗−1
λ,ξ

By rescaling the last two integrals after a change of variables, and then by
direct computation, we get (7). Now by (10) we have that for every η ∈ Ω
it holds

`

2
d(ξ) ≤ u0(η), ∀ η s.t. d(ξ) ≤ 2d(η)

Moreover d(ξ)λ > 2 since ρ0 > 2. Then∫
Ω
u0W

q∗−1
λ,ξ ≥ `

2
d(ξ)

∫
Ω∩{d(ξ)≤2d(η)}

W q∗−1
λ,ξ ≥ `

2
d(ξ)

∫
Bd(ξ,1/λ)

W q∗−1
λ,ξ ≥
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≥ `

2
d(ξ)

∫
Bd(ξ,1/λ)

ωq
∗−1
λ,ξ − `

2
d(ξ)(q∗ − 1)

∫
Bd(ξ,1/λ)

hλ,ξω
q∗−2
λ,ξ =

=
`

2
d(ξ)

∫
H
ωq

∗−1
λ,ξ −

`

2
d(ξ)

∫
H\Bd(ξ,1/λ)

ωq
∗−1
λ,ξ −

`

2
d(ξ)(q∗−1)

∫
Bd(ξ,1/λ)

hλ,ξω
q∗−2
λ,ξ

and again after a rescaling we get (8). The last estimate (9) can be obtained
in a similar way.

Let us define now the following sets:

M = {Wλ,ξ : (λ, ξ) ∈ (1,∞)× Ω}

and
N = {sWλ,ξ : (λ, ξ) ∈ (1,∞)× Ω, s ∈ (1/2, 2)}

We will also denote by

F−λ,ξ = {sWλ,ξ : s ∈ R}, F+
λ,ξ = (Tλ,ξN )⊥, Fλ,ξ = F−λ,ξ ⊕ F

+
λ,ξ

and for every function v = v− + v+ ∈ Fλ,ξ we will denote Kv = v− − v+.
The following two results are the same as in [14]: we refer to it for the proof.
First we have a sort of “convexity” property:

Lemma 3.3. There exist positive numbers r1, ρ1, C1, ε2, with ρ1 > ρ0 and
such that if |f |C(Ω̄) < ε2, (λ, ξ) ∈ Π(ρ1) and w ∈ Br1(Wλ,ξ) then

〈−∆Hv − g(w + u0)v,Kv〉 ≥ C1‖v‖2

for every v ∈ Fλ,ξ.

Next we have the existence of a suitable function:

Lemma 3.4. There exist positive numbers ρ2, C2, such that if |f |C(Ω̄) < ε2,

(λ, ξ) ∈ Π(ρ2) then there exists wλ,ξ ∈ S ∩B r1
2

(Wλ,ξ) with

‖wλ,ξ −Wλ,ξ‖ ≤ C2‖∇J(Wλ,ξ)‖

and
J(wλ,ξ) = min

v∈F+
λ,ξ∩B r1

2
(0)

max
w∈F−

λ,ξ∩B r1
2

(0)
J(wλ,ξ + v + w) =

= max
w∈F−

λ,ξ∩B r1
2

(0)
J(wλ,ξ + w) = min

v∈F+
λ,ξ∩B r1

2
(0)

J(wλ,ξ + v)
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We need now a transversality result: here we state it, in the Appendix we
will prove it as byproduct of a more general statement.

Lemma 3.5. Let Ω ⊆ Hn be a bounded domain with smooth boundary and
with no characteristic points. There exists a residual subset D ⊆ C2(Ω̄)
such that for f ∈ D, every solution u of the problem (1) is a nondegenerate
critical point for the functional JΩ

f .

Proof. of Theorem (1.1)
Let us consider a function f ∈ C(Ω̄), f 6≡ 0 f ≥ 0 and f ∈ D, the residual set
of the Lemma (3.5). Following [14], by estimates in Lemma (3.2) and Lemma
(3.3) and (3.4) we have that there exist ρ3 > ρ0, 0 < ε3 < min{ε1, ε2} and
a subset Ψ ⊆ Π(ρ3) with Ψ,Π(ρ3) and Ω homological equivalent and such
that if |f |C(Ω̄) < ε3 then

J(wλ,ξ) < c, ∀ (λ, ξ) ∈ Ψ

where wλ,ξ is the function obtained in Lemma (3.4). Moreover

J(wλ,ξ) > c, ∀ (λ, ξ) ∈ ∂Π(ρ3)

We also define a functional

J̄ : Π(ρ3)→ R, J̄(λ, ξ) = J(wλ,ξ)

By results in [1] and [21] we have that if (λ, ξ) ∈ intΠ(ρ3) is a critical point
for J̄ , then wλ,ξ is a critical point for J ; moreover J̄ satisfies the Palais-Smale
condition on (0, c). We set, for every non zero class [α] ∈ H∗(Ψ), the value

cα = min
α∈[α]

max
(λ,ξ)∈α

J(wλ,ξ)

It follows that there exists a critical point (λ, ξ) ∈ intΠ(ρ3) for J̄ , with crit-
ical value cα. This implies that there exists a critical point wλ,ξ for J with
J(wλ,ξ) = cα. Since f ∈ D, by the transversality theorem, every critical
point of J is nondegenerate. Therefore, by using the previous minmax ar-
gument, the number of critical points of J , and therefore of JΩ

f , is at least
1 + Σ∞k=0dimHk(Ω).

10



A Appendix

Here we state a well known transversality theorem from which we derive the
Lemma (3.5).

Theorem A.1. Let X,Y, Z be separable Banach spaces and Φ : X×Y → Z
a C1 map. Suppose that

(i) ∀ (x, y) ∈ Φ−1(z), DxΦ(x, y) : X → Z is Fredholm of index 0

(ii) ∀ (x, y) ∈ Φ−1(z), DxΦ(x, y) : X → Z is surjective

Then the set of y ∈ Y such that z ∈ Z is a regular value of Φ(·, y) is residual
in Y .

Proof. of Lemma (3.5)
We are going to apply the previous theorem to DJΩ

f . Let

X = S2(Ω) ∩ S1
0(Ω), Y = C2(Ω̄), Z = L2(Ω)

Φ(u, f) = ∆Hu+ |u|q∗−2u+ f

For every u ∈ X, the map

DuΦ(u, f)v = ∆Hv + g(u)v

is Fredholm of index zero. Let z = 0 and (u, f) ∈ Φ−1(0), namely

−∆Hu = |u|q∗−2u+ f

We have that u ∈ C(Ω̄) and the kernel of ∆H + g(u) is a finite dimensional
subspace of C2(Ω̄). Now we want to prove that there exist (v, f̄) ∈ X × Y
such that, for every h ∈ Z

DΦ(u, f)v = DuΦ(u, f)v +DfΦ(u, f) = ∆Hv + g(u)v + f̄ = h

Now P̄ h ∈ C2(Ω̄), where P̄ is the projection from X to the kernel. Then if
we set f̄ = P̄ h then it follows that such a v exists.
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