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1 Introduction

In this paper we are going to consider a real hypersurface M2n+1 in a complex
space form K(c), i.e. a Kähler manifold with constant holomorphic sectional
curvature 4c (see for instance [8]).
The problem of classifying real hypersurfaces in complex space forms has been
widely investigated by many authors giving rise to a huge literature on this
subject: we refer the reader to the expository article [20] and the references
therein.
Here we will make assumptions only on the horizontal distribution of M . In
particular for our purpose we will assume that T1,0M is H-parallel, i.e.

(H) ∇ZW is tangent to M for any Z,W ∈ T1,0M ,

where ∇ denotes the Levi-Civita connection of K(c): equivalently, this means
that the symmetric part of the Levi form vanishes (see next sections for defini-
tions and remarks).
Hypotheses stronger than (H) have already appeared in the literature (e.g. in
[5]), and in different forms (see for instance [20], [4], and Lemma 3.4 below for
further explanations).
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We will consider, for any k ∈ {1, . . . , n}, the k-th Levi curvature of M that is
the k-th elementary symmetric function σk(ℓ(M)) of the eigenvalues of the Levi
form. We will prove, under hypothesis (H), our main formulas (3) in Lemma
2.3. The proof is based on some explicit computations for the derivatives of
σk(ℓ(M)) obtained from the Codazzi equations.
Then we will deduce the main result:

Theorem 1.1. Let M be a real pseudoconvex hypersurface in K(c) satisfying the
hypothesis (H). If σk(ℓ(M)) is a positive constant, for some k ∈ {1, . . . , n} then
M is a Hopf hypersurface. Moreover all the principal curvatures are constant.

From the proof it will be clear that the hypothesis of pseudoconvexity can be
relaxed depending on k. In particular, in Corollary 3.2, we will drop this as-
sumption for the case k = n.
We want to explicitly stress that our aim is to recover the condition on the
characteristic direction of being of Hopf type by exploiting just horizontal as-
sumptions. We will clarify this issue in the last section.
Finally, by using some structural properties (Lemma 3.4), we will get as corol-
lary a classification result saying that, under the hypotheses of Theorem 1.1,
the hypersurface M is of type A referring to the “Takagi’s list” and “Montiel’s
list” (see [20], [23], [24], [25], [6], [18], [1]). These classifications concern the case
of non-vanishing sectional curvature c. On the other hand, in Cn+1 (that is for
c = 0) our Theorem infers that M has to be contained in a sphere or a spherical
tube. In the case of constant mean Levi curvature (k = 1) in Cn+1, this result
has been proved by Monti and Morbidelli in [17]. In the compact case, these
Aleksandrov’s type results have been investigated with different techniques by
several authors (see [5], [9], [14], [26], [13], [12], [11]).

2 Preliminaries

Let us fix a Kähler manifold K of dimension 2n + 2. We denote by J the
complex structure and g the Riemannian metric that are compatible in the
following sense (see for instance [8]):

ω(X,Y ) = g(X,JY )

for every pair of vector fields X,Y ∈ TK, where ω is the fundamental symplectic
2-form of K. We also denote by ∇ the Levi-Civita connection of K.
Let us consider a smooth real orientable and connected embedded manifold M
of codimension 1 onK, with induced metric and connection that we will indicate
again g and ∇ (see also [5] for an exhaustive notion of real hypersurface in a
Kähler manifolds). We denote by N a local choice for the unit normal to M and
by T = JN the characteristic or structure vector field. Let A be the Weingarten
or shape operator, namely

A : TM → TM, AX := −∇XN.
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The Second Fundamental Form of M is defined by

h(·, ·) := g(A·, ·).

We also recall that both ∇ and g are compatible with the complex structure J ,
i.e.

J∇ = ∇J, g(·, ·) = g(J ·, J ·). (1)

The horizontal distribution or Levi distribution HM is the biggest subspace in
TM invariant under the action of J , that is

HM = TM ∩ J TM.

Then TM splits in the g-orthogonal direct sum:

TM = HM ⊕ RT.

In addition, we denote by φ the endomorphism

JX = φX − g(X,T )N for X ∈ TM.

We are going to use also some standard complex notation, namely:

T1,0M := T 1,0K ∩ TCM and T0,1M := T1,0M,

where T 1,0K is the holomorphic tangent space of K (i.e. the complex space
generated by the eigenvalue +i of J) and TCM is the complexified tangent
space of M . Moreover we set

HCM = T1,0M ⊕ T0,1M and we have TCM = HCM ⊕ CT.

Finally we will still denote by the same symbols the metric, the complex struc-
ture, etc., that we will extend by C-linearity, as no ambiguity will occur. Let us
just remind that in this setting the C-linear extension of the Levi-Civita con-
nection coincides with the Chern connection on TCK, so that it is compatible
with the complex structure and it parallelizes the holomorphic bundle.

The Levi form ℓ is the hermitian and C-bilinear operator defined on T1,0M in
the following way:

ℓ(Z,W ) := g(∇ZW,N) for Z,W ∈ T1,0M.

We can compare the Levi form with the Second Fundamental Form by using
the following identity (see [2], Chap.10, Theorem 2):

2ℓ(Z,Z) = h(X,X) + h(JX, JX)

with X ∈ HM , Z ∈ T1,0M , and Z = 1√
2
(X − iJX).
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Definition 2.1. We will say that M is Levi flat if ℓ identically vanishes. More-
over, we will say that M is (Levi) pseudoconvex if ℓ is positive semi-definite as
quadratic form.

Now let us extend the Levi form to the whole HCM , namely we define

ℓ(Z,W ) := g(∇ZW,N) for Z,W ∈ HCM

and we will refer to the symmetric part of the Levi form if both Z and W belong
to T1,0M (or both to T0,1M).
Therefore with these notations we can restate our assumption (H) in the follow-
ing way:

(H) the symmetric part of the Levi form vanishes; i.e.

ℓ(Z,W ) = g(∇ZW,N) = 0, for any Z,W ∈ T1,0M.

For the sake of simplicity, for a given basis {Z1, . . . , Zn} of T1,0M , we will denote
by

ℓjs = g(∇ZjZs, N), ℓjs̄ = g(∇Zj Z̄s, N), j, s ∈ {1, . . . , n}.

Next we define the k-th Levi curvature (we refer the reader also to [10] and
[14]).

Definition 2.2. Let {Z1, . . . , Zn} be an orthonormal basis for T1,0M . We de-
note the Levi matrix in this basis by L = {ℓjs̄}j,s=1,...,n. For any k ∈ {1, . . . , n},
we define

σk(ℓ(M)) = σk(λ1, . . . , λn) :=
∑

1≤i1<...<ik≤n

λi1λi2 · · ·λik

where λ1, . . . , λn are the eigenvalues of L and σk is the k-th elementary sym-
metric function in Rn.

We explicitly note that the previous definition does not depend on the choice
of the orthonormal basis.
We put σ0(λ1, . . . , λn) = 1. Moreover, the notation

σk(λ1, . . . , λ̂j , . . . , λn)

with k ≤ n − 1 stands for the k-th elementary symmetric function in Rn−1

evaluated at (λ1, . . . , λj−1, λj+1, . . . , λn). It is easy to check that

σk(λ1, . . . , λ̂j , . . . , λn) = σk(λ1, . . . , λn)− λjσk−1(λ1, . . . , λ̂j , . . . , λn) (2)

for any k ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n}.
In the following lemma we prove the key formulas.
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Lemma 2.3. Suppose M is a real hypersurface in the complex space form K(c)
satisfying the hypothesis (H). Then, for any k ∈ {1, . . . , n}, we have

∇Z(σk(ℓ(M))) = i

kσk(ℓ(M))In + 2
k∑

j=1

(−1)j−1σk−j(ℓ(M))Lj

 γ (3)

where In denotes the n × n identity matrix and, for any fixed orthonormal ba-
sis {Z1, . . . , Zn} of T1,0M , Lj is the j-th power of the Levi matrix; whereas
∇Z(σk(ℓ(M))) and γ are vectors of components Zj(σk(ℓ(M))) and g(∇TZj , N)
respectively.

Before starting with the proof, let us make some remarks on complex space
forms. It is known that the models for such settings are the standard complex
space Cn+1 endowed with the standard hermitian metric, the complex projec-
tive space CPn+1 with the Fubini-Study metric, and the complex hyperbolic
space CHn+1 with the Bergman metric (see for instance [8]). These three pro-
totypes differ in the sign of the holomorphic sectional curvature (respectively
zero, positive, and negative). The reason why we consider the ambient space
with constant holomorphic sectional curvature relies on the fact that we are
going to use the Codazzi equations in the proof, and these equations become
considerably simpler in this situation since the metrics of the model spaces are
explicit. Moreover, all the characterization results that we know in literature
make use of this assumption, so that we will be able to relate our theorem to
other classification results.
Thus, let us assume K(c) has constant holomorphic sectional curvature 4c. In
this situation, Codazzi equations appear as follows (see [20])

(∇XA)Y − (∇Y A)X = −c (g(X,T )φY − g(Y, T )φX + 2g(X,φY )T ) ,

for any X,Y ∈ TM . We can rewrite it as:

g((∇ZA)W − (∇WA)Z, V ) = 0 for any Z,W, V ∈ HCM, (4)

since the characteristic direction T is orthogonal to HCM .
By making use of the Bortolotti derivative, the relation (4) is equivalent to the
following

Z(ℓ(W,V )) − W (ℓ(Z, V )) = (5)

= ℓ(∇ZW,V ) + ℓ(W,∇ZV ) − ℓ(∇WZ, V ) + ℓ(Z,∇WV )

for any Z,W, V ∈ HCM . Now, we can start the proof of Lemma 2.3.

Proof. Fix k ∈ {1, . . . , n}. Since the formula is tensorial, it is enough to
prove it for a particular choice of the basis. Thus we fix an orthonormal basis
{Z1, . . . , Zn} of T1,0M such that the Levi matrix L is diagonal. We are going
to introduce some more notations. For s, j,m ∈ {1, . . . , n}, we put

Γm
s,j = g(∇ZsZj , Zm).
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We will write s̄ or 0 instead of s or other indices, meaning that we will substitute
Zs or T in the correspondent spot. By (1) and the fact that Zj ’s and Zj ’s are
eigenvectors for J we get

Γm
j,s = Γm̄

j,s̄ = Γm
j̄,s = 0 for any s, j,m ∈ {1, . . . , n}.

Moreover, by hypothesis (H), we have

Γ0
s,j = 0 and ℓ(Zs, Zj) = 0 for any s, j ∈ {1, . . . , n}.

For fixed s, j ∈ {1, . . . , n}, we want to compute Zs(ℓ(Zj , Zj)) = Zs(Ljj̄). We

can do it by using (5) with Z = Zs, W = Zj , and V = Zj . Therefore, recalling
that

γm = g(∇TZm, N) for m ∈ {1, . . . , n},

we get

Zs(ℓjj̄) =
n∑

m=1

(Γm̄
s,j + Γm

s,j̄)ℓjm̄ + Γ0
s,j̄γj − Γ0

j̄,sγj − Γ0
j̄,jγs

where we have exploited again the hypothesis (H). We note that

Γ0
s,j̄ = iℓs,j = −Γ0

j̄,s.

By keeping in mind that the matrix L is diagonal with our choices and Γj̄
s,j =

−Γj
s,j̄

, we deduce that

Zs(ℓj,j) = i(1 + 2δsj)Ljjγs, (6)

where δsj stands for the Kronecker delta. Hence, we have proved that

Zs(Tr(L)) = i(Tr(L)γs + 2(Lγ)s),

which is the desired formula for k = 1. In the general case, since λj := Ljj are
the eigenvalues of L, we have by (6)

Zs(σk(ℓ(M))) =
∑

1≤i1<...<ik≤n

k∑
j=1

Zs(λij )
∏
m ̸=j

λim

= i
k∑

j=1

σk(ℓ(M))γs + 2iγs
∑

1≤i1<...<ik≤n

k∑
j=1

δsijλij

∏
m ̸=j

λim

= ikσk(ℓ(M))γs + 2iλsσk−1(λ1, . . . , λ̂s, . . . , λn)γs. (7)

By using iteratively (2) we recognize that

σk−1(λ1, . . . , λ̂s, . . . , λn) =
k∑

j=1

(−1)j−1σk−j(L)λj−1
s . (8)
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Hence, for any s ∈ {1, . . . , n}, we finally get

Zs(σk(ℓ(M))) = ikσk(ℓ(M))γs + 2i
k∑

j=1

(−1)j−1σk−j(L)λj
sγs

= ikσk(ℓ(M))γs + 2i

k∑
j=1

(−1)j−1σk−j(L)(Ljγ)s.

We want to remark explicitly the expressions of formula (3) in the special cases
k = 1, n. We have

∇Z(Tr(ℓ(M))) = i (Tr(ℓ(M))In + 2L) γ (9)

and
∇Z(det(ℓ(M))) = (n+ 2)idet(ℓ(M))γ. (10)

The second formula follows from the fact

det(L)−
n∑

j=1

(−1)j−1σn−j(L)λj
s = det(L − λsIn) = 0

for any λs eigenvalue of L.

3 Proof of the results

Let us first recall the following definition.

Definition 3.1. A real hypersurface M in a Kähler manifold K is said to be
a Hopf hypersurface if the structure vector T = JN is an eigenvector for the
shape operator A.

With our notation this is equivalent to γ = 0. Also, we address the reader to
the articles [3], [7], [15], [16], concerning Hopf hypersurfaces.

Proof of Theorem 1.1. Besides hypothesis (H), we are assuming that

M is Levi pseudoconvex and σk(ℓ(M)) ≡ c0 = const > 0 in M

for some k ∈ {1, . . . , n}. By Definition 2.1, all the eigenvalues λs’s of ℓ(M) are
non-negative. By the relation (8), it is clear that also the matrix

P := 2
k∑

j=1

(−1)j−1σk−j(ℓ(M))Lj

is positive semi-definite. Thus we get

i(kc0In + P )γ = 0 =⇒ γ = 0

7



and M is an hypersurface of Hopf type. Therefore

Z(σk(ℓ(M))) = 0, ∀ Z ∈ HCM, ∀ k ∈ {1, . . . , n},

i.e. all the k-th Levi curvatures are constant along the horizontal directions.
Now, since by hypothesis there exists k ∈ {1, . . . , n} such that σk(ℓ(M)) > 0,
then by Definition 2.1 M is non Levi flat. In particular, there exists at least
one eigenvalue λ > 0: let us call Z ∈ T1,0M the eigenvector associated to λ. We
have, if Z = 1√

2
(X − iY ), Y = JX, that

g([X,Y ], T ) = g(∇XY −∇Y X,T ) = g(∇XX +∇Y Y,N) = 2λ > 0.

Hence the Hörmander’s rank condition holds on HM , namely: for every basis
{Xj , j = 1, . . . , 2n} of HM it holds true the following

dim
(
span

{
Xj , [Xℓ, Xk], j, k, ℓ = 1, . . . , 2n

})
= 2n+ 1. (11)

By Chow’s theorem we then get the H-connectivity property: for every couple
of points p, q ∈ M there exists an H-admissible curve r, that is

r : [0, 1] → M, r(0) = p, r(1) = q

ṙ(t) ∈ HM ∀ t ∈ [0, 1].

Now, for every couple of points p, q ∈ M , let us take an H-admissible curve r
and we have

d

dt

(
σk

(
ℓ(M)(r(t)

))
= 0, ∀ k ∈ {1, . . . , n}.

Therefore σk(ℓ(M)) is constant along r and therefore is constant on M for any
k ∈ {1, . . . , n}. In particular all the eigenvalues of the Levi form are constant.
In order to conclude the proof, let us denote by a = h(T, T ), so that if M
is a Hopf hypersurface a is the principal curvature (the eigenvalue) related to
the characteristic direction T . We know that if M is a Hopf hypersurface in a
complex space form K(c) with c ̸= 0 then a must be a constant. On the other
hand, if c = 0 then a need not to be constant in general, but here M is non Levi
flat and so a must be constant as well (see for instance [13]). Finally, by using
again hypothesis (H), we deduce that all the principal curvatures of the second
fundamental form are constant.

Formula (9) suggests that the hypothesis of pseudoconvexity is needed in the
case of the mean-Levi curvature. On the other hand, it can be dropped in the
case of the total-Levi curvature (k = n), so we get:

Corollary 3.2. Let M be a real hypersurface in K(c) satisfying the hypothe-
sis (H). Suppose that det(ℓ(M)) is a non-zero constant in M . Then M is a
hypersurface of Hopf type (and all the principal curvatures are constant).

Proof. It follows directly from formula (10) and from the conclusion of the last
proof.
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Remark 3.3. If det(ℓ(M)) vanishes two situations may occur: there are only
some eigenvalues equal to zero or all of them are zero. In the first case it could
be some σk(ℓ(M)) non constant, in the second one the hypersurface is Levi-flat
giving rise to foliations.

We want now to relate our assumption (H) to a general condition occurring in
many classification results of real hypersurfaces in complex space forms. It is a
structural condition on the invariance of the shape operator A with respect to
the endomorphism φ, namely

(S) φA(X) = A(φX), ∀ X ∈ TM.

In the next lemma we compare the two conditions.

Lemma 3.4. Let M be a real hypersurface in any Kähler manifold K. Then
M satisfies condition (S) if and only if M satisfies condition (H) and it is a
Hopf hypersurface.

Proof. We will use the C-linear extension of φ, so that by definition

φ(Z) = iZ, if Z ∈ T1,0M, φ(Z) = −iZ, if Z ∈ T0,1M

and T generates the kernel of φ.
Let us call S := φA−Aφ. We get, for any Z,W ∈ T1,0M ,

g(S(Z),W ) = g(φA(Z)− iA(Z),W )

= g(A(Z), iW )− ig(A(Z),W ) = 0. (12)

Let us first assume condition (S), i.e. S ≡ 0. We have in particular

φA(T )−A(φ(T )) = φA(T ) = 0

which implies that A(T ) belongs to the kernel of φ. Thus M is of Hopf type.
Moreover, for any Z,W ∈ T1,0M , we get

0 = g(S(Z),W ) = g(φA(Z)−A(φZ),W ) = g(φA(Z)− iA(Z),W ) =

= g(−A(Z), iW )− ig(A(Z),W ) = −2iℓ(Z,W ).

Therefore M satisfies condition (H). Viceversa, if we assume that M satisfies
condition (H) and it is a Hopf hypersurface, by arguing in the same way and
by using (12), we get that M satisfies condition (S).

By mean of the previous lemma we see that hypothesis (S) is a condition on both
the subbundles of the tangent space HM and RT . Hence, with Theorem 1.1 we
have proved that we can recover the condition on the characteristic direction T
of being of Hopf type by using only assumptions on the horizontal space, i.e.
hypothesis (H) and the conditions on the k-th Levi curvatures.
We finally get the following result of characterization:
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Corollary 3.5. Let M be a real pseudoconvex hypersurface in K(c), satisfying
the hypothesis (H) and suppose that σk(ℓ(M)) is a positive constant, for some
k ∈ {1, . . . , n}. Then,

· if c > 0, M is contained in a hypersurface of type A in the Takagi’s list
in CPn+1;

· if c < 0, M is contained in a hypersurface of type A in the Montiel’s list
in CHn+1;

· if c = 0, M is contained in a sphere or a spherical tube in the standard
complex space Cn+1.

Proof. From Theorem 1.1 we have that M is of Hopf type, then by Lemma 3.4
we get condition (S). The classification result follows (see [20], [22], [21], [19],
[17]).
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